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1. Introduction

• We take the CIR model as given by

drt = a(b− rt)dt + c
√

rtdW̃t, ‖λt‖2 = λ̄2rt (1)

for some positive constants a, b, c, λ̄ with 4ab > c2, where W̃t

is a standard one dimensional Brownian motion on a prob-

ability space (Ω,F , P ) equipped with a Brownian filtration

(Ft)0≤t≤∞.

• We seek for the chaotic representation of the underlying ran-

dom variable X∞ in the Hughston/Rafailidis framework.
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2. Positive Interest Rates

Let PtT ,0 ≤ t ≤ T denote the price at time t for a zero coupon

bond which pays one unit of currency at its maturity T . Clearly

Ptt = 1 for all 0 ≤ t < ∞ and furthermore, positivity of the

interest rate is equivalent to having

Pts ≤ Ptu, (2)

for all 0 ≤ t ≤ u ≤ s.
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2.1 The Flesaker–Hughston approach

FH introduced zero coupon bond prices in the form

PtT =

∫∞
T hsMtsds∫∞
t hsMtsds

, for 0 ≤ t ≤ T < ∞, (3)

where Mts is a family of strictly positive continuous martingales

satisfying M0s = 1 and hT = −∂P0T
∂T is a positive deterministic

function obtained from the initial term structure. Then the posi-

tivity condition (2), as well as Ptt = 1, holds for all 0 ≤ t ≤ T < ∞.
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For concrete examples, they introduce the process

Vt =
∫ ∞
t

hsMtsds, (4)

which is easily seen to be a strictly positive supermartingale.

Due to the martingale property for Mts, the bond prices can be

rewritten as

PtT =
Et[VT ]

Vt
. (5)
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2.2 State price density and the potential approach

One can elevate equation (5) to the starting point of the mod-

elling and concentrate on the positive adapted continuous pro-

cess Vt, called the state price density.

Positivity of the interest rates is then equivalent to Vt being a

supermartingale. In order to match the initial term structure, it

needs to be chosen so that E[VT ] = P0T . If we further impose

that P0T → 0 as T → ∞, then Vt satisfies all the properties of

what is known in probability theory as a potential (namely, a

positive supermartingale with expected value going to zero at

infinity).
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It follows from the Doob–Meyer decomposition that any contin-

uous potential satisfying

E

(
sup

0≤t≤∞
V 2

t

)
< ∞ (6)

can be written as

Vt = Et[A∞]−At, (7)

for a unique (up to indistinguishibility) adapted continuous in-

creasing process At with E(A2
∞) < ∞, satisfying the constraint

that

E

[
∂AT

∂T

]
= −

∂P0T

∂T
. (8)
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2.3 Related quantities

Given a strictly positive supermartingale Vt, there exist a unique

strictly positive (local) martingale Λt such that the process

Bt = Λt/Vt (9)

is strictly increasing. We identify Bt with a riskless money market

account initialized at B0 = 1 and write it as

Bt = exp(
∫ t

0
rsds), (10)

for an adapted process rs > 0, the short rate process.
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The market price of risk then arises as the adapted vector valued

process λt such that

dΛt = −λtΛtdWt. (11)

It is immediate to see that

dVt = −rtVtdt− λtVtdWt. (12)

so that the specification of the process Vt is enough to produce

both the short rate rt and the market price of risk λt.
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2.4 The Chaotic Approach

Assume that the state price density Vt is a potential satisfying

E

[∫ ∞
0

rsVsds

]
< ∞ (13)

By integrating (12) on the interval (t, T ), taking conditional ex-
pectations at time t and the limit T →∞, one finds that

Vt = Et

[∫ ∞
t

rsVsds

]
(14)

Now let σt be a vector valued process such that

‖σt‖2 = rtVt, (15)

and define the square integrable random variable

X∞ =
∫ ∞
0

σsdWs. (16)
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It follows from the Ito isometry that

Vt = Et[X
2
∞]− Et[X∞]2, (17)

which is called the conditional variance representation of the
state price density Vt. A direct comparison between (14) and
(4) gives that

hsMts = Et

[
‖σs‖2

]
. (18)

Similarly, by comparing the conditional variance representation
(17) with the decomposition (7), we see that

Et[X
2
∞]−X2

t = Et[A∞]−At,

where Xt = Et[X∞]. It follows from the uniqueness of the Doob-
Meyer decomposition that

At = [X, X]t,

that is, the quadratic variation of the process Xt.
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2.5 Wiener chaos

Let Wt be an N–dimensional Brownian motion on the filtered

probability space (Ω,F , {Ft}t∈R+
, P ). To streamline the handling

of vector indices by a compact notation

τ = (s, µ) ∈ ∆
.
= R+ × {1, . . . , N}

and express integrals as∫
∆

f(τ)dτ
.
=

∑
µ

∫ ∞
0

f(s, µ)ds∫
∆

f(τ)dWτ
.
=

∑
µ

∫ ∞
0

f(s, µ)dWµ
s (19)
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For each n ≥ 0, let

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2 (20)

be the nth Hermite polynomial. For h ∈ L2(∆), let W (h) denote

the Gaussian random variable
∫

h(τ)dWτ . The spaces

Hn
.
= span{Hn(W (h))|h ∈ L2(∆)}, n ≥ 1,

H0
.
= C

form an orthogonal decomposition of the space L2(Ω,F∞, P ) of

square integrable random variables:

L2(Ω,F∞, P ) = ⊕∞n=0Hn
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Each H(n) can be understood completely via the isometries

fn 7→ Jn(fn) =
∫
∆n

fn(τ1, . . . , τn)dWτ1 . . . dWτn (21)

where ∆n
.
= {(τ1, . . . , τn)|τi = (si, µi) ∈ ∆,0 ≤ s1 ≤ s2 ≤ · · · ≤

sn < ∞}.

With these ingredients, one is then led to the result that any X ∈
L2(Ω,F∞, P ) can be represented as a Wiener chaos expansion

X =
∞∑

n=0

Jn(fn) (22)

where the deterministic functions fn ∈ L2(∆n) are uniquely de-

termined by the random variable X.
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A special example arises by noting that for h ∈ L2(∆)

n!Jn(h
⊗n) = ‖h‖nHn

(
W (h)

‖h‖

)
(23)

and furthermore

exp
[
W (h)−

1

2

∫
|h(τ)|2dτ

]
=

∞∑
n=0

‖h‖n

n!
Hn

(
W (h)

‖h‖

)
(24)

In the notation of quantum field theory, this example defines the

Wick ordered exponential and Wick powers

: exp[W (h)] :
.
= exp

[
W (h)−

1

2

∫
|h(τ)|2dτ

]
: W (h)n :

.
= n!Jn(h

⊗n) (25)
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Theorem 1 For any random variable X ∈ L2(Ω,F∞, P ), the gen-
erating functional ZX(h) : L2(∆) → C defined by

ZX(h)
.
= E

[
X exp

[
W (h)−

1

2

∫
|h(τ)|2dτ

]]
(26)

is an entire analytic functional of h ∈ L2(∆) and hence has an
absolutely convergent expansion

ZX(h) =
∑
n≥0

F
(n)
X (h) (27)

where

F
(n)
X (h) =

∫
∆n

f
(n)
X (τ1, . . . , τn)h(τ1) . . . h(τn)dτ1 . . . dτn (28)

Here, f
(n)
X (τ1, . . . , τn) is the nth Frechet derivative of ZX at h = 0.

Finally, the Wiener–Itô chaos expansion of X is

X =
∑
n≥0

∫
∆n

f
(n)
X (τ1, . . . , τn)dWτ1 . . . dWτn (29)
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3. Squared Gaussian models

The CIR model with an integer constraint N
.
= 4ab

c2
∈ N+ \ {0,1}

lies in the class of so–called squared Gaussian models. By intro-

ducing an RN–valued Ornstein–Uhlenbeck process Rt, governed

by the stochastic differential equation

dRt = −
a

2
Rt dt +

c

2
dWt (30)

where Wt is N–dimensional Brownian motion, one verifies that

the square rt = ‖Rt‖2 satisfies (1) where

W̃t =
∫ t

0
‖Rt‖−1Rt · dWt

is itself a one–dimensional Brownian motion.
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Definition 2 A pair (rt, λt) of (Ω,F ,Ft, P ) processes is called an

N–dimensional squared Gaussian model of interest rates (N ≥ 2)

if there is an RN–valued Ornstein–Uhlenbeck process such that

rt = ‖Rt‖2 and λt = λ̄Rt. The process Rt satisfies

dRt = α(t)(R̄(t)−Rt)dt + γ(t)dWt, R|t=0 = R0 (31)

where α, γ, λ̄ are symmetric matrix valued and R̄ vector valued

deterministic measurable functions on R+. W is standard N–

dimensional Brownian motion. In addition we impose the bound-

edness condition:

• there is some constant M > 0 such that α(t) ≥ M and

|λ̄(t)|−2 ≥ M for all t
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The exact solution of (31) is easily seen to be

Rt = R̃(t) +
∫

K(t, t1)(γdW )t1 (32)

where

R̃(t) = K(t,0)R0 +
∫

K(t, t1)α(t1)R̄(t1)dt1 (33)

and K(t, s), t ≥ s is the matrix valued solution of{
dK(t, s)/dt = −α(t)K(t, s) 0 ≤ s ≤ t
K(t, t) = I 0 ≤ t

(34)

which generates the Ornstein–Uhlenbeck semigroup.
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By (12), the state price density process is

Vt = exp
[
−
∫ t

0

(
R†s

(
1 +

λ̄2

2

)
Rsds + R†sλ̄dWs

)]
(35)

We thus have a natural candidate for the random variable X∞:

X∞ =
∫ ∞
0

σ
†
t dWt (36)

where σt is the RN–valued process

σt
.
= exp

[
−
∫ t

0

(
R†s

(
1

2
+

λ̄2

4

)
Rsds +

1

2
R†sλ̄dWs

)]
Rt (37)

is the natural solution of σ
†
tσt = rtVt.

Proposition 3 limT→∞E[X2
T ] = 1
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4. Exponentiated second chaos

The chaos expansion we seek for the CIR model will be derived

from a closed formula for expectations of e−Y for elements

Y = A +
∫
∆

B†(τ1)dWτ1 +
∫
∆2

C(τ1, τ2)dWτ1dWτ2 (38)

in a certain subset C+ ⊂ H≤2
.
= H0 ⊕H1 ⊕H2.
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If in (38) we define C(τ1, τ2) = C(τ2, τ1) when τ1 > τ2, then C is

the kernel of a symmetric integral operator on L2(∆):

[Cf ](τ) =
∫ ∞
0

C(τ, τ1)f(τ1)dτ1 (39)

Recall that integral Hilbert-Schmidt operators are finite norm

operators under the norm:

‖C‖2HS =
∫
∆2

|C(τ1, τ2)|2dτ1dτ2

We say that Y ∈ H≤2 is in C+ if C is the kernel of a symmetric

Hilbert–Schmidt operator on L2(∆) such that (1+ C) has non–

negative spectrum.
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Proposition 4 Let Y ∈ C+. Then

E[e−Y ] = [det2(1 + C)]−1/2

exp

[
−A +

1

2

∫
∆2

B†(τ1)(1 + C)−1(τ1, τ2)B(τ2)dτ1dτ2

]
Remark 5 The Carleman–Fredholm determinant is defined as

the extension of the formula

det2(1 + C) = det(1 + C) exp[−Tr(C)] (40)

from finite rank operators to bounded Hilbert–Schmidt opera-

tors; the kernel (1 + C)−1(τ1, τ2) is also the natural extension

from the finite rank case.
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Corollary 6 (Wick’s theorem) The random variable X = e−Y ,

for Y =
∫
∆2

C(τ1, τ2)dWτ1dWτ2 ∈ C+ has Wiener chaos coefficient

functions

fn(τ1, . . . , τn) =

{
K
∑

G∈Gn

∏
g∈G[C(1 + C)−1](τg1, τg2) n even

0 n odd

where K = [det2(1 + C)]−1/2 and for n even, Gn is the set of

Feynman graphs on the n marked points {τ1, . . . , τn}. Each Feyn-

man graph G is a disjoint union of unordered pairs g = (τg1, τg2)

with ∪g∈G g = {τ1, . . . , τn}.
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Proof: The generating functional for X = e−Y is

ZX(h) = E

[
X exp

(∫
h(τ)dWτ −

1

2

∫
h(τ)2dτ

)]
= E

[
exp

(∫
h(τ)dWτ −

1

2

∫
h(τ)2dτ −

∫
∆2

C(τ1, τ2)dWτ1dWτ2

)]
,

so we can use Proposition 4

ZX(h) = det2(1 + C)−1/2

exp
[
−

1

2

∫
∆2

h†(τ1)[δ(τ1, τ2)− (1 + C)−1(τ1, τ2)]h(τ2)dτ1dτ2

]
using the last part of Theorem 1, the result comes by evaluating

the nth Fréchet derivative at h = 0, or equivalently by expanding

the exponential and symmetrizing over the points τ1, . . . , τn in

the n/2th term. ut

24



5. The chaotic expansion for squared Gaussian models

We now derive the chaos expansion for the squared Gaussian

model defined by (31). For simplicity, we assume from now on

that λ̄ = 0. In view of (36) it will be enough to find the chaos

expansion for σ
µ
T , T < ∞. We start by finding its the generating

functional Zσ
µ
T
. Define the functional Z(h, k) = E

[
e−YT

]
with

YT =
1

2

∫ T

0
R
†
tRtdt +−

∫ T

0
h†(t)dWt

+
1

2

∫ T

0
‖h(t)‖2dt−

∫ T

0
k†(t)Rtdt. (41)
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Proposition 7 Z(h, k) is an entire analytic functional of (h, k) ∈
L2([0;T ])⊗ R2N . Moreover

lim
t→T−

δZ(h, k)

δkµ(t)

∣∣∣∣
k=0

= Zσ
µ
T
(h) (42)

where Zσ
µ
T
(h) is defined by (26) with X = σ

µ
T , µ = 1, . . . , N .
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We want to use Proposition 4 in order to comnpute Z(h, k).

Substitution of (32) into the first and last terms of (41) leads

to

1

2

∫ T

0
R
†
t Rtdt =

1

2

∫ T

0
R̃†(t)R̃(t)dt +

∫ T

0

(∫ T

0
R̃†sKT (s, t)ds

)
γ(t)dWt

+
∫
∆2

γ(t1)

(∫ T

0
K
†
T (s, t1)KT (s, t2)ds

)
γ(t2)dWt1dWt2

+
1

2

∫ T

0
tr

[
γ(t)

(∫ T

0
K
†
T (s, t)KT (s, t)ds

)
γ(t)

]
dt,

∫ T

0
k
†
tRtdt =

∫ T

0
k
†
t R̃tdt +

∫ T

0

(∫ T

0
k†sKT (s, t)ds

)
γ(t)dWt,

where we define KT (t1, t2) = 1l(t1 ≤ T )K(t1, t2) and use an op-

erator multiplication notation.
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Thus the exponent YT appearing in (41) has the form of (38)

with

AT =
1

2

∫ T

0
tr

[
γ(t)

(∫ T

0
K
†
T (s, t)KT (s, t)ds

)
γ(t)

]
dt

1

2

∫ T

0

[
R̃
†
tR̃t + h

†
tht − 2k

†
t R̃t

]
dt,

BT (t) = −ht − γ(t)
∫ T

0
K
†
T (s, t)ksds + γ(t)

∫ T

0
K
†
T (s, t)R̃sds,

CT (t1, t2) = γ(t1)

(∫ T

0
K
†
T (s, t1)KT (s, t2)ds

)
γ(t2).

Now we note that CT (·, ·) is the kernel of an integral opera-

tor which is manifestly positive and has Hilbert–Schmidt norm

‖CT‖2HS = O(T ). Therefore, we can use Proposition 4 for E[e−YT ],

leading to a general formula for the generating functional Z(h, k)

28



Differentiation once with respect to k then yields

ZσT (h) = MT exp

[
−

1

2

∫ T

0

(
R̃
†
tR̃t + h

†
tht

)
dt

]
[
−R̃ + KTγ(1 + CT )−1(h− γK

†
T R̃)

]
(T )

exp

[
1

2

∫
∆2

(
h† − R̃†KTγ

)
(1 + CT )−1

(
h− γK

†
T R̃

)
dt1dt2

]

where

MT = e−
1
2trCT (det2(1 + CT ))−1/2 = (det(1 + CT ))−1/2 (43)
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For the CIR model with r0 = 0 we have R̃ = 0, α(t) = a/2 and

γ(t) = c/2, so that KT (s, t) = e−a(s−t)/21l(t ≤ s ≤ T ) and

CT (t1, t2) =
c2

4

∫ T

0
KT (s, t1)KT (s, t2)ds =

c2

4a
e

a
2(t1+t2)(e−at2−e−aT ),

(44)

for 0 ≤ t1 ≤ t2 ≤ T .

Moreover, the previous expression for ZσT (h) reduces to

ZσT (h) = MT

[
KTγ(1 + CT )−1h

]
(T )

exp

[
−

1

2

∫ T

0
h
†
thtdt +

1

2

∫
∆2

h
†
t1
(1 + CT )−1(t1, t2)ht2dt1dt2

]
.
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Theorem 8 The nth term of the chaos expansion of σT for the

CIR model with λ̄ = 0 and initial condition r0 = 0 is zero for

n even. For n odd, the kernel of the expansion is the function

f
(n)
T (·) : ∆n → R

fT (t1, . . . , tn) = MT

∑
G∈G∗n

∏
g∈G

L(g) (45)

where

L(g) =


[CT (1 + CT )−1](tg1, tg2) t /∈ g

(KTγ(1 + CT )−1)(T, tg2) t ∈ g

(46)

Here, G∗n is the set of Feynman graphs, each Feynman graph G

being a partition of {t1, . . . , tn, T} into pairs g = (tg1, tg2).
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6. Bond pricing formula

In this section we give a derivation of the price of a zero coupon

bond in the CIR model. Recall from section 2 that these are

given by

PtT = Et[V
−1
t VT ]. (47)

To mantain things as simple as possible we keep λ̄ = 0 so Vt =

exp[−
∫ T
0 rsds], or in terms of the squared Gaussian formulation,

Vt = exp
[
−
∫ t

0
R†sRsds

]
. (48)
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But as we have seen in the previous section, for t ≤ s ≤ T

Rµ
s = KT (s, t)Rµ

t +
c

2

∫ s

t
KT (s, s1)dWµ

s1
. (49)

Hence − log[V −1
t VT ] =

∑
µ
∫ T
t (Rµ

s )2ds can be written as

∑
µ

[
1

2
(Rµ

t )
2CT (t, t) +

cR
µ
t

2

∫ T

t
CT (t, s)dWµ

s

+
∫ T

t

∫ s2

t

c2

4
CT (s1, s2)dWµ

s1
dWµ

s2

]
+ N

∫ T

t
CT (s, s)ds

where CT (s1, s2) = 2
∫ T
0 KT (s, s1)KT (s, s2)ds
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Taking the conditional expectation of V −1
t VT by use of Proposi-

tion 4 leads to the desired formula

PtT =

(
det(1 +

c2

4
CT )

)−N/2

(50)

∏
µ

exp

[
−

1

2
(Rµ

t )
2
(

CT (1 +
c2

4
CT )−1

)
(t, t)

]
(51)

Thus PtT has the exponential affine form exp[−β(t, T )rt−α(t, T )]

with

β(t, T ) =
1

2
[CT (1 +

c2

4
CT )−1](t, t)

α(t, T ) =
N

2
log

(
det(1 +

c2

4
CT )

)
(52)
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The known formula has the same form, with

β(t, T ) =
2(eρ(T−t) − 1)

(ρ + a)(eρ(T−t) − 1) + 2ρ
, ρ2 = a2 + 2c2

α(t, T ) = −
2ab

ρ2
log

 2ρe(a+ρ)(T−t)/2

(ρ + a)(eρ(T−t) − 1) + 2ρ

 (53)

which can be derived as solutions of the pair of Ricatti ordinary

differential equations

∂β

∂t
=

c2β2

2
+ aβ − 1

∂α

∂t
= −abβ (54)
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7. Discussion

• The CIR model, at least in integer dimensions, can be viewed

within the chaos framework of Hughston and Rafailidis as

arising from a random variable X∞ derived from exponen-

tiated second chaos random variables e−Y , Y ∈ C+. Such

exponentiated C+ variables form a rich and natural family

which is likely to include many more candidates for applica-

ble interest rate models.

• Although their analytic properties are complicated, there do

exist approximation schemes which can in principle be the

basis for numerical methods
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• This family is invariant under conditional Ft–expectations:

logEt[e−Y ] ∈ C+ whenever Y ∈ C+.

• Illustration of the connection between methods developed for

quantum field theory and the methods of Malliavin calculus.
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