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Axiomatic Interest Rate Theory
We recall the following axioms of Hughston and Rafailidis (2005),
whereby (Ω,F ,P) is probability space (physical measure) Ft is the
filtration generated by a (k–dimensional) Brownian motion Wt , St
are continuous semimartingales and ξt > 0 is an adapted price
process (natural numeraire):

1. There exists a strictly increasing asset with absolutely
continuous price process Bt (bank account).

2. If St is the price of any asset with an adapted dividend rate
Dt then

St

ξt
+

∫ t

0

Ds

ξs
ds is a martingale (1)

3. There exists an asset that offers a dividend rate sufficient to
ensure that the value of the asset remains constant (floating
rate note).

4. There exists a system of discount bond price processes PtT

satisfying
lim

T→∞
PtT = 0.



The state price density

◮ Define Vt = 1/ξt (state price density).

◮ Since BtVt is a martingale (A2) and Bt is strictly increasing
(A1), we have

Et [VT ] = Et

[

BTVT

BT

]

< Et

[

BTVT

Bt

]

=
BtVt

Bt

= Vt ,

which means that Vt is a positive supermartingale.

◮ Writing Bt = B0 exp
(

∫ t

0 rsds
)

for an adapted process rt > 0

and
d(BtVt) = −(BtVt)λtdWt ,

for an adapted vector process λt , we have that the dynamics
for Vt is

dVt = −rtVtdt − VtλtdWt . (2)



Conditional variance representation

◮ Integrating (2), taking conditional expectations and the limit
T → ∞ (all well–defined thanks to (A3) and (A4)) leads to

Vt = Et

[∫ ∞

t

rsVsds

]

.

◮ Now let σt be a vector process satisfying σ2
t = rtVt and define

the square integrable random variable

X∞ :=

∫ ∞

0
σsdWs .

◮ It then follows from the Ito isometry that

Vt = Et

[

(X∞ − Xt)
2
]

, (3)

where Xt := Et [X∞] =
∫ t

0 σsdWs .



Wiener chaos

◮ It is well known that any X ∈ L2(Ω,F∞,P) can be
represented as a Wiener chaos expansion

X =

∞
∑

n=0

Jn(φn), (4)

where

φn 7→ Jn(φn) =

∫

∆n

φn(s1, . . . , sn)dWs1 . . . dWsn . (5)

◮ The deterministic functions φn ∈ L2(∆n) are called the chaos
coefficients and are uniquely determined by the random
variable X .



First order chaos

◮ In a first order chaos model we have

X∞ =

∫ ∞

0
φ(s)dWs .

◮ In this case σs = φ(s), so that Mts := Et [σ
2
s ] = φ2(s) and

Vt =

∫ ∞

t

Mtsds =

∫ ∞

t

φ2(s)ds

◮ This corresponds to a deterministic interest rate theory, since

PtT =

∫∞

T
φ2(s)ds

∫∞

t
φ2(s)ds

, ftT =
φ2(T )

∫∞

T
φ2(s)ds

= rT .

◮ The remaining asset prices can be stochastic, however.
Indeed, for a derivative with payoff HT we have

Ht =
Et [VTHT ]

Vt

=
VT

Vt

Et [HT ] = PtTEt [HT ]



Factorizable second order chaos: definition

◮ In a second order chaos model we have

X∞ =

∫ ∞

0
φ1(s)dWs +

∫ ∞

0

∫ s

0
φ2(s, u)dWudWs

◮ This is said to be factorizable when φ1(s) = α(s) and
φ2(s, u) = β(s)γ(u).

◮ In this case, σs = φ(s) + β(s)Rs where

Rt =

∫ t

0
γ(s)dWs

is a martingale with quadratic variation Q(t) =
∫ t

0 γ2(s)ds.

◮ Notice that the scalar random variable Rt is the sole state
variable for the interest rate model at time t, even in the case
of a multidimensional Brownian motion Wt .



Factorizable second order chaos: bond prices
◮ Defining ZtT =

∫∞

T
Mtsds, we see that bond prices are given

by

PtT =
ZtT

Ztt

.

◮ Integrating the expression for Mts gives

ZtT =

∫ ∞

T

Mtsds = A(T ) + B(T )Rt + C (T )(R2
t − Q(t)),

where

A(T ) =

∫ ∞

T

(α2(s) + β2(s)Q(s))ds

B(T ) = 2

∫ ∞

T

α(s)β(s)ds, C (T ) =

∫ ∞

T

β2(s)ds

◮ Therefore

PtT =
A(T ) + B(T )Rt + C (T )(R2

t − Q(t))

A(t) + B(t)Rt + C (t)(R2
t − Q(t))



Factorizable second order chaos: option prices
◮ The price at time zero of an option with payoff (PtT − K )+ is

c(0, t,T ,K ) =
1

V0
E
[

Vt (PtT − K )+
]

=
1

V0
E
[

(ZtT − KZtt)
+] ,

◮ Fixing t,T and K , it follows that

ZtT − KZtt = A+ BY + CY 2,

where Y = R(t)/
√

Q(t) ∼ N(0, 1) and

A = [A(T )− KA(t)]− [C (T )− KC (t)]Q(t)

B = [B(T )− KB(t)]
√

Q(t), C = [C (T )− KC (t)]Q(t)

◮ Therefore, defining p(y) = A+ By + Cy2, we have

c(0, t,T ,K ) =
1

A(0)
√
2π

∫

p(y)≥0
p(y)e−

1
2
y2
dy ,

which can be calculated explicitly in terms of the roots of the
polynomial p(y).

◮ Analogous expressions can be derived for puts, swaptions,
caps, floors, etc...



One–variable third order chaos

◮ Consider now

X∞ =

∞
∫

0

α(s)dWs +

∞ s
∫∫

0 0

β(s)dWudWs +

∞ s u
∫∫∫

0 0 0

δ(s)dWvdWudWs

=

∫ ∞

0

[

α(s) + β(s)Ws +
1

2
δ(s)(W 2

s − s)

]

dWs

◮ For fitting the initial term structure P0T , this behaves like a
first order chaos with φ(s) = α2(s) + β2(s)s + δ2(s)s2/2.

◮ Moreover, since

ZtT = a(T ) + b(T )Wt + c(T )W 2
t + d(T )W 3

t + e(T )W 4
t ,

general bond prices are expressed as the ratio of 4th–order
polynomials in Wt .

◮ Similarly, option prices can be found explicitly by integrating a
4th–order polynomial of a standard normal random variable.



Data

◮ For P0T we use clean prices from the UK Debt Management
Office (DMO) at 146 dates (every other business day) from
January 1998 to January 1999 with 50 maturities for each
date.

◮ We also use weekly data at 157 dates (every Friday) from
December 2002 to December 2005 with about 120 maturities
for each date.

◮ For joint calibration with option prices we also consider yield
data from money market at 53 dates (every Friday) from
September 2000 to August 2001 with 17 maturities for each
date, together with ATM caps (37 caplets) and swaptions (6
maturities and 7 tenors).



Parametric specification

◮ Motivated by the vast literature on forward rate curve fitting
(so-called descriptive–form interest rate models), we consider
the exponential–polynomial family (Bjork and Christensen 99):

φ(s) =

n
∑

i=1





µi
∑

j=1

bijs
j



 e−ci s

◮ Special cases in this family are the Nelson–Sigel (87),
Svensson (94) and Cairns (98) models:

φNS (s) = b0 + (b1 + b2s)e
−c1s

φSv (s) = b0 + (b1 + b2s)e
−c1s + b3se

−c2s

φC (s) =

4
∑

i=1

b1e
−ci s



Descriptive fit for yield curves



Chaos fit for yield curves



Calibration results: bonds from Jan/98 to Feb/99

Model N -L RMSPE (%) DM

Sv Svensson 6 160 0.70 -

NS Nelson–Siegel 4 2101 2.67 -4.45

1 1st chaos 3 4420 4.44 -11.46

2 1st chaos 5 250 0.86 -3.54

3 one-var 2nd chaos 6 162 0.82 -2.26

4 one-var 2nd chaos 7 160 0.69 0.22

5 one-var 2nd chaos 7 145 0.75 -1.05

6 factorizable 2nd chaos 6 335 0.88 -2.54

7 factorizable 2nd chaos 6 245 0.68 0.27

8 factorizable 2nd chaos 6 1245 1.26 -3.81

9 factorizable 2nd chaos 7 179 0.63 1.38

10 factorizable 2nd chaos 7 153 0.72 -1.07

11 one-var 3rd chaos 6 168 0.72 -1.24

12 one-var 3rd chaos 7 141 0.76 -1.16

13 one-var 3rd chaos 7 152 0.72 -1.19

14 one-var 3rd chaos 7 149 0.76 -1.43



Calibration results: bonds from Dec/01 to Dec/05

Model N -L RMSPE (%) DM

Sv Svensson 6 442 0.76 -

NS Nelson–Siegel 4 541 0.97 -1.76

1 1st chaos 3 8716 3.96 -3.50

2 1st chaos 5 438 0.99 -1.99

3 one-var 2nd chaos 6 388 0.89 -1.23

4 one-var 2nd chaos 7 388 0.80 -0.38

5 one-var 2nd chaos 7 329 0.66 1.26

6 factorizable 2nd chaos 6 437 1.04 -3.33

7 factorizable 2nd chaos 6 495 0.84 -0.68

8 factorizable 2nd chaos 6 421 1.19 -2.84

9 factorizable 2nd chaos 7 365 0.82 -0.78

10 factorizable 2nd chaos 7 323 0.72 0.36

11 one-var 3rd chaos 6 388 0.87 -1.06

12 one-var 3rd chaos 7 350 0.78 -0.11

13 one-var 3rd chaos 7 367 0.68 1.24

14 one-var 3rd chaos 7 325 0.69 0.60



Forward rates



Models for option price calibration
We consider the following models for option price calibration:

◮ The Hull–White model with Svensson term structure (8
parameters):

drt = κ(Θ(t)− rt) + σ
√
rtdWt

f0t = b0 + (b1 + b2t)e
−c1t + b3te

−c2t

◮ The rational lognormal model with Nakamura-Yu
parametrization and Svensson term structure (9 parameters):

PtT =
G1(T )Mt + G2(T )

G1(t)Mt + G2(t)

G1(t) =
α

γ + 1
(P0t)

γ+1,G2(t) = P0t − G1(t), Mt = eβWt−
1
2
β2t

f0t = b0 + (b1 + b2t)e
−c1t + b3te

−c2t

◮ The lognormal forward LIBOR model with Rebonato volatility,
Schoenmakers and Coffey correlation and Svensson term
structure (13 parameters):

dF
j
t = σj(t)F

j
t dZ

j
t



Hull–White fit for yields and caplets



Rational lognormal fit for yields and caplets



LFM fit for yields and caplets



Chaos fit for yields and caplets



Hull–White fit for yields and swaptions



Rational lognormal fit for yields and swaptions



LFM fit for yields and swaptions



Chaos fit for yields and swaptions



ATM caplet calibration results

Table: Yield and ATM caplet calibration for 2000-2001

No. Model N TotalE1 YieldE CplE SwpE

1 one-var 2nd chaos 6 5.1 2.0 4.6 14.9

2 one-var 2nd chaos 7 3.3 1.7 2.7 16.3

3 factorizable 2nd 6 3.8 2.1 3.1 26.5

4 one-var 3rd chaos 6 4.2 2.0 3.5 15.5

5 one-var 3rd chaos 7 3.2 1.3 2.9 15.7

6 one-var 3rd chaos 9 2.6 1.1 2.3 17.0

I Hull-White 8 8.7 0.6 8.7 25.8

II Rational-log 9 9.2 0.6 9.2 13.9

III LFM 10 3.0 0.6 3.0 -



ATM swaption calibration results

Table: Yield and ATM swaption calibration for 2000− 2001

No. Model N TotalE2 YieldE SwpE CplE

1 one-var 2nd chaos 6 7.1 1.8 6.8 14.5

2 one-var 2nd chaos 7 7.1 2.0 6.7 14.6

3 factorizable 2nd 6 7.1 2.1 6.8 14.3

4 one-var 3rd chaos 6 5.3 2.9 4.1 10.2

5 one-var 3rd chaos 7 3.8 1.5 3.4 8.6

6 one-var 3rd chaos 9 3.5 1.5 3.1 9.1

I Hull-White 8 10.2 0.6 10.2 17.6

II Rational-log 9 8.4 0.6 8.4 15.3

III LFM 13 5.0 0.6 5.0 8.1



Joint calibration results

Table: Yield, ATM caplet and ATM swaption calibration for 2000− 2001

No. Model N TotalE3 YieldE SwpE CplE

1 one-var 2nd chaos 6 12.5 2.2 9.3 7.9

2 one-var 2nd chaos 7 12.1 2.4 9.3 7.3

3 factorizable 2nd 6 12.1 2.6 8.4 8.2

4 one-var 3rd chaos 6 8.2 4.3 4.4 5.2

5 one-var 3rd chaos 7 7.1 1.6 4.4 5.2

6 one-var 3rd chaos 9 5.9 2.2 4.1 3.4

I Hull-White 8 18.4 0.6 12.2 13.7

II Rational-log 9 14.6 0.6 10.0 10.6

III LFM 13 6.5 0.6 5.5 3.1



Model selection

Table: AIC model selection relative frequency (first dataset)

Model Cpl SW JT

One-var 3rd, 7 par 2
53

50
53

23
53

LFM 51
53

3
53

30
53

Model Cpl SW JT

One-var 3rd, 9 par 36
53

53
53

39
53

LFM 17
53

0
53

14
53

Table: AIC model selection relative frequency (second dataset)

Model Cpl SW JT

One-var 3rd, 7 par 14
53

23
53

7
53

LFM 39
53

30
53

46
53

Model Cpl SW JT

One-var 3rd, 9 par 52
53

44
53

39
53

1 9 14



Conclusions

1. We propose a systematic way to calibrate interest rate model
in the chaotic approach.

2. For term structure calibration, 3rd chaos models perform
comparably to the Svensson model, with the advantage of
being fully stochastic and consistent with non-arbitrage and
positivity conditions.

3. For ATM option calibration, a 3rd chaos model with 9
parameters outperforms the lognormal forward LIBOR models.

4. Further work will compare chaos and SABR for joint smile
calibration (caplets and swaptions).


