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Abstract

Let H0 ≥ I be a self-adjoint operator and let V be a form-small pertur-
bation such that ‖V ‖ε :=

∥∥∥R 1
2 +ε
0 V R

1
2−ε
0

∥∥∥ <∞, where ε ∈ (0, 1/2) and R0 =

H−1
0 . Suppose that there exists a positive β < 1 such that Z0 := Tr e−βH0 <∞.

Let Z := Tr e−(H0+V ). Then we show that the free energy Ψ = logZ is an
analytic function of V in the sense of Fréchet, and that the family of density
operators defined in this way is an analytic manifold.

Introduction
The use of differential geometric methods in parametric estimation theory is by

now a fairly sound subject, whose foundations, applications and techniques can be
found in several books [1, 7, 10]. The non-parametric version of this information
geometry had its mathematical basis laid down in recent years [4, 16]. It is a genuine
branch of infinite-dimensional analysis and geometry. The theory of quantum
information manifolds aims to be its noncommutative counterpart [6, 11, 12, 13].

In this paper we generalise the results obtained by one of us [18, 19] to a
larger class of potentials. In section 1 we introduce ε-bounded perturbations of
a given Hamiltonian and review their relation with form-bounded and operator-
bounded perturbations. In section 2 we construct a Banach manifold of quantum
mechanical states with (+1)-affine structure and (+1)-connection, using the ε-
bounded perturbations. Finally, in section 3 we prove analyticity of the free energy
ΨX in sufficiently small neighbourhoods in this manifold, from which it follows that
the (−1)-coordinates are analytic.
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1 ε-Bounded Perturbations

We recall the concepts of operator-bounded and form-bounded perturbations [8].
Given operators H and X defined on dense domains D(H) and D(X) in a Hilbert
space H, we say that X is H-bounded if

i. D(H) ⊂ D(X) and

ii. there exist positive constants a and b such that

‖Xψ‖ ≤ a ‖Hψ‖+ b ‖ψ‖ , for all ψ ∈ D(H).

Analogously, given a positive self-adjoint operator H with associated form qH and
form domain Q(H), we say that a symmetric quadratic form X (or the symmetric
sesquiform obtained from it by polarization) is qH-bounded if

i. Q(H) ⊂ Q(X) and

ii. there exist positive constants a and b such that

|X(ψ,ψ)| ≤ aqH(ψ,ψ) + b(ψ,ψ), for all ψ ∈ Q(H).

In both cases, the infimum of such a is called the relative bound of X (with
respect to H or with respect to qH , accordingly).

Suppose that X is a quadratic form with domain Q(X) and A,B are operators
on H such that A∗ and B are densely defined. Suppose further that A∗ : D(A∗)→
Q(X) and B : D(B)→ Q(X). Then the expression AXB means the form defined
by

φ, ψ 7→ X(A∗φ,Bψ), φ ∈ D(A∗), ψ ∈ D(B).

With this definition in mind, let us specialise to the case where H0 ≥ I is
a self-adjoint operator with domain D(H0), quadratic form q0 and form domain
Q0 = D(H1/2

0 ), and let R0 = H−1
0 be its resolvent at the origin. Then it is easy

to show that a symmetric operator X : D(H0) → H is H0-bounded if and only if
‖XR0‖ <∞. The following lemma is also known [18, lemma 2].

Lemma 1 A symmetric quadratic form X defined on Q0 is q0-bounded if and
only if R1/2

0 XR
1/2
0 is a bounded symmetric form defined everywhere. Moreover,

if
∥∥∥R1/2

0 XR
1/2
0

∥∥∥ < ∞ then the relative bound a of X with respect to q0 satisfies

a ≤
∥∥∥R1/2

0 XR
1/2
0

∥∥∥.

The set Tω(0) of all H0-bounded symmetric operators X is a Banach space with
norm ‖X‖ω(0) := ‖XR0‖, since the map A 7→ AH0 from B(H) onto Tω(0) is an
isometry.
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The set T0(0) of all q0-bounded symmetric forms X is also a Banach space with
norm ‖X‖0(0) :=

∥∥∥R1/2
0 XR

1/2
0

∥∥∥, since the map A 7→ H
1/2
0 AH

1/2
0 from the set of

all bounded self-adjoint operators on H onto T0(0) is again an isometry.
Now, for ε ∈ (0, 1/2), let Tε(0) be the set of all symmetric forms X defined

on Q0 and such that ‖X‖ε(0) :=
∥∥∥∥R 1

2
+ε

0 XR
1
2
−ε

0

∥∥∥∥ is finite. Then the map A 7→

H
1
2
−ε

0 AH
1
2

+ε

0 is an isometry from the set of all bounded self-adjoint operators on
H onto Tε(0). Hence Tε(0) is a Banach space with the ε-norm ‖ · ‖ε(0). We note

that D(H
1
2
0 ) ⊂ D(H

1
2
−δ

0 ), for all 0 ≤ δ ≤ 1/2.
We can now prove the following lemma.

Lemma 2 For fixed symmetric X, ‖X‖ε is a monotonically increasing function
of ε ∈ [0, 1/2].

Proof: We have to prove that
∥∥∥Ry0XR1−y

0

∥∥∥ is increasing for y ∈ [1/2, 1] and decreas-

ing for y ∈ [0, 1/2]. Let 1
2 ≤ δ ≤ 1 and suppose that

∥∥∥Rδ0XR1−δ
0

∥∥∥ <∞. Interpola-

tion theory for Banach spaces [17] and the fact that
∥∥∥Rδ0XR1−δ

0

∥∥∥ =
∥∥∥R1−δ

0 XRδ0

∥∥∥
then give ∥∥Rx0XR1−x

0

∥∥ ≤ ∥∥∥Rδ0XR1−δ
0

∥∥∥ , for all x ∈ [1− δ, δ],

and particularly for 1
2 ≤ y ≤ δ ≤ 1, we have∥∥∥Ry0XR1−y

0

∥∥∥ ≤ ∥∥∥Rδ0XR1−δ
0

∥∥∥ .
By the other hand, for 0 ≤ 1− δ ≤ y ≤ 1

2 ,∥∥∥Ry0XR1−y
0

∥∥∥ ≤ ∥∥∥Rδ0XR1−δ
0

∥∥∥ =
∥∥∥R1−δ

0 XRδ0

∥∥∥ . �
2 Construction of the Manifold

2.1 The First Chart

Let Cp, 0 < p < 1, denote the set of compact operators A : H 7→ H such that
|A|p ∈ C1, where C1 is the set of trace-class operators on H. Define

C<1 :=
⋃

0<p<1

Cp.

We take the underlying set of the quantum information manifold to be

M = C<1 ∩ Σ

where Σ ⊆ C1 denotes the set of density operators. We do so because the next
step of our project is to look at the Orlicz space geometry associated with the
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quantum information manifold [4] and the quantum analogue of classical Orlicz
space L logL seems to be

C1log C1 := {ρ ∈ C1 : S(ρ) = −
∑

λi log λi <∞},

where {λi} are the singular numbers of ρ. With this notation, the set of normal
states of finite entropy is C1log C1∩Σ and we have C<1 ⊂ C1log C1. At this level,M
has a natural affine structure defined as follows: let ρ1 ∈ Cp1 ∩Σ and ρ2 ∈ Cp2 ∩Σ;
take p = max{p1, p2}, then ρ1, ρ2 ∈ Cp ∩Σ, since p ≤ q implies Cp ⊆ Cq [15]; define
“λρ1 + (1 − λ)ρ2, 0 ≤ λ ≤ 1” as the usual sum of operators in Cp. This is called
the (−1)-affine structure.

We want to cover M by a Banach manifold. In [18] this is achieved defining
hoods of ρ ∈ M using form-bounded perturbations. The manifold obtained there
is shown to have a Lipschitz structure. In [19] the same is done with the more
restrictive class of operator-bounded perturbations. The result then is that the
manifold has an analytic structure. We now proceed using ε-bounded perturba-
tions, with a similar result.

To each ρ0 ∈ Cβ0 ∩ Σ, β0 < 1, let H0 = − log ρ0 + cI ≥ I be a self-adjoint
operator with domain D(H0) such that

ρ0 = Z−1
0 e−H0 = e−(H0+Ψ0). (3)

In Tε(0), takeX such that ‖X‖ε(0) < 1−β0. Since ‖X‖0(0) ≤ ‖X‖ε(0) < 1−β0,
X is also q0-bounded with bound a0 less than 1 − β0. The KLMN theorem then
tells us that there exists a unique semi-bounded self-adjoint operator HX with
form qX = q0 +X and form domain QX = Q0. Following an unavoidable abuse of
notation, we write HX = H0 +X and consider the operator

ρX = Z−1
X e−(H0+X) = e−(H0+X+ΨX). (4)

Then ρX ∈ CβX∩Σ, where βX = β0

1−a0
< 1 [18, lemma 4]. The state ρX does not

change if we add to HX a multiple of the identity in such a way that HX+cI ≥ I, so
we can always assume that, for the perturbed state, we have HX ≥ I. We take as
a hoodM0 of ρ0 the set of all such states, that is,M0 = {ρX : ‖X‖ε(0) < 1−β0}.

Because ρX = ρX+αI , we introduce in Tε(0) the equivalence relation X ∼ Y
iff X − Y = αI for some α ∈ R. We then identify ρX in M0 with the line
{Y ∈ Tε(0) : Y = X + αI, α ∈ R} in Tε(0)/ ∼. This is a bijection from M0

onto the subset of Tε(0)/ ∼ defined by {{X + αI}α∈R : ‖X‖ε(0) < 1− β0} and
M0 becomes topologised by transfer of structure. Now that M0 is a (Hausdorff)
topological space, we want to parametrise it by an open set in a Banach space.
By analogy with the finite dimensional case [14, 5, 11], we want to use the Banach
subspace of centred variables in Tε(0); in our terms, perturbations with zero mean
(the ‘scores’). For this, define the regularised mean of X ∈ Tε(0) in the state ρ0 as

ρ0 ·X := Tr(ρλ0Xρ
1−λ
0 ), for 0 < λ < 1. (5)
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Since ρ0 ∈ Cβ0 ∩ Σ and X is q0-bounded, lemma 5 of [18] ensures that ρ0 ·X
is finite and independent of λ. It was a shown there that ρ0 ·X is a continuous
map from T0(0) to R, because its bound contained a factor ‖X‖0(0). Exactly the
same proof shows that ρ0 ·X is a continuous map from Tε(0) to R. Thus the set
T̂ε(0) := {X ∈ Tε(0) : ρ0 ·X = 0} is a closed subspace of Tε(0) and so is a Banach
space with the norm ‖·‖ε restricted to it.

To each ρX ∈ M0, consider the unique intersection of the equivalence class of
X in Tε(0)/ ∼ with the set T̂ε(0), that is, the point in the line {X + αI}α∈R
with α = −ρ0 ·X. Write X̂ = X − ρ0 ·X for this point. The map ρX 7→
X̂ is a homeomorphism between M0 and the open subset of T̂ε(0) defined by{
X̂ : X̂ = X − ρ0 ·X, ‖X‖ε < 1− β0

}
. The map ρX 7→ X̂ is then a global chart

for the Banach manifold M0 modeled by T̂ε(0). As usual, we identify the tangent
space at ρ0 with T̂ε(0), the tangent curve

{
ρ(λ) = Z−1

λXe
−(H0+λX), λ ∈ [−δ, δ]

}
be-

ing identified with X̂ = X − ρ0 ·X.

2.2 Enlarging the Manifold

We extend our manifold by adding new patches compatible with M0. The idea
is to construct a chart around each perturbed state ρX as we did around ρ0. Let
ρX ∈ M0 with Hamiltonian HX ≥ I and consider the Banach space Tε(X) of all

symmetric forms Y on Q0 such that the norm ‖Y ‖ε(X) :=
∥∥∥∥R 1

2
+ε

X Y R
1
2
−ε

X

∥∥∥∥ is finite,

where RX = H−1
X denotes the resolvent of HX at the origin. In Tε(X), take Y

such that ‖Y ‖ε(X) < 1− βX . From lemma 2 we know that Y is qX -bounded with
bound aX less than 1 − βX . Let HX+Y be the unique semi-bounded self-adjoint
operator, given by the KLMN theorem, with form qX+Y = qX + Y = q0 +X + Y
and form domain QX+Y = QX = Q0. Then the operator

ρX+Y = Z−1
X+Y e

−HX+Y = Z−1
X+Y e

−(H0+X+Y ) (6)

is in CβY ∩ Σ, where βY = βX
1−aX .

We take as a neighbourhood of ρX the set MX of all such states. Again
ρX+Y = ρX+Y+αI , so we furnish Tε(X) with the equivalence relation Z ∼ Y iff
Z − Y = αI and we see that Tε(X) is mapped bijectively onto the set of lines

{{Z = Y + αI}α∈R, ‖Y ‖ε(X) < 1− βX}

in Tε(X)/ ∼. In this way we topologise MX , by transfer of structure, with the
quotient topology of Tε(X)/∼.

Again we can define the mean of Y in the state ρX by

ρX ·Y := Tr(ρλXY ρ
1−λ
X ), for 0 < λ < 1. (7)

and notice that it is finite and independent of λ. This is a continuous func-
tion of Y with respect to the norm ‖ · ‖ε(X), hence T̂ε(X) = {Y ∈ Tε(X) :
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ρX ·Y = 0} is closed and so is a Banach space with the norm ‖ · ‖ε(X) re-
stricted to it. Finally, let Ŷ be the unique intersection of the line {Z = Y +
αI}α∈R with the hyperplane T̂ε(X), given by α = −ρX ·Y . Then ρX+Y 7→ Ŷ
is a homeomorphism between MX and the open subset of T̂ε(X) defined by{
Ŷ ∈ T̂ε(X) : Ŷ = Y − ρX ·Y, ‖Y ‖ε(X) < 1− βX

}
. We obtain that ρX+Y 7→ Ŷ

is a chart for the manifold MX modeled by T̂ε(X). The tangent space at ρX is
identified with T̂ε(X) itself.

We now look to the union of M0 and MX . We need to show that our two
previous charts are compatible in the overlapping region M0 ∩MX . But first we
prove the following series of technical lemmas.

Lemma 8 Let X be a symmetric form defined on Q0 such that
∥∥∥R1/2

0 XR
1/2
0

∥∥∥ < 1.

Then D(H
1
2
−ε

0 ) = D(H
1
2
−ε

X ), for any ε ∈ (0, 1/2).

Proof: We know that D(H1/2
0 ) = D(H1/2

X ), since X is q0-small. Moreover, HX and
H0 are comparable as forms, that is, there exists c > 0 such that

c−1q0(ψ) ≤ qX(ψ) ≤ cq0(ψ), for all ψ ∈ Q0.

Using the fact that x 7→ xα (0<α<1) is an operator monotone function [3,
lemma 4.20], we conclude that

c−(1−2ε)H1−2ε
0 ≤ H1−2ε

X ≤ c1−2εH1−2ε
0 ,

which implies that D(H
1
2
−ε

0 ) = D(H
1
2
−ε

X ). �
The conclusion remains true if we now replace HX by HX + I, if necessary in

order to have HX ≥ I. This is assumed in the next corollary.

Corollary 9 The operator H
1
2
−ε

X R
1
2
−ε

0 is bounded and has bounded inverse H
1
2
−ε

0 R
1
2
−ε

X .

Proof: R
1
2
−ε

0 is bounded and maps H into D(H
1
2
−ε

0 ) = D(H
1
2
−ε

X ). Then H
1
2
−ε

X R
1
2
−ε

0

is bounded, since H
1
2
−ε

X is closed. By exactly the same argument, we obtain that

H
1
2
−ε

0 R
1
2
−ε

X is bounded. Finally (H
1
2
−ε

0 R
1
2
−ε

X )(H
1
2
−ε

X R
1
2
−ε

0 ) = (H
1
2
−ε

X R
1
2
−ε

0 )(H
1
2
−ε

0 R
1
2
−ε

X ) =
I. �

Lemma 10 For ε ∈ (0, 1/2), let X be a symmetric form defined on Q0 such

that
∥∥∥∥R 1

2
+ε

0 XR
1
2
−ε

0

∥∥∥∥ < 1. Then R
1
2

+ε

0 H
1
2

+ε

X is bounded and has bounded inverse

R
1
2

+ε

X H
1
2

+ε

0 . Moreover, D(H
1
2

+ε

0 ) = D(H
1
2

+ε

X )
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Proof: From lemma 2, we know that
∥∥∥R1/2

0 XR
1/2
0

∥∥∥ < 1, so lemma 8 and its
corollary apply. We have that

1 >

∥∥∥∥R 1
2

+ε

0 XR
1
2
−ε

0

∥∥∥∥
=

∥∥∥∥R 1
2

+ε

0 (HX −H0)R
1
2
−ε

0

∥∥∥∥
=

∥∥∥∥R 1
2

+ε

0 HXR
1
2
−ε

0 − I
∥∥∥∥ ,

thus
∥∥∥∥R 1

2
+ε

0 HXR
1
2
−ε

0

∥∥∥∥ <∞. We write this as

∥∥∥∥R 1
2

+ε

0 H
1
2

+ε

X H
1
2
−ε

X R
1
2
−ε

0

∥∥∥∥ <∞.
Since H

1
2
−ε

X R
1
2
−ε

0 is bounded and invertible, so is R
1
2

+ε

0 H
1
2

+ε

X . Finally, the fact

that
∥∥∥∥R 1

2
+ε

0 H
1
2

+ε

X

∥∥∥∥ <∞ and
∥∥∥∥R 1

2
+ε

X H
1
2

+ε

0

∥∥∥∥ <∞ implies that H
1
2

+ε

X and H
1
2

+ε

0 are

comparable, hence D(H
1
2

+ε

0 ) = D(H
1
2

+ε

X ). �
The next theorem ensures the compatibility between the two charts in the

overlapping region M0 ∩MX .

Theorem 11 ‖ · ‖ε(X) and ‖ · ‖ε(0) are equivalent norms.

Proof: We need to show that there exist positive constants m and M such that
m‖Y ‖ε(0) ≤ ‖Y ‖ε(X) ≤M‖Y ‖ε(0). We just write

‖Y ‖ε(X) =
∥∥∥∥R 1

2
+ε

X H
1
2

+ε

0 R
1
2

+ε

0 Y R
1
2
−ε

0 H
1
2
−ε

0 R
1
2
−ε

X

∥∥∥∥
≤

∥∥∥∥R 1
2

+ε

X H
1
2

+ε

0

∥∥∥∥∥∥∥∥H 1
2
−ε

0 R
1
2
−ε

X

∥∥∥∥ ‖Y ‖ε(0)

= M‖Y ‖ε(0)

and, for the inequality in the other direction, we write

‖Y ‖ε(0) =
∥∥∥∥R 1

2
+ε

0 H
1
2

+ε

X R
1
2

+ε

X Y R
1
2
−ε

X H
1
2
−ε

X R
1
2
−ε

0

∥∥∥∥
≤

∥∥∥∥R 1
2

+ε

0 H
1
2

+ε

X

∥∥∥∥∥∥∥∥H 1
2
−ε

X R
1
2
−ε

0

∥∥∥∥ ‖Y ‖ε(X)

= m−1‖Y ‖ε(X). �

We see that Tε(0) and Tε(X) are, in fact, the same Banach space furnished with
two equivalent norms, and observe that the quotient spaces Tε(0)/∼ and Tε(X)/∼
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are exactly the same set. The general theory of Banach manifolds does the rest
[9].

We continue in this way, adding a new patch around another point ρX′ inM0

or around some other point in MX but outside M0. Whichever point we start
from, we get a third pieceMX′ with chart into an open subset of the Banach space

{Y ∈ Tε(X ′) : ρX′ ·Y = 0}, with norm ‖Y ‖ε(X ′) :=
∥∥∥∥R 1

2
+ε

X′ Y R
1
2
−ε

X′

∥∥∥∥ equivalent to

the previously defined norms. We can go on inductively, and all the norms of any
overlapping regions will be equivalent.

Definition 12 The information manifold M(H0) defined by H0 consists of all
states obtainable in a finite number of steps, by extending M0 as explained above.

These states are well defined in the following sense. If, for two different sets
of perturbations X1, . . . , Xn and Y1, . . . , Ym, we have X1 + · · ·+ Xn = Y1 + · · ·+
Ym as forms on D(H

1
2
−ε

0 ), then we arrive at the same state either taking the
route X1, . . . , Xn or taking the route Y1, . . . , Ym, since the self-adjoint operator
associated with the form q0 +X1 + · · ·+Xn = q0 + Y1 + · · ·+ Ym is unique.

2.3 Affine Geometry in M(H0)

The set A =
{
X̂ ∈ T̂ε(0) : X̂ = X − ρ0 ·X, ‖X‖ε(0) < 1− β0

}
is a convex subset

of the Banach space T̂ε(0) and so has an affine structure coming from its linear
structure. We provide M0 with an affine structure induced from A using the
patch X̂ 7→ ρX and call this the canonical or (+1)-affine structure. The (+1)-
convex mixture of ρX and ρY in M0 is then ρλX+(1−λ)Y , (0 ≤ λ ≤ 1), which
differs from the previously defined (−1)-convex mixture λρX + (1− λ)ρY .

Given two points ρX and ρY in M0 and their tangent spaces T̂ε(X) and
T̂ε(Y ), we define the (+1)-parallel transport UL of (Z − ρX ·Z) ∈ T̂ε(X) along
any continuous path L connecting ρX and ρY in the manifold to be the point
(Z − ρY ·Z) ∈ T̂ε(Y ). Clearly UL(0) = 0 for every L, so the (+1)-affine connection
given by UL is torsion free. Moreover, UL is independent of L by construction,
thus the (+1)-affine connection is flat. We see that the (+1)-parallel transport
just moves the representative point in the line {Z + αI}α∈R from one hyperplane
to another.

Now consider a second piece of the manifold, say MX . We have the (+1)-
affine structure on it again by transfer of structure from T̂ε(X). Since both T̂ε(0)
and T̂ε(X) inherit their affine structures from the linear structure of the same set
(either Tε(0) or Tε(X)), we see that the (+1)-affine structures of M0 and MX

are the same on their overlap. We define the parallel transport in MX again by
moving representative points around. To parallel transport a point between any
two tangent spaces in the union of the two pieces, we proceed by stages. For
instance, if U denotes the parallel transport from ρ0 to ρX , it is straightforward to
check that U takes a convex mixture in T̂ε(0) to a convex mixture in T̂ε(X). So,
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if ρY ∈ M0 and ρY ′ ∈ MX are points outside the overlap, we parallel transport
from ρY to ρY ′ following the route ρY → ρ0 → ρX → ρY ′ . Continuing in this way,
we furnish the whole M(H0) with a (+1)-affine structure and a flat, torsion free,
(+1)-affine connection.

Although each hood in M(H0) is clearly (+1)-convex, we have not been able
to prove that M(H0) is itself (+1)-convex.

3 Analyticity of the Free Energy

The free energy of the state ρX = Z−1
X e−HX ∈ CβX ⊂ M, βX < 1, is the function

Ψ :M→ R given by
Ψ(ρX) := logZX . (13)

In this section we show that ΨX ≡ Ψ(ρX) is infinitely Fréchet differentiable
and that it has a convergent Taylor series for sufficiently small hoods of ρX inM.

We say that Y is an ε-bounded direction if Y ∈ Tε(X). The n-th variation of
the partition function ZX in the ε-bounded directions V1, . . . , Vn is given by (n!)−1

times the Kubo n-point function [2]

Tr
∫ 1

0
dα1

∫ 1

0
dα2 · · ·

∫ 1

0
dαn−1[ρα1

X V1ρ
α2
X V2 · · · ραnX Vn], (14)

where αn = 1− α1 − · · · − αn−1. Our first task is to show that this is finite. Since
for an operator of trace class A we have |TrA| ≤ ‖A‖1, we only need to check that
the multiple integral is of trace class.

We begin by estimating the trace of [ρα1
X V1ρ

α2
X V2 · · · ραnX Vn] as written as

[ρα1βX
X ][H1−δn+δ1

X ρ
(1−βX)α1

X ][Rδ1XV1R
1−δ1
X ][ρα2βX

X ][H1−δ1+δ2
X ρ

(1−βX)α2

X ]

[Rδ2XV2R
1−δ2
X ] · · · [ραnβXX ][H1−δn−1+δn

X ρ
(1−βX)αn
X ][RδnX VnR

1−δn
X ],

with δj ∈
[

1
2 − ε,

1
2 + ε

]
to be specified soon. In this product, we have n factors

of the form [ραjβXX ], n factors of the form [RδjXVjR
1−δj
X ], and n factors of the form

[H1−δj−1+δj
X ρ

(1−βX)αj
X ], with δ0 standing for δn.

For the factors [ραjβXX ], putting pj = 1/αj , Hölder’s inequality leads to the
trace norm bound∥∥∥[ρα1βX

X ] · · · [ραnβXX ]
∥∥∥

1
≤
∥∥∥ρβXX ∥∥∥α1

1
· · ·
∥∥∥ρβXX ∥∥∥αn

1
=
∥∥∥ρβXX ∥∥∥

1
<∞. (15)

By virtue of lemma 2, we know that the factors [RδjXVjR
1−δj
X ] are bounded in

operator norm by∥∥∥RδjXVjR1−δj
X

∥∥∥ ≤ ∥∥∥∥R 1
2

+ε

X VjR
1
2
−ε

X

∥∥∥∥ = ‖Vj‖ε (X) <∞. (16)

In both these cases, the bounds are independent of α. The hardest case turns
out to be the factors [H1−δj−1+δj

X ρ
(1−βX)αj
X ], where the estimate, as we will see,
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does depend on α and we have to worry about integrability. For them, the spectral
theorem gives the operator norm bound

∥∥∥H1−δj−1+δj
X ρ

(1−βX)αj
X

∥∥∥ = Z
−αj(1−βX)
X sup

x≥1

{
x1−δj−1+δje−(1−βX)αjx

}
≤ Z

−αj(1−βX)
X

(
1− δj−1 + δj
(1− βX)αj

)1−δj−1+δj

e−(1−δj−1+δj). (17)

Apart from α
−(1−δj−1+δj)
j , the other terms in (17) will be bounded indepen-

dently of α. To deal with the integral of α−(1−δj−1+δj)
j dαj , we divide the region of

integration in n (overlapping) regions Sj := {α : αj ≥ 1/n} (since
∑
αj =1). For

the region Sn, for instance, the integrability at αj = 0 is guaranteed if we choose
δj such that δj < δj−1. So we take δn = δ0 > δ1 > · · · > δn−1. We must have
δj ∈

[
1
2 − ε,

1
2 + ε

]
, then we choose δn = 1

2 + ε, δ1 = 1
2 + ε − 2ε

n , δ2 = 1
2 + ε − 4ε

n ,
. . . , δn−1 = 1

2 − ε+ 2ε
n . Then each of the (n− 1) integrals, for j = 1, . . . , n− 1, is∫ 1

0
α
−(1−δj−1+δj)
j dαj = (δj−1 − δj)−1 =

n

2ε

resulting in a contribution of
(
n
2ε

)n−1. The last integrand in Sn is α−(1−δn−1+δn)
n ≤ n2.

The same bound holds for the other regions Sj , j = 1, . . . , n − 1, giving a total
bound

n∏
j=1

∫ 1

0
α
−(1−δj−1+δj)
j dαj ≤ n

[
n2nn−1

(2ε)n−1

]
=

n2nn

(2ε)n−1
. (18)

Now that we have fixed δj , the promised bound for the other terms in (17) is

n∏
j=1

Z
−αj(1−βX)
X

(
1− δj−1 + δj

1− βX

)1−δj−1+δj

≤ 4Z−(1−βX)
X (1− βX)−ne−n (19)

since (1− δj−1 + δj) < 1 except for one term, when it is less than 2.
Collecting the estimates (15),(16),(18) and (19), we get the following bound

for the n-point function

4
∥∥∥ρβXX ∥∥∥

1
Z
−(1−βX)
X (2ε)n2nne−n

∏
j

[ ‖Vj‖ε(X)
2ε(1− βX)

]
. (20)

Thus the n-th variation of ZX exists for any ε-bounded directions and is an
n-linear bounded map. Hence [21, prop. 4.20], Z has an n-th Gatêaux derivative
at X. Since this holds for any n, we see that Z is infinitely often Gatêaux differen-
tiable at X. Moreover, when using Duhamel’s formula [18, theorem 9] to deduce
the expression (14) for the n-th variation (as in [19, theorem 3]), we actually find
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that the limit procedure is uniform in V , thence [20, theorem 3.3] the Gatêaux
derivatives of Z at X are, in fact, Fréchet derivatives.

Therefore, Z is infinitely Fréchet differentiable with convergent Taylor expan-
sion for Z(X+V ) if ‖V ‖ε(X) < (1−βX)2ε. Since ZX is positive, the same is true for
its logarithm, the free energy ΨX . Notice that the condition ‖V ‖ε(X) < (1−βX)2ε
is stronger than to require that ρV+X lie in an ε-hood of ρX .

Finally, let us say that a map Φ : U → R, on a hood U in M, is (+1)-analytic
in U if it is infinitely often Fréchet differentiable and Φ(X + V ) ≡ Φ(ρX+V ) has
a convergent Taylor expansion for ρX+V in this hood. In particular, the (−1)-
coordinates ηX = ρ·X (mixture coordinates) are analytic, since they are derivatives
of the free energy ΨX . This specification of the sheaf of germs of analytic functions
defines a real analytic structure on the manifold.
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