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1. Classical Parametric Information Geometry

e Study of differential geometric properties of families of clas-
sical probability densities.

e Given a probability space (€2,3>,u), a family of probability
densities M = {p(x,0)}, for sample points = € 2 and param-
eters 9 = (01,...,0") € R™ can be viewed as a Riemannian
manifold equipped with the Fisher metric
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Apart from the Levi-Civita connection associated with g, the
statistical manifold M can be equipped with the exponential

connection
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and the mixture connection
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which are dual to the metric g in the sense that (-, -)p if

v (g(s1,52)) = g(VPs1,50) + g(s1, V5 Vso) (2)

for all v € TpM and all smooth vector fields s; and so.



One can also define a family of a—connections induced by the
embeddings
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where A is the algebra of random variables on €2 and prove that

they satisfy

=2V =S, (3)
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The Fisher metric is the unique Riemannian metric reduced by
all stochastic maps on the tangent bundle to M. The duality
of the a—connections with respect to it lead to rich minimiza-
tion/projection theorems related to their associated a—divergences.
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2. Classical Nonparametric Information Geometry
2.1. Classical Orlicz Spaces

Consider Young functions of the form

o@ = ["owar, x>0, (4)

where ¢ : [0,00) — [0,00) is nondecreasing, continuous and such
that ¢(0) = 0 and wli_}mooqb(a:) = +oo. This include the monomials
|x|"/r, for 1 < r < oo, as well as the following examples:

®q(z) = coshz —1, (5)
Po(z) = el —|z| -1, (6)
®d3(z) = (14 |z])log(l + |z|) — |z (7)



The complementary of a Young function & of the form (4) is
given by

v = ["vwa, y>o (8)

where 1) is the inverse of ¢. One can verify that (®,, d3) and
(|z|" /7, |z|%/s), with r—1 4+ s71 =1, are examples of complemen-
tary pairs.

Now let (€2,X,P) be a probability space. The Orlicz space as-
sociated with a Young function & defined as

L®(P) = {f : Q — R, measurable : /QCD(af)dP < o0, for some o > O}.



If we identify functions which differ only on sets of measure zero,
then L?® is a Banach space when furnished with the Luxembourg
norm

No(f) = inf{k>0 : /ch(g)dpg 1}, (9)
or with the equivalent Orlicz norm
fle=sup{ [ Ifgldu: g€ LY (), [ W(gaP <1},  (10)

where W is the complementary Young function to W.



If & and W are complementary Young functions, f € L®(P),
g E L"’(P), then we have the generalized Holder inequality:

| 1£91dP < 2No(£)Nu(9). (11)

It follows that L® C (L"’>* for any pair of complementary Young
functions.

If W5 < Wy then there exist a constant k such that |||y, < k[-||lw,
and therefore LV1(P) c LV2(P).

If two Young functions are equivalent, the Banach spaces asso-
ciated with them coincide as sets and have equivalent norms.



2.2. The Pistone-Sempi Manifold

Consider the set

M=M(Q,S,u)={f Q—R,f>0 a.e. and /Qfduzl}.

For each point p € M, let chl(p) be the exponential Orlicz space
over the probability space (X, 2, pdup) and consider its closed sub-
space of p-centred random variables

By ={ue L (p): | updu= 0} (12)
as the coordinate Banach space.
In probabilistic terms, the set L®1(p) correspond to random vari-

ables whose moment generating function with respect to the
probability pdu is finite on a neighborhood of the origin.



They define one dimensional exponential models p(t) associated
with a point p € M and a random variable wu:

etu

Zp(tw)

p(t) = t e (—e,¢e). (13)

Define the inverse of a local chart around p € M as

&
P.
Zp(u)

Uu

(14)

Denote by U, the image of V, under e,. Let egl be the inverse
of ep on Up. Then a local chart around p is given by

—1 .
€p Uy — DBp

qg — log (%) — /Q log (%) pdp. 9(15)



For any pi1,p> € M, the transition functions are given by

];21629 (upl M UPQ) _> 6 (upl a upz)

u — u -+ log <p1> / (u -+ log &> podiL.
p2 Q p2

Proposition 1 For any p1,p> € M, the set egll (Z/{pl ﬂup2) IS open
in the topology of Bp,.

We then have that the collection {(Z/{p,egl),p € M} satisfies the
three axioms for being a C°°—atlas for M. Moreover, since all
the spaces By are isomorphic as topological vector spaces, we
can say that M is a C°°—manifold modeled on By = TpM.

Given a point p € M, the connected component of M containing
p coincides with the maximal exponential model obtained from

p: E(p) = {Z]%)p,u € Bp}-
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2.3. The Fisher Information and Dual Connections

Let (-,:)p be a continuous positive definite symmetric bilinear
form assigned continuously to each By ~ TpM. A pair of con-
nection (V,V*) are said to be dual with respect to (-, ), if

(Tu, 7" v)q = (u,v)p (16)

for all u,v € T, M, where 7 and 7* denote the parallel transports
associated with V and V*, respectively.

Equivalently, (V,V*) are dual with respect to (-, )y if

v ((51,52)p) = (Vws1,52)p + (51, Vy52)p (17)

for all v € Tp M and all smooth vector fields s; and s».
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The infinite dimensional generalisation of the Fisher information
IS given by

(u,v)p = /Q(uv)pd,u, Yu,v € Bp. (18)

This is clearly bilinear, symmetric and positive definite. More-
over, continuity follows from that fact that, since L®1i(p) ~
L®2(p) c L®P3(p), the generalised Hlder inequality gives

[{u, v)p| < Kl[ulloy pllvliey p  Yu,v € Bp. (19)
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If p and g are two points on the same connected component of
M, then the exponential parallel transport is given by

— du. 20
u - /Quq u (20)

To obtain duality with respect to the Fisher information, we
define the mixture parallel transport on T'M as

6 = (21)
q

for p and ¢q in the same connected component of M .

Theorem 2 The connections VY and v(=1) are dual with re-
spect to the Fisher information.
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2.4. a—connections

We begin with Amari's a-embeddings

2 l—«
p p 2 ) (OS (_171)7 (22)

l -«

where r = 2. Observe that £o(p) € S"(1), the sphere of radius

rin L"(w).

Using the chain rule, the push-forward of the map ¢, can be
iImplemented as

(la)i(py - TpM = Bp — T _1/rS" ()

u +— p 2 u. (23)
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We are now ready to define the a-connections. In what follows,
V is used to denote the trivial connection on L"(u).

Definition 3 For a € (—1,1), let v : (—e,e) — M be a smooth
curve such that p = v(0) and v = ~4(0) and let s €¢ S(T M) be a
differentiable vector field. The a-connection on T'M is given by

(Vys) (p) = (ﬁa);é) rlrpl/fvv(ga)*(p)v(ga)*(fy(t))s : (24)

Theorem 4 The exponential, mixture and o-covariant deriva-
tives on T'M satisfy

ve=ltTaogm lmagey (25)

2 2

Corollary 5 The connections V% and V—% are dual with respect
to the Fisher information (-,-)p.
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3. Finite Dimensional Quantum Systems

o HV: finite dimensional complex Hilbert space;

o B(HN): algebra of operators on HY;

e A: N2-dimensional real vector subspace of self-adjoint oper-
ators;

e M: n-dimensional submanifold of all invertible density oper-
ators on HY, with n = N2 — 1.
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3.1 Quantum a-connections

For « € (—=1,1), define the a-embedding of M into A as

be © M— A
2 l—«o

[ 2 .
P 1_a/0

At each point p € M, consider the subspace of A defined by

14+«
Ago‘)z{AeA:Tr(p 2 A) =O},
and define the isomorphism

(La)spy @ TpM — A
v = (fa 07)'(0). (26)
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If (A1,...,0™) is a coordinate system for M, then the a-representation
of a basis tangent vector is

0 . OMa(p)
00" 00t
Lemma 6 (Hasegawa, 1996) Let = p(6#) be a smooth man-
ifold of invertible density matrices. Then there exists a anti-
selfadjoint operator A; such that
Op 0%
00t Yt
where g;@’ € C(p) and [p, A\;] € C(p)+. Moreover, for any function

F which is differentiable on a neighbourhood of the spectrum of
p we have

OF(p) _ 9°F(p)
00? 00"

+ [F(p), Ajl. (28)
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Let r = % If we equip A with the the r-norm

1Al := (Tr|ATT,

then the a-embedding can be vied as a mapping from M to the
positive part of the sphere of radius r.

Definition 7 For o € (—-1,1), let v : (—e,e) — M be a smooth
curve such that p = v(0) and v = 4(0) and let s € S(T M) be a
differentiable vector field. The a«-connection on T'M is given by

_ — L AV
( 1()0‘)8) (P) T (Ea)*(p) rlrpl/rv(foz)*(p)v(ea)*(’Y(t))S ? (29)
where I’Iml /IS the canonical projection from the tangent space

Trpl/r-A — A onto the tangent space Trpl/rST’ = Ala),
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3.2. Monotone Metrics

Now let us consider the extended manifold of faithful weights M
(the positive definite matrices) and use the —1-representation
(the limiting case @ = —1 of the a-representations) in order
to define a Riemannian metric g on M by means of the inner

product (:,:), in A C B(HYN). We say that g is monotone if and
only if

<S(A(_1)), S(A(_1>)> A(_l), A(—1)> , (30)

<

S(p) — < p

for every p e M, A € T)M, and every completely positive, trace
preserving map S : A — A.
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For any metric g on TM, define the positive (super) operator
Ks; on A by

3p(A, B) = (A1, K, (BCD))  =Tr (A VK, (BCD)). (31)

Define also the (super) operators, L,X (= pX and R,X = Xp,
for X € A, which are also positive.

Theorem 8 (Petz 96) A Riemannian metric g on A is mono-
tone if and only if

K, = ( i/zf@aR;l)Ri/Q)_l,

where K, is defined in (31) and f : Rt — R7T is an operator
monotone function satisfying f(t) = tf(t~1).
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In particular, the BKM (Bogoluibov—Kubo—Mori) metric

gﬁ(A,B):/O Tr <t+pA( 1)t+pB( 1>> dt (32)

and the WYD (Wigner-Yanase-Dyson) metric
g5 (A, B) ;= Tr (AWBED) - A BeT,M, (33)

for o« € (—1,1) are special cases of monotone metrics correspond-
ing respectively to the operator monotone functions

t—1
IMOES oot
and
_ p(1 —p)(z—1)?
fp(x) - (xp _ 1)(331—]9 _ 1)
for p = HTO‘.
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Theorem 9 If the connections V) and v(=1) are dual with
respect to a monotone Riemannian metric g on M, then g is a
scalar multiple of the BKM metric.

Theorem 10 If the connections V(% and V(=% are dual with
respect to a monotone Riemannian metric g on J\//T, then g is a
scalar multiple of the WYD metric.

Corollary 11

Ltegm p1oagen, (34)

va
7é2 2
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4. Infinite dimensional quantum systems
e H: infinite dimensional complex Hilbert space;
e B(H): algebra of operators on H,;

e Cp,0 < p < 1: compact operators A : 'H — H such that
|A|P € C1, where C; is the set of trace-class operators on H.
Define

O<p<1

o M =(C_.1NnX where > C C; denotes the set of normal faithful
states on H.
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4.1. e-Bounded Perturbations

Let Hp > I be a self-adjoint operator with domain D(Hg), quadratic
form qo and form domain Qo = D(HL/?), and let Ry = Hy! be

its resolvent at the origin.

For e € (0,1/2), let 7:(0) be the set of all symmetric forms X

1
A

1
defined on Qg and such that || X||<(0) := |R2" XRZ | is finite.

1 1
Then the map A — Hg 6AH§+6 IS an isometry from the set of

all bounded self-adjoint operators on ‘H onto 7:(0). Hence 7:(0)
is @ Banach space with the e-norm || - |(0).

Lemma 12 For fixed symmetric X,
creasing function of ¢ € [0,1/2].

| X||. is @ monotonically in-
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4.2. Construction of the Manifold

To each pg € Cg,N X, Po <1, let Hy = —logpg +cl > I be a
self-adjoint operator with domain D(Hp) such that
0o = Zo_le_HO — o—(Ho+Wo) (35)

In 7:(0), take X such that || X|[c(0) < 1 — Bg. Since || X||g(0) <
| X|e(0) < 1— By, X is also gp-bounded with bound ag less than
1 — Bg. The KLMN theorem then tells us that there exists a
unique semi-bounded self-adjoint operator Hx with form gqx =
qo + X and form domain Qx = Q. Following an unavoidable
abuse of notation, we write Hxy = Hg + X and consider the
operator

oy = Z)_Cle_(HO‘I'X) — o (Hot+X+WVx) (36)
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Then px € Cg, N X, where fx = 50 < 1 [Streater 2000].
take as a neighbourhood Mg of po the set of all such states
that is, Mo = {px ! | X[[(0) <1 —SBo}.

We want to use the Banach subspace of centred variables in
7-(0) as generalized coordinates. For this, define the regularised
mean of X € 7:(0) in the state pg as

po-X = Tr(pé‘Xp(l)_)‘), for 0 < A< 1, (37)

is finite, independent of A\ and defines a continuous map from
70(0) to R. The map

px — X =X —po-X

is then a global chart for the Banach manifold Mg modeled
by 7:(0) = {X € 7=(0) : po-X = 0}. We extend our manifold by
adding new patches compatible with My.
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4.3. Affine Structure and Analyticity of the Free Energy

Given two points py and py in Mg and their tangent spaces
T.(X) and 7.(Y), we define the torsion free, flat, (+1)-parallel
transport (1) of (Z—px-Z) € T-(X) along any continuous path ~
connecting px and py in the manifold to be the point (Z—py-Z) €
Te(Y).

Theorem 13 The free energy of the state px = Zj}le_HX S
Cg, C M, Bx <1, defined by

V(px) :=log Zx, (38)

is infinitely Fréchet differentiable and has a convergent Taylor
series for sufficiently small neighbourhoods of px in M.
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5. Noncommutative Orlicz Spaces

o A: semifinite von Neumann algebra of operators on H with
a faithful semifinite normal trace r.

e 1.O(A,7): closed densely defined operators = = u|z| affiliated
with A with the property that, for each € > 0, there exits a
projection p € A such that pH C D(xz) and 7(1 —p) < e (trace
measurable operators).

e Z(t) == inf{s > 0: 7‘(6(8700)) < t}, where e(.) are the spectral
projections of |z| (rearrangement function).
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Lemma 14 (Fack/Kosaki) Let 0 <a e LO(A,7). Then

r(@(a)) = [~ ¢@n)dt

for any continuous increasing function ¢ : [0,c0) — [0, 00).

Definition 15 (Kunze) The Orlicz space associated with (A, T, ¢)
IS

LA, 1) = {z € L°(A,7) : 7(¢(\|z|) < 1, for some X\ > O}.

Definition 16 (Zegarlinski) Given a state w(a) = 7(pa), for an
invertible density operator p, the Orlicz space associated with
(A w,d) is

L?(A, 1) = {x € LO(A,7) : O(\x) < 1, for some \ > 0},
where, for a given s € [0, 1],
O(z) = 7(¢(|(¢~ 1 (p)) (s~ () ~°])).
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