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1. Introduction

e \We take the CIR model as given by

dri = a(b — ry)dt + c\/redWs, M|l = Nory (1)

for some positive constants a, b, c, A\ with 4ab > c?, where W,
IS a standard one dimensional Brownian motion on a prob-
ability space (2, F,P) equipped with a Brownian filtration
(Ft)o<it<oo-

e \We seek for the chaotic representation of the underlying ran-
dom variable X in the Hughston/Rafailidis framework.



2. Positive Interest Rates

Let P;7,0 <t < T denote the price at time ¢ for a zero coupon
bond which pays one unit of currency at its maturity 7. Clearly

Py = 1 for all 0 < t < oo and furthermore, positivity of the
interest rate is equivalent to having

PtSSPt‘lm (2)
for all 0 <t <u<s.



2.1 The Flesaker—Hughston approach

FH introduced zero coupon bond prices in the form

>° hsM;sd
Pthf(T)OS 5 for0<t<T < oo, (3)

ft hthSdS
where M;s is a family of strictly positive continuous martingales
satisfying Mps = 1 and hp = —85%T is a positive deterministic

function obtained from the initial term structure. Then the posi-
tivity condition (2), aswellas P;; = 1, holdsforall 0 <t < T < oo.



For concrete examples, they introduce the process
o
Vi= | hsMids, (4)
t
which is easily seen to be a strictly positive supermartingale.

Due to the martingale property for M;s, the bond prices can be
rewritten as

(5)




2.2 State price density and the potential approach

One can elevate equation (5) to the starting point of the mod-
elling and concentrate on the positive adapted continuous pro-
cess V4, called the state price density.

Positivity of the interest rates is then equivalent to V; being a
supermartingale. In order to match the initial term structure, it
needs to be chosen so that E[Vp] = Pyp. If we further impose
that Ppr — 0 as T' — oo, then V; satisfies all the properties of
what is known in probability theory as a potential (namely, a
positive supermartingale with expected value going to zero at
infinity).



It follows from the Doob—Meyer decomposition that any contin-
uous potential satisfying

E( sup v;?) < 0 (6)
0<t<oo
can be written as

‘/% — Et[AOO] — At7 (7)

for a unique (up to indistinguishibility) adapted continuous in-
creasing process A; with E(AZ) < oo, satisfying the constraint
that

|21 = 20T (8)

oT orT



2.3 Related quantities

Given a strictly positive supermartingale V4, there exist a unique
strictly positive (local) martingale A; such that the process

By = N/ V4 (9)

is strictly increasing. We identify B; with a riskless money market
account initialized at Bop = 1 and write it as

B, = exp(/ot rsds), (10)

for an adapted process rs > 0, the short rate process.



The market price of risk then arises as the adapted vector valued
process A\; such that

AN\t = — X N\pdW. (11)
It is immediate to see that
dVi = —riVidt — M\ VidWy. (12)

so that the specification of the process V; is enough to produce
both the short rate r and the market price of risk A;.



2.4 The Chaotic Approach

Assume that the state price density V4 is a potential satisfying

E [/OOO TSVSds] < o0 (13)

By integrating (12) on the interval (¢,T), taking conditional ex-
pectations at time ¢t and the limit T' — oo, one finds that

V, = B Utoo rsvsds] (14)

Now let o; be a vector valued process such that
loe||? = reVs, (15)
and define the square integrable random variable

©.@)
XOO=/O o5 dWs. (16)



It follows from the Ito isometry that

Vi = E[X2] — B[ Xoo)?, (17)

which is called the conditional variance representation of the
state price density V;. A direct comparison between (14) and
(4) gives that

hsMys = Ey |[los||?] - (18)

Similarly, by comparing the conditional variance representation
(17) with the decomposition (7), we see that

Ei[X2] — X7 = Ey[As] — Ay,

where X; = Ey[Xoo]. It follows from the uniqueness of the Doob-
Meyer decomposition that

At — [Xa X]ta
that is, the quadratic variation of the process Xj;.
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2.5 Wiener chaos

Let W; be an N—dimensional Brownian motion on the filtered
probability space (2, F, {ft}t€R+,P). To streamline the handling
of vector indices by a compact notation

T=(s,n) € A=Ry x{1,...,N}

and express integrals as

/A f(r)dr

[, fGsds
[, SCmawy (19)

| Fraws
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For each n > 0O, let

Ho(z) = (—1)ne??/2.L_g=a?/2 (20)
dx™

be the nth Hermite polynomial. For h € L2(A), let W(h) denote
the Gaussian random variable [ h(7)dW, . The spaces

Hn = span{H,(W(R))|h € L?(A)}, n>1,
Hog = C

form an orthogonal decomposition of the space L2(2, Foo, P) Of
square integrable random variables:

L?(2, Foo, P) = @5 gHn,

12



Each H(™) can be understood completely via the isometries

= Jn(fn) = /A Fn(r1s o mn)dWyy ... dWr, (21)

where Ap = {(71,..., )7 = (S5 p) € A,0 <53 <55 < -+ <

Sn < OO}

With these ingredients, one is then led to the result that any X &
L2(Q, F, P) can be represented as a Wiener chaos expansion

X= 3 Jn(fn) (22)

n=0
where the deterministic functions f, € L2(A,) are uniquely de-
termined by the random variable X.
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A special example arises by noting that for h € L2(A)

W(h
1 Jn (R®™) = ||B]|"Hn (ﬁ) (23)
and furthermore

exp [W(h) _ % / |h(7')|2d7'] — ngo ”};‘Jnﬂn (%ﬂ”) (24)

In the notation of quantum field theory, this example defines the
Wick ordered exponential and Wick powers

exp[W(R)]: = exp [W(h)—% / |h(7-)|2dT]
W) = nld(h®M) (25)
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Theorem 1 For any random variable X € L?(92, Foo, P), the gen-
erating functional Zx(h) : L2(A) — C defined by

Zy(h) = E [X exp [W(h) _ % / |h(7)|2d7” (26)

is an entire analytic functional of h € L?(A) and hence has an
absolutely convergent expansion

Zx(h) = Y F{ (k) (27)
n>0
where

F{M (h) = R 2, m)R(r) - h(m)dry . dr (28)

Here, f)((”)(rl, ...,Tn) IS the nth Frechet derivative of Zx at h = 0.
Finally, the Wiener—Ito6 chaos expansion of X is

x=Y [ P (e, ) dWey - AW, (29)
n>0 n

15



3. Squared Gaussian models

The CIR model with an integer constraint N = %b c Ny \ {0,1}
lies in the class of so—called squared Gaussian models. By intro-
ducing an RN—valued Ornstein—Uhlenbeck process R, governed
by the stochastic differential equation

dR; = —gRt dt + gth (30)

where W; is N—dimensional Brownian motion, one verifies that
the square r; = ||R¢||? satisfies (1) where

_ E
Wi :/o |Rel|~ Ry - AW,

is itself a one—dimensional Brownian motion.
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Definition 2 A pair (r¢, \¢) of (2, F,F:, P) processes is called an
N—dimensional squared Gaussian model of interest rates (N > 2)
if there is an RN —valued Ornstein—Uhlenbeck process such that
r = ||R¢||? and Ay = AR;. The process R; satisfies

dRy = a(t)(R(t) — Ry)dt +~y(t)dWi,  R|i=0 = Ro (31)

where o, v, A are symmetric matrix valued and R vector valued
deterministic measurable functions on Ry. W is standard N—
dimensional Brownian motion. In addition we impose the bound-
edness condition:

e there is some constant M > 0 such that «(t) > M and
IX(t)|72 > M for all t
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The exact solution of (31) is easily seen to be

Ry = R + [ K(tt)(aw),
where
R(t) = K(t,0)Ro + [ K(t,t1)a(t) R(t1)dt:
and K(t,s),t > s is the matrix valued solution of

dK(t,s)/dt = —a(t)K(t,s) 0<s<t
{ K(tt) =1 0<t

which generates the Ornstein—Uhlenbeck semigroup.

(32)

(33)

(34)

18



By (12), the state price density process is

¢ 2 B
Vi = exp [— /O (Rl (1 + 3> Rsds + dem)] (35)
We thus have a natural candidate for the random variable Xo:
Xy = /O ol dw, (36)

where oy is the RV¥—valued process

32
o = exp [— /O t (Rl (% + ’\4 ) Rsds + RT/\dWS>] Ry (37)

is the natural solution of aZat = r¢V4.

Proposition 3 limy_ . E[X%] =1

19



4. Exponentiated second chaos

The chaos expansion we seek for the CIR model will be derived
from a closed formula for expectations of e~ Y for elements

Y = A+ /A Bl (r1)dWr, + /AQ O (1, 72)dWor, dWr, (38)

in a certain subset CT C Heo = Ho ® H1 ® Ho.
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If in (38) we define C(71,m) = C(7m,71) when 71 > 7, then C is
the kernel of a symmetric integral operator on L2(A):

Cfi() = [T Crm)f(r)dn (39)

Recall that integral Hilbert-Schmidt operators are finite norm
operators under the norm:

ICl%s = /AQ C (71, 72)|?dr1drs

We say that Y € H<p is in CT if C is the kernel of a symmetric
Hilbert—Schmidt operator on L2(A) such that (1 + C) has non—
negative spectrum.
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Proposition 4 Let Y € Ct. Then
Ele™Y] = [dety(1+C)] /2

1
exp !—A + 5 /AQ BT (r1)(1 + ©) (71, m2) B(m2)dridmo

Remark 5 The Carleman—Fredholm determinant is defined as
the extension of the formula

deto(1 4+ C) = det(1 + C) exp[—Tr(C)] (40)

from finite rank operators to bounded Hilbert—Schmidt opera-
tors; the kernel (1 + C)~1(+y,m) is also the natural extension
from the finite rank case.
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Corollary 6 (Wick’s theorem) The random variable X = e~ Y,
forY = [a, C(11,m)dWr dW, € Ct has Wiener chaos coefficient
functions

—1
fnlr1, ..., ™) = { é(ZGEQn HgEG[C(l + C) ](7_9177_92) Z Ce)\c/jedn

where K = [dety(1 + C)]_l/2 and for n even, G, is the set of
Feynman graphs on the n marked points {ry,...,m™}. Each Feyn-
man graph G is a disjoint union of unordered pairs g = (74{,Tg,)
with Ugeq g = {T1,---, ™}
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Proof: The generating functional for X = ¢~ Y is

E :X exp (/ h(T)dWr — %/h(T)QdT)]

:_Eém%]ﬁﬁ%M@—%/hﬁyw“:chﬁbvﬁm%dwéﬂ’

Zx(h)

SO we can use Proposition 4

Zx(h) = dety(14C)~1/?2
1 _
exp |~ [, (r)[6(r1,72) = (1 + ) (71, 7)Ao )dry o)
using the last part of Theorem 1, the result comes by evaluating
the nth Fréchet derivative at h = 0O, or equivalently by expanding
the exponential and symmetrizing over the points 71,...,m In

the n/2th term. M
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5. The chaotic expansion for squared Gaussian models

We now derive the chaos expansion for the squared Gaussian
model defined by (31). For simplicity, we assume from now on
that A = 0. In view of (36) it will be enough to find the chaos
expansion for aéﬁ, T < co. We start by finding its the generating

functional Z_n. Define the functional Z(h,k) = E [e—YT] with
T

_ 1T Ty
Yy = 5/0 Rthdt—l——/O nt)dw,

w1 [Cimoiza- [kt @Ra (@)
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Proposition 7 Z(h,k) is an entire analytic functional of (h,k) €
L2([0; T)) @ R2N. Moreover
VA
lim (h, k)
t—T— O0kH(t) k=0
where Z_n(h) is defined by (26) with X =o%,u=1,...,N.
T

= Z,(h) (42)
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We want to use Proposition 4 in order to comnpute Z(h,k).
Substitution of (32) into the first and last terms of (41) leads
to

1 /7T : . 1 T_,Jf _ T TNT
~ /O R} Rt = /O B ) R(t)dt + /O ( /O RSKT(s,t)ds> () dW,
T
+ v(t1) (/ K;“(Sytl)KT(SatQ)CLg)’Y(t2>th1th2
Ao 0
1 /T
+§/o tr
T T T T
i _ P :
/O K Rydt /O K Rydt + /O (/O kSKT(s,t)ds>7(t)th,

where we define Kp(t1,to) = 1(t1 < T)K(t1,t») and use an op-
erator multiplication notation.

T
NG, ( /O K}(s,t)KT(s,t)ds> v(t)] dt.
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Thus the exponent Y7 appearing in (41) has the form of (38)

with
1 /T T
Ap = 5/0 tr [~ (t) </O K}(S,t)KT(s,t)ds> *y(t)] dt
1 T poe o -
= /O [RI Ry + hihy — 2k Ry dt,
Br(t) = —hy—~(t) /T KIL(s,t)keds + (1) /T KI(s,t)Reds
0 T'\<) 0 T\ )
T
Cr(t1,t2) = ~(t1) </o K}(S,M)KT(SJz)dS) v(t2).

Now we note that Cp(-,-) is the kernel of an integral opera-
tor which is manifestly positive and has Hilbert—=Schmidt norm
|CT||% ¢ = O(T). Therefore, we can use Proposition 4 for E[e~ 7],
leading to a general formula for the generating functional Z(h, k)
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Differentiation once with respect to k then vields

_ L mim, 4t
Zor(h) = Mypexp [—5 /O (RIR: + hlht) dt

— R+ Kpy(1+ Cp) " H(h — yKLR)| (T)

exp E /A2 (hT _ Rt KT7> (1+Cp) 2 <h - yK}R) dtldt2]

where

My = e 30T (dety(1 + Cp)) Y2 = (det(1 4+ C7p))"Y/2  (43)
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For the CIR model with rg = 0 we have R = 0, a(t) = a/2 and
v(t) = ¢/2, so that Kp(s,t) = e 2(5-1)/21(¢ < s < T) and

c? (T c? 2 (t14+t2) to _—aT
CT(tl7t2) — Z/O KT(Satl)KT(SatQ)dS — 4—0,62 12 (e_a 2—e @ )7

(44)
for 0 <ty <t <T.

Moreover, the previous expression for ZJT(h) reduces to
Zop(h) = Mg |[Kpy(1 4 Cp) 'h| (1)

ex 1/ThThdt+1/ R (14 Cp) Yty to) hy dt1di
P > Jo 't 2 /A, t1 T 1,02 )1, WL QLD |
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Theorem 8 The nth term of the chaos expansion of o for the
CIR model with A\ = 0 and initial condition ro = 0 is zero for

n even. For n odd, the kernel of the expansion is the function
(n)

fr(te, ..., tn) =Mp > 1] L(g) (45)
Geg) geG
where

[CT(]- + CT)_l](tglatgz) t §Z g
L(g) = (46)
(Kry(1 4+ Cr) )(Thtg,) teg
Here, G} is the set of Feynman graphs, each Feynman graph G
being a partition of {ty,...,tn, T} into pairs g = (tgy,tg,).

31



6. Bond pricing formula

In this section we give a derivation of the price of a zero coupon
bond in the CIR model. Recall from section 2 that these are
given by

P = BV vyl (47)

To mantain things as simple as possible we keep A = 0 so V; =
exp[— fg rsds], or in terms of the squared Gaussian formulation,

Vi = exp |- [ RiRsds)| . (48)
t p 0 sttLs
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But as we have seen in the previous section, fort <s < T
S
RE = Kp(s, t)RY + g/ Kr(s, s1)dWE . (49)
t

Hence —log[V, V] = > L (RYY2ds can be written as

2

S T
+/ /QC—CT(sl,SQ)dWyldWS{g] —I—N/t Cr(s,s)ds

1 cR; (T
SED?Cr D + SE [ Crt s)aws

where Cr(s1,s2) =2 g Kr(s, s1)Kr(s,s2)ds
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Taking the conditional expectation of V;_lVT by use of Proposi-
tion 4 leads to the desired formula

2 —N/2
Br = (det(l—l—ZCT)> (50)
2
e |3 (02 (Cri+ 5ot | 1)
1L

Thus P, has the exponential affine form exp[—8(t,T)ry —a(t,T)]
with

o2
8Ty = [0+ op) M
o2
a(tT) = glog(det(l—FZCT)) (52)
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The known formula has the same form, with

2(eP(T=1) _ 1)

™ — 2 _ 24 5.2
D) = o F T 1y gy T
T) = ——|

which can be derived as solutions of the pair of Ricatti ordinary
differential equations

86 B 6252
a2 TP
90 _ s (54)

at
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7. Discussion

e T he CIR model, at least in integer dimensions, can be viewed
within the chaos framework of Hughston and Rafailidis as
arising from a random variable Xy derived from exponen-
tiated second chaos random variables e~ Y Y € Cct. Such
exponentiated CT variables form a rich and natural family
which is likely to include many more candidates for applica-
ble interest rate models.

e Although their analytic properties are complicated, there do
exist approximation schemes which can in principle be the
basis for numerical methods
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e [ his family is invariant under conditional F;—expectations:
log Ex[e=Y] € Ct whenever Y € CT.

e Illustration of the connection between methods developed for
quantum field theory and the methods of Malliavin calculus.
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