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1. Introduction

Utility methods were made central in economic theories through
the works of

• Léon Walras (1874): utility based theory of price (derive
demand from utility) and

• Francis Edgeworth (1881): indifference curve.

The concept had been introduced much earlier by

• Daniel Bernoulli (1738): diminishing marginal utility.
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The mathematical axiomatization was performed by

• John von Neumann and Oskar Morgenstern (1944) and

• Paul Samuelson (1938/1947).

It culminated with axiomatic equilibrium theory in the work of

• Kenneth Arrow and Gerard Debreu (1959).
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In mathematical finance,

• Robert Merton (1969/1971): formulated the problem of in-

vesting in a financial market in a way which maximizes the ex-

pected utility of the terminal value of the investment. Solved

the problem for a complete market with Markovian state

process using the methods of stochastic control (Hamilton–

Jacobi–Belmann equation);
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• Stanley Pliska (1986) (and others): introduced martingale

techniques to solve the problem for complete markets but

avoiding the Markovian assumption. Obtained the relation

dQ

dP
= λU ′(x∗) (1)

therefore establishing an equilibrium economy argument for

the whole subject;

• Karatzas et al (1990): applied duality techniques (Legen-

dre transforms) to solve the problem for (special cases) of

incomplete markets.
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“ It is sometimes claimed in the economic literature that dis-

cussions of the notions of utility and preferences are altogether

unnecessary, since these are purely verbal definitions with no

empirically observable consequences, i.e., entirely tautological.

It does not seem to us that these are qualitatively inferior to

certain well established and indispensable notions in physics, like

force, mass, charge, etc. That is, while they are in their imme-

diate form merely definitions, they become subject to empirical

control through the theories which are built on them - and in no

other way. Thus the notion of utility is raised above the status

of a tautology by such economic theories as make use of it and

the results of which can be compared with experience or at least

with common sense. ”

– John von Neumann and Oskar Morgenstern.
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2. Utility based hedging for semimartingale markets

The hedging problem is the problem of a market agent who faces
a liability B at a time T and must invest in the market over the
period [0, T ] in a rational way to reduce the risk of the liability.

• Randomness: (Ω,F , (Ft)t∈[0,T ], P )

• Traded assets: Rd–valued càdlàg semimartingale St = (S1
t , . . . , S

d
t )

• Liability: FT–measurable random variable B

• Portfolio: Rd-valued process Ht = (H1
t , . . . , H

d
t ) ∈ L(S)
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For self–financing portfolios, the (discounted) wealth at time t

is given by the process

Xt = x+ (H · S)t := x+
∫ t

0
HudSu, t ∈ [0, T ],

where x ∈ R is some deterministic initial wealth.

Definition 1 The class H of admissible portfolios consists of the

process H ∈ L(S) for which (H ·S)t is P–a.s. uniformly bounded

from below.

Definition 2 A probability measure Q is called an absolutely

continuous (resp. equivalent) local martingale measure for S

if Q� P (resp. Q ∼ P ) and S is a local martingale under Q.
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Denote byMa(S) (resp. Me(S)) the set of absolutely continuous

(resp. equivalent) local martingale measures for S.

Theorem 3 (FTAP,DS/94) If S is a locally bounded semi-

martingale, then there exists an equivalent local martingale mea-

sure Q for S if and only if S satisfies (NFLVR).

In view of this theorem, we will henceforth assume that S is

locally bounded and that

Assumption 1 (NFLVR) Me(S) 6= ∅.

8



The hedging problem can be made specific by introducing the

agent’s utility U : R → R ∪ {−∞}. Beginning with initial capital

x ∈ R, the agent then solves the optimal hedging problem

sup
H∈H

E [U (x+ (H · S)T −B)] . (2)

If B ≡ 0, the optimal hedging problem reduces to Merton’s op-

timal investment problem

sup
H∈H

E [U (x+ (H · S)T )] . (3)
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Assumption 2 The utility function U : R→ R∪{−∞} is increas-

ing, differentiable and strictly concave satisfying

lim
x→∞U

′(x) = 0. (4)

Furthermore, we assume that lim
x→−∞

U ′(x) =∞,

lim sup
x→∞

xU ′(x)

U(x)
< 1 and lim inf

x→−∞
xU ′(x)

U(x)
> 1.
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Define the conjugate function V as the Legendre transform of

the function −U(−x), that is

V (y) := sup
x∈R

[U(x)− xy], y > 0. (5)

Proposition 4 If U satisfies assumption 2, then the conjugate

function V is finite valued, differentiable, strictly convex on (0,∞)

and satisfies

lim
y→0

V (y) = lim
x→∞U(x), lim

y→0
V ′(y) = −∞. (6)

Moreover, the behaviour of V at infinity is

lim
y→∞V (y) =∞ and lim

y→∞V
′(y) =∞.
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Define

CbU(x) = {g ∈ L0(Ω,FT , P ) : g ≤ x+ (H · S)T

for some H ∈ H and U(g) ∈ L1(Ω,FT , P )}. (7)

and consider

CU(x) =
{
f ∈ L0(Ω,FT , P ;R ∪ {∞}) : U(f) is in the

L1(P )-closure of {U(g) : g ∈ CbU(x)}
}
. (8)
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Theorem 5 (S01) Suppose that assumptions 1 and 2 are sat-

isfied. Then, for any x ∈ R and y > 0, the problems

u(x) = sup
f∈CU(x)

E[U(f)], v(y) = inf
Q∈Ma(S)

E

[
V

(
y
dQ

dP

)]
(9)

have unique optimizers f̂(x) ∈ CU(x) and Q̂(y) ∈ Ma(S) satisfy-

ing

U ′(f̂(x)) = y
dQ̂(y)

dP
, (10)

where x and y are related by u′(x) = y.
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Corollary 6 Let U(x) = −e
−γx
γ , γ > 0, and suppose that assump-

tion 1 holds. If in addition we have that

E

[
dQ

dP
log

(
dQ

dP

)]
<∞, (11)

for some Q ∈ Me(S), then the minimizer Q̂(y) of theorem 5

is the equivalent local martingale measure Q̂, independent of

y > 0, which minimizes the relative entropy with respect to P

among all absolutely continuous martingale measures. Therefore

f̂(x) equals the terminal value X̂T (x) of a uniformly integrable

Q̂-martingale of the form

X̂t(x) = x+ (Ĥ(x) · S)t,

for some Ĥ(x) ∈ L(S).
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Assumption 3 B ∈ L∞(Ω,FT , P ).

Define

CbU(x) = {g ∈ L0(Ω,FT , P ) : g ≤ x+ (H · S)T −B
for some H ∈ H and U(g) ∈ L1(Ω,FT , P )}. (12)

Similarly, we replace the set CU(x) by

CU(x) =
{
f ∈ L0(Ω,FT , P ;R ∪ {∞}) : U(f −B) is in the

L1(P )-closure of {U(g) : g ∈ CbU(x)}
}
. (13)
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Theorem 7 (0wen02) Suppose that assumptions 1, 2 and 3

are satisfied. Then, for any x ∈ R and y > 0, the problems

u(x) = sup
f∈CU(x)

E[U(f−B)], v(y) = inf
Q∈Ma(S)

E

[
V

(
y
dQ

dP

)
− y

dQ

dP
B

]
have unique optimizers f̂(x) ∈ CU(x) and Q̂(y) ∈ Ma(S) satisfy-

ing

U ′(f̂(x)−B) = y
dQ̂(y)

dP
, (14)

where x and y are related by u′(x) = y.
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Corollary 8 Let U(x) = −e
−γx
γ , γ > 0, and suppose that assump-

tions 1 and 3 hold. If in addition we have that

E

[
dQ

dP
log

(
dQ

dP

)]
<∞, (15)

for some Q ∈ Me(S), then the minimizer Q̂(y) of theorem 7

is the equivalent local martingale measure Q̂, independent of

y > 0, which minimizes the relative entropy with respect to PB
among all absolutely continuous martingale measures. Therefore

f̂(x) equals the terminal value X̂T (x) of a uniformly integrable

Q̂-martingale of the form

X̂t(x) = x+ (Ĥ(x) · S)t,

for some Ĥ(x) ∈ L(S).
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2. The dynamics of portfolio selection

For any intermediate time t ∈ [0, T ] and x ∈ R, we can write

u(x) = sup
H∈A(0,t]

E

ess sup
H∈A(t,T ]

Et[U(x+ (H · S)t0 + (H · S)Tt −B)]

 ,
(16)

which leads us to the study of the conditional problem

ut(w) = ess sup
H∈A(t,T ]

Et[U(w + (H · S)Tt −B)], (17)

where w ∈ R represents the wealth accumulated up to time t.
The dynamic programming principle for this stochastic control
problem has the form

us(w) = ess sup
H∈A(s,t]

Es[ut(w + (H · S)ts)], (18)

for 0 ≤ s ≤ t ≤ T .
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The certainty equivalent value and the indifference price

Define

Bt(w) = w − U−1(ut(w)), (19)

which can be called the certainty equivalent value of the claim

B at time t, since

U(w −Bt(w)) = Et[U(w + (Ĥ(w,t) · S)Tt −B)].
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Consider an investor who, holding wealth w at time t, faces the
two scenarios:

• sell a claim B for the price π, hedge optimally and achieve

Et[U(w + π + (Ĥ(w+π,t) · S)Tt −B)] = U(w + π −Bt(w + π))

• don’t sell the claim, invest optimally and achieve

Et[U(w + (Ĥ(w,t)(0) · S)Tt )] = U(w −B0
t (w)).

The indifference price of the claim B at time t for wealth w is
the value for π = πBt (w) which makes these equal, that is, it is
the solution of

πBt (w) = Bt(w + πBt (w))−B0
t (w). (20)
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The Davis price

If, for each ε ≥ 0, we let Bεt (w) denote the certainty equivalent

value of εB, then the Davis price of B is defined to be

πDavist (w) =
dBεt (w)

dε

∣∣∣∣∣
ε=0

. (21)

By differentiating the identity

U(w −Bεt (w)) = Et[U(w + (Ĥ(ε,w,t) · S)Tt − εB)]

at ε = 0, it can be shown that

πDavist (w) = E
t,Q̂t(y)

[B]. (22)
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Exponential utility

An important simplification occurs if we specialize to the expo-

nential utility U(x) = −e
−γx
γ , γ > 0, since ut(w) factorizes as

ut(w) = −
e−γw

γ
ess inf
H∈A(t,T ]

Et

[
e−γ(H·S)Tt +γB

]
=: −

e−γw

γ
vt. (23)

Here we see that vt is a time dependent but wealth independent

Ft–measurable random variable. We also see that the certainty

equivalent value

Bt = −
1

γ
log vt, (24)

the optimal portfolio Ĥ(t) and the indifference price πt are all

wealth independent processes.
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3. Discrete time hedging

We now restrict to discrete time hedging, where the portfolio

processes have the form

Ht =
K∑
k=1

Hk 1(tk−1,tk](t) (25)

where each Hk is an R
d–valued Fk−1 random variable, with a

uniform partition of the interval [0, T ] into K subintervals. Now

the dynamic programming problem (18) falls into K subproblems

uk−1(x) = ess sup
H∈A(tk−1,tk]

Ek−1[uk(x+Hk∆Sk)], (26)

subject to the terminal condition uK(x) = U(x).
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Assumption 4 The market is Markovian and its state variables

Z = (S1, . . . , Sd, Y 1, . . . , Y n−d) lie in a finite dimensional state

space S ∈ Rn.

Assumption 5 The contingent claim is taken to be of the form

BT = Φ(ZT ) for a bounded Borel function Φ : S → R.
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In the Markovian setting and for exponential utility, the solution

of (26) and the optimal allocation have the wealth independent

form

uk(x) = U(x)vk = U(x)gk(Zk) (27)

Ĥk+1 = hk+1(Zk) (28)

Bk = bk(Zk) (29)

for deterministic functions gk, hk+1, and bk on the state space S.

The iteration equation is simply

gk(Z) = inf
h∈Rd

Ek[exp(−γh ·∆Sk+1)gk+1(Zk+1)|Zk = Z] (30)

and the optimal h defines the function hk+1(Z).
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4. The exponential utility allocation algorithm

1. Step k = K: The final optimal allocation ĤK is defined to

be the Rd–valued FK−1 random variable which solves

min
H∈A(K−1,K]

E[exp(−H ·∆SK +B)] (31)

Since the solution is of the form ĤK = hK(ZK−1), we write this

as

min
h∈B(S)

ΨK(h) (32)

where ΨK(h) := E[exp(−h(ZK−1) ·∆SK +B)].
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Now pick an R–dimensional subspace R(S) ⊂ B(S) of functions

on S and attempt to “learn” a suboptimal solution

hRK = arg min
h∈R(S)

ΨK(h)

Approximated the expectation ΨK(h) by the finite sample esti-

mate

Ψ̃K(h) =
1

N

N∑
i=1

exp
(
−h(ZiK−1) ·∆SiK + Φ(ZiK)

)
(33)

This leads to the estimator h̃RK based on {Zik} and the choice of

subspace R defined by

h̃RK = arg min
h∈R(S)

Ψ̃K(h) (34)
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2. Inductive step for k = K −1, . . . ,2: The estimate h̃Rk of the

optimal rule ĥk, for 2 ≤ k < K−1 is determined inductively given

the estimates h̃Rk+1, . . . , h̃
R
K. It is defined to be

h̃Rk = arg min
h∈R(S)

Ψ̃k(h; h̃Rk+1, . . . , h̃
R
K) (35)

where

Ψ̃k(h; h̃Rk+1, . . . , h̃
R
K) =

1

N

N∑
i=1

exp

−h(Zik−1) ·∆Sik −
K∑

j=k+1

h̃Rj (Zij−1) ·∆Sij + Φ(ZiK)



28



3. Final step k = 1: This step is degenerate since the initial

values Z0 are constant over the sample. Therefore we determine

the optimal constant vector h̃1 ∈ Rd by solving

h̃1 = arg min
h∈Rd

Ψ̃1(h; h̃R2 , . . . , h̃
R
K) (36)

To summarize, the algorithm above learns a collection of func-

tions of the form (h̃1, h̃
R
2 , . . . , h̃

R
K) ∈ Rd×R(S)K−1 from the Monte

Carlo simulation. This collection defines a suboptimal allocation

strategy for the exponential hedging problem. Finally, the opti-

mal value Ψ̃1(h̃1; h̃R2 , . . . , h̃
R
K) is an estimate of the quantity eB0,

where B0 is the certainty equivalent value of the claim B at time

t = 0.
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5. Numerical implementation

Consider a one-dimensional GBM with parameters S0 = 1, µ =
0.1, σ = 0.2 and r = 0.0 over the period of one year T = 1.

Apply the allocation algorithm with K = 50 (i.e. weekly) to

1. the Merton investment problem

2. the hedging problem for the buyer of an European put

In each case, set N = 1000,10000 and 100000.

For comparison to theory, use the same Monte Carlo simulations,
but rehedged weekly according to the theoretical Black-Scholes
delta of the option.
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The learned estimates of the indifference price are 0.0767,0.0790

and 0.0792 for the cases N = 1000,10000 and 100000.

Using the true strategy leads to the values 0.0798,0.0796 and

0.0795, respectively.

The theoretical Black-Scholes price is 0.0797.
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