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1. Introduction

• We take the CIR model as specified by the short rate process

drt = a(b− rt)dt + c
√

rtdW̃t, (1)

for some positive constants a, b, c with 4ab > c2, where W̃t

is a standard one dimensional Brownian motion under the

“physical” measure P , and by a market price of risk λt taken

to be proportional to
√

r.

• We seek for the chaotic representation of the underlying ran-

dom variable X∞ in the Hughston/Rafailidis framework.
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2. Positive Interest Rates

2.1 State price density and the potential approach

Let PtT ,0 ≤ t ≤ T denote the price at time t for a zero coupon
bond which pays one unit of currency at its maturity T . Clearly
Ptt = 1 for all 0 ≤ t < ∞ and furthermore, positivity of the
interest rate is equivalent to having

Pts ≤ Ptu, (2)

for all 0 ≤ t ≤ u ≤ s.

A general way to model bond prices [Rogers 97] is to write

PtT =
Et[VT ]

Vt
, (3)

for a positive adapted continuous process Vt, called the state
price density.
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Positivity of the interest rates is then equivalent to Vt being a

supermartingale. To match the initial term structure, we must

have E[VT ] = P0T . If we further impose that P0T → 0 as T →∞,

then Vt satisfies all the properties of a potential. This can then

be uniquely expressed as

Vt = Et[A∞]−At, (4)

for an increasing process At satisfying the constraint

E

[
∂AT

∂T

]
= −

∂P0T

∂T
. (5)
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2.2 Related quantities

Flesaker and Hughston [96] observed that any arbitrage free sys-

tem of zero coupon bond prices has the form

PtT =

∫∞
T hsMtsds∫∞
t hsMtsds

, for 0 ≤ t ≤ T < ∞. (6)

Here hT = −∂P0T
∂T is a positive deterministic function obtained

from the initial term structure and Mts is a family of strictly

positive continuous martingales satisfying M0s = 1. Any such

system of prices can be put into a potential form by setting

Vt =
∫ ∞
t

hsMtsds. (7)

The converse result is less direct and was first established by Jin

and Glasserman [01].
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These equivalent ways of modelling positive interest rates can

now be related to other standard financial objects: given a pos-

itive supermartingale Vt, there exists a unique positive (local)

martingale Λt such that the process Bt = Λt/Vt is strictly in-

creasing and V0 = Λ0. We identify Bt with a riskless money

market account initialized at B0 = 1 and write it as

Bt = exp(
∫ t

0
rsds), (8)

for an adapted process rs > 0, the short rate process.
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The market price of risk then arises as the adapted vector valued

process λt such that

dΛt = −Λtλ
†
tdWt, Λ0 = 1, (9)

where W is an N–dimensional P–Brownian motion, from what it

follows that

dVt = −rtVtdt− Vtλ
†
tdWt, V0 = 1. (10)

so that the specification of the process Vt is enough to produce

both the short rate rt and the market price of risk λt.
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2.3 The Chaotic Approach

Assume that the state price density Vt is a potential satisfying

E

[∫ ∞
0

rsVsds

]
< ∞ (11)

By integrating (10) on the interval (t, T ), taking conditional ex-
pectations at time t and the limit T →∞, one finds that

Vt = Et

[∫ ∞
t

rsVsds

]
(12)

Now let σt be a vector valued process such that

‖σt‖2 = rtVt, (13)

and define the square integrable random variable

X∞ =
∫ ∞
0

σsdWs. (14)
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It follows from the Ito isometry that

Vt = Et[X
2
∞]− Et[X∞]2, (15)

which is called the conditional variance representation of the
state price density Vt. A direct comparison between (12) and
(7) gives that

hsMts = Et

[
‖σs‖2

]
. (16)

Similarly, by comparing the conditional variance representation
(15) with the decomposition (4), we see that

Et[X
2
∞]−X2

t = Et[A∞]−At,

where Xt = Et[X∞]. It follows from the uniqueness of the Doob-
Meyer decomposition that

At = [X, X]t,

that is, the quadratic variation of the process Xt.
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2.4 Wiener chaos

Let Wt be an N–dimensional Brownian motion on the filtered

probability space (Ω,F , {Ft}t∈R+
, P ). We introduce a compact

notation

τ = (s, µ) ∈ ∆
.
= R+ × {1, . . . , N}

and express integrals as∫
∆

f(τ)dτ
.
=

∑
µ

∫ ∞
0

f(s, µ)ds,∫
∆

f(τ)dWτ
.
=

∑
µ

∫ ∞
0

f(s, µ)dWµ
s . (17)
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For each n ≥ 0, let

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2 (18)

be the nth Hermite polynomial. For h ∈ L2(∆), let ‖h‖2 =∫
∆ h(τ)2dτ and define the Gaussian random variable

W (h) :=
∫
∆

h(τ)dWτ .

The spaces

Hn
.
= span{Hn(W (h))|h ∈ L2(∆)}, n ≥ 1,

H0
.
= C,

form an orthogonal decomposition of the space L2(Ω,F∞, P ) of

square integrable random variables:

L2(Ω,F∞, P ) = ⊕∞n=0Hn.
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Each Hn can be identified with L2(∆n) via the isometries

Jn : L2(∆n) → Hn

given by

fn 7→ Jn(fn) =
∫
∆n

fn(τ1, . . . , τn)dWτ1 . . . dWτn, (19)

where ∆n
.
= {(τ1, . . . , τn)|τi = (si, µi) ∈ ∆,0 ≤ s1 ≤ s2 ≤ · · · ≤

sn < ∞}.

With these ingredients, one is then led to the result that any X ∈
L2(Ω,F∞, P ) can be represented as a Wiener chaos expansion

X =
∞∑

n=0

Jn(fn), (20)

where the deterministic functions fn ∈ L2(∆n) are uniquely de-
termined by the random variable X.
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A special example arises by noting that for h ∈ L2(∆)

n!Jn(h
⊗n) = ‖h‖nHn

(
W (h)

‖h‖

)
(21)

and furthermore

exp
[
W (h)−

1

2

∫
|h(τ)|2dτ

]
=

∞∑
n=0

‖h‖n

n!
Hn

(
W (h)

‖h‖

)
(22)

In the notation of quantum field theory, this example defines the

Wick ordered exponential and Wick powers

: exp[W (h)] :
.
= exp

[
W (h)−

1

2

∫
|h(τ)|2dτ

]
: W (h)n :

.
= n!Jn(h

⊗n) (23)
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Theorem 1 For any random variable X ∈ L2(Ω,F∞, P ), the gen-
erating functional ZX(h) : L2(∆) → C defined by

ZX(h)
.
= E

[
X exp

[
W (h)−

1

2

∫
|h(τ)|2dτ

]]
(24)

is an entire analytic functional of h ∈ L2(∆) and hence has an
absolutely convergent expansion

ZX(h) =
∑
n≥0

F
(n)
X (h) (25)

where

F
(n)
X (h) =

∫
∆n

f
(n)
X (τ1, . . . , τn)h(τ1) . . . h(τn)dτ1 . . . dτn (26)

Here, f
(n)
X (τ1, . . . , τn) is the nth Frechet derivative of ZX at h = 0.

Finally, the Wiener–Itô chaos expansion of X is

X =
∑
n≥0

∫
∆n

f
(n)
X (τ1, . . . , τn)dWτ1 . . . dWτn (27)
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3. Squared Gaussian models

The CIR model with an integer constraint N
.
= 4ab

c2
∈ N+ \ {0,1}

lies in the class of so–called squared Gaussian models. By intro-

ducing an RN–valued Ornstein–Uhlenbeck process Rt, governed

by the stochastic differential equation

dRt = −
a

2
Rt dt +

c

2
dWt (28)

where Wt is N–dimensional Brownian motion, one verifies that

the square rt = ‖Rt‖2 satisfies (1) where

W̃t =
∫ t

0
‖Rt‖−1Rt · dWt

is itself a one–dimensional Brownian motion.
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Definition 2 A pair (rt, λt) of (Ω,F ,Ft, P ) processes is called an

N–dimensional squared Gaussian model of interest rates (N ≥ 2)

if there is an RN–valued Ornstein–Uhlenbeck process such that

rt = R
†
tRt and λt = λ̄(t)Rt. Rt satisfies

dRt = α(t)(R̄(t)−Rt)dt + γ(t)dWt, R|t=0 = R0, (29)

where α, γ, λ̄ are symmetric matrix valued and R̄ vector valued

deterministic Lipschitz functions on R+ and W is standard N–

dimensional Brownian motion. In addition we impose bounded-

ness conditions that there is some constant M > 0 such that

λ̄2(t) ≤ MI, α(t) ≥ M−1I, (30)

α(t) + γ(t)λ̄(t) ≥ M−1I, γ2(t) ≥ M−1I,

for all t.
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The exact solution of (29) is easily seen to be

Rt = R̃(t) +
∫

K(t, t1)(γdW )t1 (31)

where

R̃(t) = K(t,0)R0 +
∫

K(t, t1)α(t1)R̄(t1)dt1 (32)

and K(t, s), t ≥ s is the matrix valued solution of{
dK(t, s)/dt = −α(t)K(t, s) 0 ≤ s ≤ t
K(t, t) = I 0 ≤ t

(33)

which generates the Ornstein–Uhlenbeck semigroup.

16



In accordance with (10), we define the state price density process

is

Vt = exp
[
−
∫ t

0

(
R†

s

(
1 +

λ̄2

2

)
Rsds + R†

sλ̄dWs

)]
(34)

We thus have a natural candidate for the random variable X∞:

X∞ =
∫ ∞
0

σ
†
t dWt (35)

where the RN–valued process

σt
.
= exp

[
−
∫ t

0

(
R†

s

(
1

2
+

λ̄2

4

)
Rsds +

1

2
R†

sλ̄dWs

)]
Rt (36)

is the natural solution of σ
†
tσt = rtVt. We can then prove that Λt

is a martingale for 0 ≤ t ≤ T and the state price density Vt is a

potential.
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4. Exponentiated second chaos

The chaos expansion we seek for the CIR model will be derived
from a closed formula for expectations of e−Y for elements

Y = A +
∫
∆

B(τ1)dWτ1 +
∫
∆2

C(τ1, τ2)dWτ1dWτ2 (37)

in a certain subset C+ ⊂ H≤2
.
= H0 ⊕H1 ⊕H2.

If in (37) we define C(τ1, τ2) = C(τ2, τ1) when τ1 > τ2, then C is
the kernel of a symmetric integral operator on L2(∆):

[Cf ](τ) =
∫ ∞
0

C(τ, τ1)f(τ1)dτ1. (38)

We say that Y ∈ H≤2 is in C+ if C is the kernel of a symmetric
Hilbert–Schmidt operator on L2(∆) such that (1+ C) has non–
negative spectrum.
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Proposition 3 Let Y ∈ C+. Then

E[e−Y ] = [det2(1 + C)]−1/2

exp

[
−A +

1

2

∫
∆2

B(τ1)(1 + C)−1(τ1, τ2)B(τ2)dτ1dτ2

]
.

Remark 4 The Carleman–Fredholm determinant is defined as

the extension of the formula

det2(1 + C) = det(1 + C) exp[−Tr(C)] (39)

from finite rank operators to bounded Hilbert–Schmidt opera-

tors; the operator kernel (1 + C)−1(τ1, τ2) is also the natural

extension from the finite rank case.
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Corollary 5 (Wick’s theorem) The random variable X = e−Y ,

for Y =
∫
∆2

C(τ1, τ2)dWτ1dWτ2 ∈ C+ has Wiener chaos coefficient

functions

fn(τ1, . . . , τn) =

{
K
∑

G∈Gn

∏
g∈G[C(1 + C)−1](τg1, τg2) n even

0 n odd

where K = [det2(1 + C)]−1/2 and for n even, Gn is the set of

Feynman graphs on the n marked points {τ1, . . . , τn}. Each Feyn-

man graph G is a disjoint union of unordered pairs g = (τg1, τg2)

with ∪g∈G g = {τ1, . . . , τn}.
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5. The chaotic expansion for squared Gaussian models

We now derive the chaos expansion for the squared Gaussian
model defined by (29). In view of (35) it will be enough to
find the chaos expansion for σ

µ
T , T < ∞. We start by finding

its the generating functional Zσ
µ
T
. Define the auxiliary functional

Z(h, k) = E
[
e−YT

]
with

YT =
∫ T

0
R
†
t

(
I

2
+

λ̄2

4

)
Rtdt +

1

2

∫ T

0
R
†
t λ̄(t)dWt −

∫ T

0
h†(t)dWt

+
1

2

∫ T

0
h†(t)h(t)dt−

∫ T

0
k†(t)Rtdt. (40)

We want to use Proposition 3 in order to comnpute Z(h, k).
Substitution of (31) puts the exponent YT in the form of (37)
with
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AT =
∫ T

0

[
R̃†(t)

(
I

2
+

λ̄(t)2

4

)
R̃(t) +

1

2
h†(t)h(t)− k†(t)R̃(t)

]
dt

+
∫ T

0
tr

{
γ(t)

[∫ T

0
K
†
T (t, s)

(
I

2
+

λ̄(t)2

4

)
KT (s, t)ds

]
γ(t)

}
dt

1

2

∫ T

0
tr

[∫ T

0
γ(s)K†

T (s, t)λ̄(t)ds

]
dt,

BT (t) = −h(t)− γ(t)
∫ T

0
K
†
T (t, s)k(s)ds +

1

2
λ̄(t)R̃(t)

+γ(t)
∫ T

0
K
†
T (t, s)

(
I +

λ̄(t)2

2

)
R̃(s)ds,

CT (t1, t2) = γ(t1)

[∫ T

0
K
†
T (t1, s)

(
I +

λ̄(t)2

2

)
KT (s, t2)ds

]
γ(t2)

+
1

2

[
γ(t1)K

†
T (t1, t2)λ̄(t) + λ̄(t)KT (t1, t2)γ(t2)

]
.
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Therefore, we can use Proposition 3 for E[e−YT ], leading to a

general formula for the generating functional Z(h, k). Differenti-

ation once with respect to k then yields an expression for ZσT (h).

These formulas simplify considerably if the function R̃ vanishes,

which is true in the simple CIR model of (28) when r0 = 0. In

this case we have α(t) = a
2I and γ(t) = c

2I, so that KT (s, t) =

e−a(s−t)/21l(t ≤ s ≤ T ) and

CT (t1, t2) =
c2

4a

(
I +

λ̄2

2

) [
e−

a
2|t1−t2| − e

a
2(t1+t2−2T )

]
+

c

2
λ̄e−

a
2|t1−t2|.
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The previous expression for ZσT (h) reduces to

ZσT (h) = MT

[
KTγ(1 + CT )−1h

]
(T )

exp

[
−

1

2

∫ T

0
h
†
thtdt +

1

2

∫
∆2

h
†
t1
(1 + CT )−1(t1, t2)ht2dt1dt2

]
,

where

MT = e−
1
2trCT (det2(1 + CT ))−1/2 = (det(1 + CT ))−1/2. (41)
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Theorem 6 The nth term of the chaos expansion of σT for the

CIR model with initial condition r0 = 0 is zero for n even. For n

odd, the kernel of the expansion is the function f
(n)
T (·) : ∆n → R

fT (t1, . . . , tn) = MT

∑
G∈G∗n

∏
g∈G

L(g), (42)

where

L(g) =


[CT (1 + CT )−1](tg1, tg2) T /∈ g

(KTγ(1 + CT )−1)(T, tg2) T ∈ g.

(43)

Here, G∗n is the set of Feynman graphs, each Feynman graph G

being a partition of {t1, . . . , tn, T} into pairs g = (tg1, tg2).
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The chaos expansion for X∞ itself is exactly the same, except

that the variable T is treated as an additional Itô integration

variable. The explicit expansion up to fourth order is:

X∞ =
∫
∆2

MT [KTγ(1 + CT )−1](T, t1)dWt1dWT

+
∫
∆4

MT [KTγ(1 + CT )−1](T, t3)[CT (1 + CT )−1](t1, t2)dWt1dWt2dWt3dWT

+
∫
∆4

MT [KTγ(1 + CT )−1](T, t2)[CT (1 + CT )−1](t1, t3)dWt1dWt2dWt3dWT

+
∫
∆4

MT [KTγ(1 + CT )−1](T, t1)[CT (1 + CT )−1](t2, t3)dWt1dWt2dWt3dWT

· · · (44)

26



6. Discussion

• The CIR model, at least in integer dimensions, can be viewed

within the chaos framework of Hughston and Rafailidis as

arising from a random variable X∞ derived from exponen-

tiated second chaos random variables e−Y , Y ∈ C+. Such

exponentiated C+ variables form a rich and natural family

which is likely to include many more candidates for applica-

ble interest rate models.

• Although their analytic properties are complicated, there do

exist approximation schemes which can in principle be the

basis for numerical methods
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