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“Somehow a very poor fellow obtains a lottery ticket that will
yield with equal probability either nothing or twenty thousand
ducats. Will this man evaluate his chance of winning at ten
thousand ducats? Would he not be ill-advised to sell this lottery
ticket for nine thousand ducats? To me it seems that the answer
is in the negative. On the other hand I am inclined to believe
that a rich man would be ill-advised to refuse to buy the lottery
ticket for nine thousand ducats.

If I am not wrong then it seems clear that all men cannot use the
same rule to evaluate the gamble (...) the determination of the
value of an item must not be based on its price, but rather on
the utility it yields. The price of the item is dependent only on
the thing itself and is equal for everyone; the utility, however, is
dependent on the particular circumstances of the person making
the estimate. Thus there is no doubt that a gain of one thousand
ducats is more significant to a pauper than to a rich man (...)”
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“Another rule which may prove useful can be derived from our

theory. This is the rule that it is advisable to divide goods which

are exposed to some danger into several portions than to risk

them all together.”
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Daniel Bernoulli (1738)
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1. Introduction

Market Model: We consider two-factor models of the form

dSt = St(µ− r)dt + StσdWt

dYt = adt + b[ρdWt +
√

1− ρ2dZt]

dVt = Ytdt (1)

for a deterministic functions µ, σ, a, b and independent one dimen-
sional P–Brownian motions (Wt, Zt) and a constant correlation
coefficient ρ.

If σ = σ(t, Yt) the model is interpreted as a stochastic volatility
one. When µ and σ are independent of Yt we interpret it as a
model for a non-traded asset Yt correlated with the (discounted)
trade asset St.
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Optimal hedging portfolio: the strategy followed by an investor

who, when faced with a (discounted) financial liability B ma-

turing at a future time T , tries to solve the stochastic control

problem

u(x) = sup
H∈A

E [U (XT −B) |X0 = x] , (2)

where XT is the (discounted) terminal wealth obtained by holding

Ht units of the risky asset St.

Utility function: U(x) = −e−γx, where γ > 0 is the risk aversion

parameter.
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Admissible strategies: In addition to the self–financing condition,

we restrict the class A of admissible portfolios to

A = {H ∈ L(S) : (H · S)t is a Q–martingale for all Q ∈Mf}.

Claims: Finally, the (discounted) liability B is assumed to be a

random variable of the form B = B(ST , YT , VT ), satisfying

E[e(γ+ι)B] < ∞ and E[e−ιB] < ∞ for some ι > 0
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2. Utility based pricing

Under these conditions, it follows from convex duality (Becherer

2004; Delbaen et al 2002; Kabanov and Stricker 2002; Owen

2002) that the optimal hedging problem (2) has a unique solution

HB ∈ A satisfying

U ′(XB
T −B) = ξ

dQB

dP
, (3)

where ξ = u′(x) and QB ∈ Mf ∩Me is the unique maximizer of

the corresponding dual problem

sup
Q∈Mf

EQ
[
γB − log

(
dQ

dP

)]
. (4)
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Let HB be the unique solution to (2) and define the exponential

certainty equivalent for the claim B at time t as the unique

semimartingale cB
t satisfying

U(Xt − cB
t ) = E

[
U

(
Xt +

∫ T

t
HBdS −B

)∣∣∣∣∣Ft

]
. (5)

In other words,

cB
t =

1

γ
logE

[
exp

(
−γ

∫ T

t
HBdS + γB

)∣∣∣∣∣Ft

]
. (6)
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The (selling) indifference price for the claim B is defined to be

the premium that makes the agent indifferent between selling it

or not, that is, the unique solution πB
t to the equation

sup
H∈A

E

[
U

(
Xt +

∫ T

0
HdS

)]
= sup

H∈A
E

[
U

(
Xt + πB

t +
∫ T

0
HdS −B

)]
.

We see that this equation is equivalent to

U(Xt − c0t ) = U(Xt + πB
t − cB

t ),

so that the indifference price process is given by

πB
t = cB

t − c0t . (7)
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Pricing by marginal utility: Consider the indifference price πεB

for the claim εB. By differentiating the identity

U(x− cεB
0 ) = E

[
U

(
x +

∫ T

0
HεBdS − εB

)]
at ε = 0 we obtain Davis’s formula

dcεB
0

dε

∣∣∣∣∣
ε=0

= E
Q0

t [B].

Therefore, to first order in ε, the exponential indifference price

for εB can be obtained by taking the expectation of the claim B

with respect to the optimal measure Q0 which solves the dual to

Merton’s problem. From (4), it is clear that this is the (local)

martingale measure with minimal relative entropy with respect

to P .
10



3. Two-factor Markovian Markets

The market price of volatility risk

Consider the density

ΛB
t := E

[
dQB

dP

∣∣∣∣∣Ft

]
, (8)

which, being an exponential martingale, can be expressed as

dΛB
t

ΛB
t

= −[λtdWt + νB
t dZt], (9)

with λt := µ−r
σ .

The process νB
t is then defined as the utility based market price

of risk associated with the claim B.
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Proposition 1 The utility based market price of risk for B is

given by

νB
t = −γb∂ycB

√
1− ρ2, (10)

and the unique optimizer HB
t = hB(t, St, Yt) for the hedging prob-

lem (2) can be expressed as

hB(t, s, y) = ∂sc
B
t +

bρ

sσ
∂ycB

t +
(µ− r)

γsσ2
. (11)

In particular

ν0
t = −γb∂yc0

√
1− ρ2. (12)
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Corollary 2 The certainty equivalent process cB
t = cB(t, St, Yt, Vt)

satisfies

cB
t +

[
a−

bρ(µ− r)

σ

]
cB
y + ycB

v +
1

2

(
s2σ2cB

ss + 2sσρcB
sy + b2cB

yy

)
−

(µ− r)2

2γσ2
+

γ(1− ρ2)

2
b2(cB

y )2 = 0 (13)

with terminal condition cB(T, s, y, v) = B(s, y, v).
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Residual risk

Musiela and Zariphopoulou (2004) define the difference

(XB
t −X0

t )− πB
t

as the residual risk associated with the claim B.

Proposition 3 The process e−γ(XB
t −X0

t −πB
t ) is an exponential

martingale under the optimal measure Q0 obtained from the so-

lutions of Merton’s problem.

14



Pay-off decomposition

For the case B = B(YT ) (µ and σ constant), MZ (2004) also
show that the final payoff can be written as the sum of three
terms: the indifference price, the wealth obtained by trading
according to the optimal hedging portfolio and a term corre-
sponding to the unhedgeable risk associated with the process Yt.
Here is a generalized result:

Proposition 4 The payoff B = B(ST , YT , VT ) admits the decom-
position

B(ST , YT , VT ) = πB
t +

∫ T

t

(
Su∂sπ

B
u +

bρ

σ
∂yπB

u

)
dSu

Su
(14)

+
√

1− ρ2
∫ T

t
b ∂yπB

u dZ0
u −

γ

2
(1− ρ2)

∫ T

t
b2(∂yπB

u )2du

where dZ0
t = dZt + ν0

t dt defines a Brownian motion under Q0.
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3. Volatility claims

Proposition 5 Consider a claim of the form B = B(YT , VT ) and

assume that λt is an adapted process for which the minimal

martingale measure

dQ̃

dP
= exp

(
−
∫ T

0

λ2
s

2
ds−

∫ T

0
λsdWs

)
(15)

is well defined. Then the process

Ξt = eγ(1−ρ2)cB
t e−

∫ t
0

(1−ρ2)
2 λ2

sds (16)

is a local Q̃–martingale. If moreover νB is the weak solution of

an SDE, then Ξt is a true martingale.
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Corollary 6 The indifference price for volatility claims B = B(YT , VT )

can be written as

πB
t =

1

γ(1− ρ2)
log


E

Q̃
t

[
eγ(1−ρ2)B(YT ,VT )e−

∫ T
t

(1−ρ2)
2 λ2

sds

]

EQ̃

[
e−
∫ T
t

(1−ρ2)
2 λ2

sds

]
 (17)
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4. Reciprocal affine models

Let us first consider the case where B = B(YT ). We take

σ(t, Yt) =

√
(1− ρ2)(µ− r)2

2

1

Yt + ε
, (18)

with ε > 0. Then the denominator and the numerator in (17)

are, respectively, the formal equivalent of the price of a zero

coupon bond and an interest rate derivative under the measure

Q̃ with a “risk-free rate”

(1− ρ2)

2
λ2

t = Yt + ε. (19)
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We write the dynamics for Yt under the measure Q̃ as

dYt = α̃(κ̃− Yt)dt + β̃
√

Yt

[
ρdW̃t +

√
1− ρ2dZt

]
, (20)

for constants α̃, κ̃, β̃ > 0 satisfying 4α̃κ̃ > β̃2. We obtain that the

coefficients for the dynamics of Yt under the economic measure

P are

a(t, Yt) = α̃(κ̃− Yt) + β̃ρ

√
2(ε + Yt)Yt

1− ρ2
(21)

b(t, Yt) = β̃
√

Yt (22)
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Pricing and hedging formulas

Proposition 7 In the reciprocal CIR model, the indifference price

of B = B(YT ) is

1

γ(1− ρ2)
log

{∫∞
−∞ exp [(M(u, t, T ) + N(u, t, T )y] ĝ(u)du

exp(M(0, t, T ) + N(0, t, T )y)

}
, (23)

where ĝ denotes the Fourier transform of g(y) = eγ(1−ρ2)B(y) and

N(u, t, T ) =
(b2 + iu)b1 − (b1 + iu)b2e∆(t−T )

(b2 + iu)− (b1 + iu)e∆(t−T )
, (24)

M(u, t, T ) =
−2ακ

β2
log

(
b2 + iu

b2 −N

)
+ ακb1(t− T ), (25)

with b2 > b1 being the two roots of x2 − 2α̃
β̃2x − 2

β̃2 and ∆ =√
α̃2 + 2β̃2.
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General claims and the market price of risk

For claims written on the trade asset St, we can still use the

reciprocal CIR to compute the marginal utility prices and the

market price of risk ν0
t associated to this pricing scheme. Observe

c0(t, y) =
(t− T )ε

γ(1− ρ2)
+

1

γ(1− ρ2)
logΨ(0, y, t, T ), (26)

so that,

ν0(t, y) =
2β̃
√

y(1− e∆(t−T ))

∆
√

1− ρ2(1 + e∆(t−T ))
.

From this, we can calculate the density for the Merton measure

Q0 and use the result to obtain the marginal utility price for

general claims B = B(ST , YT , VT ) as E
Q0

t [B].
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Numerical results

We illustrate the range of possibilities for model parameters fixed

at reasonable values:

α = 5, β = 0.04, κ = 0.001,

µ = 0.04, r = 0.02, ρ = 0.5

and initial squared volatility ranging in the interval [0,0.5]. With

these parameters the volatility process has a mean reversion time

of approximately two months and an equilibrium distribution with

expected value approximately 40%. We calculate the price of a

put option on volatility with payoff (0.15 − σ2
T )+. When not

mentioned the risk aversion parameter is set to γ = 1.
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5. Claims on Integrated Volatility

Suppose now that B = B(VT ). We now take σ =
√

Yt, so that

λt = µ−r√
Yt

. As we have seen, the indifference price is given by

πB
t =

1

γ(1− ρ2)
log


E

Q̃
t

[
eγ(1−ρ2)B(VT )e

−
∫ T
t

(1−ρ2)(µ−r)2

2Ys
ds
]

EQ̃

[
e
−
∫ T
t

(1−ρ2)(µ−r)2

2Ys
ds
]

 ,

which we can calculate by simulating the processes Yt and Vt

under the minimal martingale measure Q̃.
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Let us adopt the Heston model for stochastic volatility, that is,

under the physical measure P we take

dSt = St(µ− r)dt + St
√

YtdWt

dYt = α(κ− Yt) + β
√

Yt[ρdW +
√

1− ρ2dZ]

dVt = Ytdt

Therefore, under the minimal martingale measure Q̃ we obtain

dSt = St
√

YtdW̃t

dYt = α

[(
κ−

βρ(µ− r)

α

)
− Yt

]
+ β

√
Yt[ρdW̃ +

√
1− ρ2dZ]

dVt = Ytdt
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Numerical results

We compute the indifference price for the following claims:

• Variance call: B(VT ) = (VT −K)+

• Variance swap: B(VT ) = VT

• Volatility swap: B(VT ) =
√

VT

We take the following parameters:

α = 1.15, β = 0.39, κ = 0.04,

µ = 0.10, r = 0.04.
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6. A binomial model for real options

Consider a one-period model with Ω = {ω1, ω2, ω3, ω4}, and his-

torical probabilities P{ωi} = pi > 0 such that

ST (ω1) = uS0, YT (ω1) = hY0,

ST (ω2) = uS0, YT (ω2) = `Y0,

ST (ω3) = dS0, YT (ω3) = hY0,

ST (ω4) = dS0, YT (ω4) = `Y0,

where 0 < d < 1 < u and 0 < ` < 1 < h, for positive initial values

S0, Y0.
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Let B be a contingent claim on Y . If we denote

Bh = BT (ω1) = BT (ω3) = B(hY0)

B` = BT (ω2) = BT (ω4) = B(`Y0),

then its indifference price is

πB = −
1

γ

(
q log

[
e−γBhp1 + e−γB`p2

p1 + p2

]
+

(1− q) log

[
e−γBhp3 + e−γB`p4

p3 + p4

])
, (27)

where

q =
1− d

u− d
.
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Now suppose B is an American claim. It is clear that early

exercise will occur whenever

B(Y0) ≥ πB,

where πB is the (European) indifference price. For example, an

American call option with strike price K will be exercised if Y0

exceeds the solution to

Y ∗ −K = log

( p1 + p2

e−γBhp1 + e−γB`p2

)q
γ
(

p3 + p4

e−γBhp3 + e−γB`p4

)1−q
γ

 .
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As a result, the early exercise threshold for an American call

option obtained above is different (and higher) than the exer-

cise threshold for a contract consisting of A units of identical

Americal calls.
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