Open Questions in Quantum Information Geometry

M. R. Grasselli

Department of Mathematics and Statistics McMaster University

Imperial College, June 15, 2005

- 1. Classical Parametric Information Geometry
 - Study of differential geometric properties of families of classical probability densities.
 - Given a probability space (Ω, Σ, μ) , a family of probability densities $\mathcal{M} = \{p(x, \theta)\}$, for sample points $x \in \Omega$ and parameters $\theta = (\theta^1, \dots, \theta^n) \in \mathbb{R}^n$ can be viewed as a Riemannian manifold equipped with the Fisher metric

$$g_{ij} = \int \frac{\partial \log p(x,\theta)}{\partial \theta^i} \frac{\partial \log p(x,\theta)}{\partial \theta^j} p(x,\theta) dx \tag{1}$$

1

Apart from the Levi-Civita connection associated with g, the statistical manifold \mathcal{M} can be equipped with the exponential connection

$$\left(\nabla_{\frac{\partial}{\partial\theta^{i}}}^{(1)}\frac{\partial}{\partial\theta^{j}}\right)(p) = \frac{\partial^{2}\log p}{\partial\theta^{i}\partial\theta^{j}} - E_{p}\left(\frac{\partial^{2}\log p}{\partial\theta^{i}\partial\theta^{j}}\right),$$

and the mixture connection

$$\left(\nabla_{\frac{\partial}{\partial\theta^{i}}}^{(-1)}\frac{\partial}{\partial\theta^{j}}\right)(p) = \frac{\partial^{2}\log p}{\partial\theta^{i}\partial\theta^{j}} + \frac{\partial\log p}{\partial\theta^{i}}\frac{\partial\log p}{\partial\theta^{j}},$$

which are dual to the metric g in the sense that $\langle \cdot, \cdot \rangle_p$ if

$$v(g(s_1, s_2)) = g(\nabla_v^{(1)} s_1, s_2) + g(s_1, \nabla_v^{(-1)} s_2)$$
(2)

for all $v \in T_p\mathcal{M}$ and all smooth vector fields s_1 and s_2 .

One can also define a family of α -connections induced by the embeddings

$$\ell_{\alpha} : \mathcal{M} \to \mathcal{A}$$

 $p \mapsto \frac{2}{1-\alpha} p^{\frac{1-\alpha}{2}},$

where ${\cal A}$ is the algebra of random variables on Ω and prove that they satisfy

$$\nabla^{\alpha} = \frac{1+\alpha}{2} \nabla^{(1)} + \frac{1-\alpha}{2} \nabla^{(-1)}.$$
 (3)

The Fisher metric is the unique Riemannian metric reduced by all stochastic maps on the tangent bundle to \mathcal{M} . The duality of the α -connections with respect to it lead to rich minimization/projection theorems related to their associated α -divergences.

2. Classical Nonparametric Information Geometry

2.1. Classical Orlicz Spaces

Consider Young functions of the form

$$\Phi(x) = \int_0^{|x|} \phi(t) dt, \quad x \ge 0, \tag{4}$$

where $\phi : [0, \infty) \mapsto [0, \infty)$ is nondecreasing, continuous and such that $\phi(0) = 0$ and $\lim_{x \to \infty} \phi(x) = +\infty$. This include the monomials $|x|^r/r$, for $1 < r < \infty$, as well as the following examples:

$$\Phi_1(x) = \cosh x - 1, \tag{5}$$

$$\Phi_2(x) = e^{|x|} - |x| - 1, \tag{6}$$

$$\Phi_3(x) = (1+|x|)\log(1+|x|) - |x|$$
(7)

The complementary of a Young function Φ of the form (4) is given by

$$\Psi(y) = \int_0^{|y|} \psi(t) dt, \quad y \ge 0, \tag{8}$$

where ψ is the inverse of ϕ . One can verify that (Φ_2, Φ_3) and $(|x|^r/r, |x|^s/s)$, with $r^{-1} + s^{-1} = 1$, are examples of complementary pairs.

Now let (Ω, Σ, P) be a probability space. The Orlicz space associated with a Young function Φ defined as

$$L^{\Phi}(P) = \left\{ f : \Omega \mapsto \overline{\mathbf{R}}, \text{measurable} : \int_{\Omega} \Phi(\alpha f) dP < \infty, \text{ for some } \alpha > 0 \right\}$$

If we identify functions which differ only on sets of measure zero, then L^{Φ} is a Banach space when furnished with the Luxembourg norm

$$N_{\Phi}(f) = \inf\left\{k > 0 : \int_{\Omega} \Phi(\frac{f}{k}) dP \le 1\right\},\tag{9}$$

or with the equivalent Orlicz norm

$$\|f\|_{\Phi} = \sup\left\{\int_{\Omega} |fg|d\mu : g \in L^{\Psi}(\mu), \int_{\Omega} \Psi(g)dP \le 1\right\}, \qquad (10)$$

where Ψ is the complementary Young function to $\Psi.$

2.2. The Pistone-Sempi Manifold

Consider the set

$$\mathcal{M} \equiv \mathcal{M}(\Omega, \Sigma, \mu) = \{ f : \Omega \mapsto \mathbf{R}, f > 0 \text{ a.e. and } \int_{\Omega} f d\mu = 1 \}.$$

For each point $p \in \mathcal{M}$, let $L^{\Phi_1}(p)$ be the exponential Orlicz space over the probability space $(\Sigma, \Omega, pd\mu)$ and consider its closed subspace of *p*-centred random variables

$$B_p = \{ u \in L^{\Phi_1}(p) : \int_{\Omega} up d\mu = 0 \}$$
(11)

as the coordinate Banach space.

In probabilistic terms, the set $L^{\Phi_1}(p)$ correspond to random variables whose moment generating function with respect to the probability $pd\mu$ is finite on a neighborhood of the origin.

They define one dimensional exponential models p(t) associated with a point $p \in \mathcal{M}$ and a random variable u:

$$p(t) = \frac{e^{tu}}{Z_p(tu)}p, \qquad t \in (-\varepsilon, \varepsilon).$$
(12)

Define the inverse of a local chart around $p \in \mathcal{M}$ as

$$e_p : \mathcal{V}_p \to \mathcal{M}$$

 $u \mapsto \frac{e^u}{Z_p(u)}p.$ (13)

Denote by \mathcal{U}_p the image of \mathcal{V}_p under e_p . Let e_p^{-1} be the inverse of e_p on \mathcal{U}_p . Then a local chart around p is given by

$$e_p^{-1}: \mathcal{U}_p \to B_p$$

$$q \mapsto \log\left(\frac{q}{p}\right) - \int_{\Omega} \log\left(\frac{q}{p}\right) p d\mu. \tag{14}$$

For any $p_1, p_2 \in \mathcal{M}$, the transition functions are given by $e_{p_2}^{-1}e_{p_1}: e_{p_1}^{-1}(\mathcal{U}_{p_1} \cap \mathcal{U}_{p_2}) \rightarrow e_{p_2}^{-1}(\mathcal{U}_{p_1} \cap \mathcal{U}_{p_2})$ $u \mapsto u + \log\left(\frac{p_1}{p_2}\right) - \int_{\Omega} \left(u + \log\frac{p_1}{p_2}\right) p_2 d\mu.$

Proposition 1 For any $p_1, p_2 \in \mathcal{M}$, the set $e_{p_1}^{-1}(\mathcal{U}_{p_1} \cap \mathcal{U}_{p_2})$ is open in the topology of B_{p_1} .

We then have that the collection $\{(\mathcal{U}_p, e_p^{-1}), p \in \mathcal{M}\}$ satisfies the three axioms for being a C^{∞} -atlas for \mathcal{M} . Moreover, since all the spaces B_p are isomorphic as topological vector spaces, we can say that \mathcal{M} is a C^{∞} -manifold modeled on $B_p \equiv T_p \mathcal{M}$.

Given a point $p \in \mathcal{M}$, the connected component of \mathcal{M} containing p coincides with the maximal exponential model obtained from $p: \mathcal{E}(p) = \left\{ \frac{e^u}{Z_p(u)} p, u \in B_p \right\}.$

2.3. The Fisher Information and Dual Connections

Let $\langle \cdot, \cdot \rangle_p$ be a continuous positive definite symmetric bilinear form assigned continuously to each $B_p \simeq T_p \mathcal{M}$. A pair of connection (∇, ∇^*) are said to be dual with respect to $\langle \cdot, \cdot \rangle_p$ if

$$\langle \tau u, \tau^* v \rangle_q = \langle u, v \rangle_p$$
 (15)

for all $u, v \in T_p\mathcal{M}$, where τ and τ^* denote the parallel transports associated with ∇ and ∇^* , respectively.

Equivalently, (∇, ∇^*) are dual with respect to $\langle \cdot, \cdot \rangle_p$ if

$$v\left(\langle s_1, s_2 \rangle_p\right) = \langle \nabla_v s_1, s_2 \rangle_p + \langle s_1, \nabla_v^* s_2 \rangle_p \tag{16}$$

for all $v \in T_p\mathcal{M}$ and all smooth vector fields s_1 and s_2 .

The infinite dimensional generalisation of the Fisher information is given by

$$\langle u, v \rangle_p = \int_{\Omega} (uv) p d\mu, \quad \forall u, v \in B_p.$$
 (17)

This is clearly bilinear, symmetric and positive definite. Moreover, continuity follows from that fact that, since $L^{\Phi_1}(p) \simeq L^{\Phi_2}(p) \subset L^{\Phi_3}(p)$, the generalised Hölder inequality gives

$$|\langle u, v \rangle_p| \le K ||u||_{\Phi_1, p} ||v||_{\Phi_1, p}, \quad \forall u, v \in B_p.$$
(18)

If p and q are two points on the same connected component of \mathcal{M} , then the exponential parallel transport is given by

$$\tau_{pq}^{(1)}: T_p \mathcal{M} \to T_q \mathcal{M}$$
$$u \mapsto u - \int_{\Omega} uq d\mu.$$
(19)

To obtain duality with respect to the Fisher information, we define the mixture parallel transport on $T\mathcal{M}$ as

$$\frac{f_{pq}^{(-1)}: T_p \mathcal{M} \to T_q \mathcal{M}}{u \mapsto \frac{p}{q} u,$$
(20)

for p and q in the same connected component of ${\mathcal M}$.

Theorem 2 The connections $\nabla^{(1)}$ and $\nabla^{(-1)}$ are dual with respect to the Fisher information.

2.4. α -connections

We begin with Amari's α -embeddings

$$\ell_{\alpha} : \mathcal{M} \to L^{r}(\mu)$$

$$p \mapsto \frac{2}{1-\alpha} p^{\frac{1-\alpha}{2}}, \quad \alpha \in (-1,1), \quad (21)$$

where $r = \frac{2}{1-\alpha}$. Observe that $\ell_{\alpha}(p) \in S^{r}(\mu)$, the sphere of radius r in $L^{r}(\mu)$.

We are now ready to define the α -connections. In what follows, $\widetilde{\nabla}$ is used to denote the trivial connection on $L^r(\mu)$.

Definition 3 For $\alpha \in (-1,1)$, let $\gamma : (-\varepsilon, \varepsilon) \to \mathcal{M}$ be a smooth curve such that $p = \gamma(0)$ and $v = \dot{\gamma}(0)$ and let $s \in S(T\mathcal{M})$ be a differentiable vector field. The α -connection on $T\mathcal{M}$ is given by

$$(\nabla_v^{\alpha} s)(p) = (\ell_{\alpha})_{*(p)}^{-1} \left[\Pi_{rp^{1/r}} \widetilde{\nabla}_{(\ell_{\alpha})_{*(p)} v} (\ell_{\alpha})_{*(\gamma(t))} s \right].$$
(22)

Theorem 4 The exponential, mixture and α -covariant derivatives on TM satisfy

$$\nabla^{\alpha} = \frac{1+\alpha}{2} \nabla^{(1)} + \frac{1-\alpha}{2} \nabla^{(-1)}.$$
 (23)

Corollary 5 The connections ∇^{α} and $\nabla^{-\alpha}$ are dual with respect to the Fisher information $\langle \cdot, \cdot \rangle_p$.

- 3. Finite Dimensional Quantum Systems
 - \mathcal{H}^N : finite dimensional complex Hilbert space;
 - $\mathcal{B}(\mathcal{H}^N)$: algebra of operators on \mathcal{H}^N ;
 - *A*: *N*²-dimensional real vector subspace of self-adjoint operators;
 - \mathcal{M} : *n*-dimensional submanifold of all invertible density operators on \mathcal{H}^N , with $n = N^2 - 1$.

3.1 Quantum α -connections

For $\alpha \in (-1, 1)$, define the α -embedding of \mathcal{M} into \mathcal{A} as

$$\mathcal{L}_{\alpha} : \mathcal{M} \to \mathcal{A}$$

 $\rho \mapsto \frac{2}{1-\alpha} \rho^{\frac{1-\alpha}{2}}$

At each point $\rho \in \mathcal{M}$, consider the subspace of \mathcal{A} defined by

$$\mathcal{A}_{\rho}^{(\alpha)} = \left\{ A \in \mathcal{A} : \operatorname{Tr}\left(\rho^{\frac{1+\alpha}{2}}A\right) = 0 \right\},\,$$

and define the isomorphism

$$\begin{aligned} (\ell_{\alpha})_{*(\rho)} &: T_{\rho}\mathcal{M} \to \mathcal{A}_{\rho}^{(\alpha)} \\ & v \mapsto (\ell_{\alpha} \circ \gamma)'(0). \end{aligned}$$
 (24)

Let $r = \frac{2}{1-\alpha}$. If we equip \mathcal{A} with the the *r*-norm $\|A\|_r := (\mathrm{Tr}|A|^r)^{1/r}$,

then the α -embedding can be vied as a mapping from \mathcal{M} to the positive part of the sphere of radius r.

Definition 6 For $\alpha \in (-1,1)$, let $\gamma : (-\varepsilon,\varepsilon) \to \mathcal{M}$ be a smooth curve such that $\rho = \gamma(0)$ and $v = \dot{\gamma}(0)$ and let $s \in S(T\mathcal{M})$ be a differentiable vector field. The α -connection on $T\mathcal{M}$ is given by

$$\left(\nabla_{v}^{(\alpha)}s\right)(\rho) = \left(\ell_{\alpha}\right)_{*(\rho)}^{-1} \left[\mathsf{\Pi}_{r\rho^{1/r}} \widetilde{\nabla}_{\left(\ell_{\alpha}\right)_{*(\rho)}v}(\ell_{\alpha})_{*(\gamma(t))}s \right], \qquad (25)$$

where $\Pi_{r\rho^{1/r}}$ is the canonical projection from the tangent space $T_{r\rho^{1/r}}\mathcal{A} = \mathcal{A}$ onto the tangent space $T_{r\rho^{1/r}}S^r = \mathcal{A}^{(\alpha)}$.

3.2. Monotone Metrics

Now let us consider the extended manifold of faithful weights $\widehat{\mathcal{M}}$ (the positive definite matrices) and use the -1-representation (the limiting case $\alpha = -1$ of the α -representations) in order to define a Riemannian metric g on $\widehat{\mathcal{M}}$ by means of the inner product $\langle \cdot, \cdot \rangle_{\rho}$ in $\mathcal{A} \subset B(\mathcal{H}^N)$. We say that \widehat{g} is monotone if and only if

$$\left\langle S(A^{(-1)}), S(A^{(-1)}) \right\rangle_{S(\rho)} \le \left\langle A^{(-1)}, A^{(-1)} \right\rangle_{\rho},$$
 (26)

for every $\rho \in \mathcal{M}$, $A \in T_{\rho}\mathcal{M}$, and every completely positive, trace preserving map $S : \mathcal{A} \to \mathcal{A}$.

For any metric \hat{g} on $T\widehat{\mathcal{M}}$, define the positive (super) operator K_{σ} on \mathcal{A} by

$$\widehat{g}_{\rho}(\widehat{A},\widehat{B}) = \left\langle \widehat{A}^{(-1)}, K_{\rho}\left(\widehat{B}^{(-1)}\right) \right\rangle_{HS} = \operatorname{Tr}\left(\widehat{A}^{(-1)}K_{\rho}\left(\widehat{B}^{(-1)}\right)\right).$$
(27)
Define also the (super) operators, $L_{\rho}X := \rho X$ and $R_{\rho}X := X\rho$, for $X \in \mathcal{A}$, which are also positive.

Theorem 7 (Petz 96) A Riemannian metric g on A is monotone if and only if

$$K_{\sigma} = \left(R_{\sigma}^{1/2} f(L_{\sigma} R_{\sigma}^{-1}) R_{\sigma}^{1/2} \right)^{-1},$$

where K_{σ} is defined in (27) and $f : \mathbb{R}^+ \to \mathbb{R}^+$ is an operator monotone function satisfying $f(t) = tf(t^{-1})$.

In particular, the **BKM** (Bogoluibov–Kubo–Mori) metric

$$g_{\rho}^{B}(A,B) = \int_{0}^{\infty} \operatorname{Tr}\left(\frac{1}{t+\rho}A^{(-1)}\frac{1}{t+\rho}B^{(-1)}\right)dt \qquad (28)$$

and the WYD (Wigner-Yanase-Dyson) metric

$$g_{\rho}^{(\alpha)}(A,B) := \operatorname{Tr}\left(A^{(\alpha)}B^{(-\alpha)}\right), \qquad A, B \in T_{\rho}\mathcal{M},$$
 (29)

for $\alpha \in (-1, 1)$ are special cases of monotone metrics corresponding respectively to the operator monotone functions

$$f^B(t) = \frac{t-1}{\log t}$$

and

$$f_p(x) = \frac{p(1-p)(x-1)^2}{(x^p-1)(x^{1-p}-1)}$$

for $p = \frac{1+\alpha}{2}$.

Theorem 8 If the connections $\nabla^{(1)}$ and $\nabla^{(-1)}$ are dual with respect to a monotone Riemannian metric g on \mathcal{M} , then g is a scalar multiple of the BKM metric.

Theorem 9 If the connections $\nabla^{(\alpha)}$ and $\nabla^{(-\alpha)}$ are dual with respect to a monotone Riemannian metric \hat{g} on $\widehat{\mathcal{M}}$, then \hat{g} is a scalar multiple of the WYD metric.

Corollary 10

$$\nabla^{\alpha} \neq \frac{1+\alpha}{2} \nabla^{(1)} + \frac{1-\alpha}{2} \nabla^{(-1)}.$$
 (30)

21

3.3 Scalar curvature

- It has been proposed that the scalar curvature associated with a monotone metric represents the "average uncertainty" for a quantum state. In this way, it should be an increasing function under stochastic maps.
- The Bures metric is known to be a counter-example for $n \ge 3$ (Ditmann 99), while being zero for n = 2.
- Counter-examples are now known even for n = 2 (Andai 03).

- Petz's conjecture: The scalar curvature for the BKM metric is monotone (convincing numerical and theoretical evidence, but no proof !)
- Gibilisco and Isola's conjecture: The scalar curvature for the WYD metric for α close to -1 is monotone (motivated by α -geometry).
- Research proposal: Look at the scalar curvature associated with dual connections, instead of the Levi-Civita one.

- 4. Infinite dimensional quantum systems
 - \mathcal{H} : infinite dimensional complex Hilbert space;
 - $\mathcal{B}(\mathcal{H})$: algebra of operators on \mathcal{H} ;
 - $\mathcal{C}_p, 0 : compact operators <math>A : \mathcal{H} \mapsto \mathcal{H}$ such that $|A|^p \in \mathcal{C}_1$, where \mathcal{C}_1 is the set of trace-class operators on \mathcal{H} . Define

$$\mathcal{C}_{<1} := \bigcup_{0 < p < 1} \mathcal{C}_p.$$

• $\mathcal{M} = \mathcal{C}_{<1} \cap \Sigma$ where $\Sigma \subset \mathcal{C}_1$ denotes the set of normal faithful states on H.

4.1. ε -Bounded Perturbations

Let $H_0 \ge I$ be a self-adjoint operator with domain $\mathcal{D}(H_0)$, quadratic form q_0 and form domain $Q_0 = \mathcal{D}(H_0^{1/2})$, and let $R_0 = H_0^{-1}$ be its resolvent at the origin.

For $\varepsilon \in (0, 1/2)$, let $\mathcal{T}_{\varepsilon}(0)$ be the set of all symmetric forms X defined on Q_0 and such that $||X||_{\varepsilon}(0) := \left\| R_0^{\frac{1}{2} + \varepsilon} X R_0^{\frac{1}{2} - \varepsilon} \right\|$ is finite. Then the map $A \mapsto H_0^{\frac{1}{2} - \varepsilon} A H_0^{\frac{1}{2} + \varepsilon}$ is an isometry from the set of all bounded self-adjoint operators on \mathcal{H} onto $\mathcal{T}_{\varepsilon}(0)$. Hence $\mathcal{T}_{\varepsilon}(0)$ is a Banach space with the ε -norm $\| \cdot \|_{\varepsilon}(0)$.

Lemma 11 For fixed symmetric X, $||X||_{\varepsilon}$ is a monotonically increasing function of $\varepsilon \in [0, 1/2]$.

4.2. Construction of the Manifold

To each $\rho_0 \in C_{\beta_0} \cap \Sigma$, $\beta_0 < 1$, let $H_0 = -\log \rho_0 + cI \ge I$ be a self-adjoint operator with domain $\mathcal{D}(H_0)$ such that

$$\rho_0 = Z_0^{-1} e^{-H_0} = e^{-(H_0 + \Psi_0)}.$$
(31)

In $\mathcal{T}_{\varepsilon}(0)$, take X such that $||X||_{\varepsilon}(0) < 1 - \beta_0$. Since $||X||_0(0) \le ||X||_{\varepsilon}(0) < 1 - \beta_0$, X is also q_0 -bounded with bound a_0 less than $1 - \beta_0$. The *KLMN* theorem then tells us that there exists a unique semi-bounded self-adjoint operator H_X with form $q_X = q_0 + X$ and form domain $Q_X = Q_0$. Following an unavoidable abuse of notation, we write $H_X = H_0 + X$ and consider the operator

$$\rho_X = Z_X^{-1} e^{-(H_0 + X)} = e^{-(H_0 + X + \Psi_X)}.$$
(32)

26

Then $\rho_X \in \mathcal{C}_{\beta_X} \cap \Sigma$, where $\beta_X = \frac{\beta_0}{1-a_0} < 1$ [Streater 2000]. We take as a neighbourhood \mathcal{M}_0 of ρ_0 the set of all such states, that is, $\mathcal{M}_0 = \{\rho_X : ||X||_{\varepsilon}(0) < 1 - \beta_0\}.$

The map

$$\rho_X \mapsto \widehat{X} = X - \rho_0 \cdot X$$

is then a global chart for the Banach manifold \mathcal{M}_0 modeled by $\widehat{\mathcal{T}}_{\varepsilon}(0) = \{X \in \mathcal{T}_{\varepsilon}(0) : \rho_0 \cdot X = 0\}$. We extend our manifold by adding new patches compatible with \mathcal{M}_0 .

4.3. Affine Structure and Analyticity of the Free Energy

Given two points ρ_X and ρ_Y in \mathcal{M}_0 and their tangent spaces $\widehat{\mathcal{T}}_{\varepsilon}(X)$ and $\widehat{\mathcal{T}}_{\varepsilon}(Y)$, we define the torsion free, flat, (+1)-parallel transport along any continuous path γ connecting ρ_X and ρ_Y in the manifold as

$$\tau^{(1)}: Z \in \widehat{\mathcal{T}}_{\varepsilon}(X) \mapsto (Z - \rho_Y \cdot Z) \in \widehat{\mathcal{T}}_{\varepsilon}(Y)$$

Open problem: How to define the (-1) parallel transport ?

Theorem 12 The free energy of the state $\rho_X = Z_X^{-1}e^{-H_X} \in C_{\beta_X} \subset \mathcal{M}, \beta_X < 1$, defined by

$$\Psi(\rho_X) := \log Z_X, \tag{33}$$

is infinitely Fréchet differentiable and has a convergent Taylor series for sufficiently small neighbourhoods of ρ_X in \mathcal{M} .

As a consequence, we can define the infinite dimensional BKM metric as

$$g_{\rho}(X,Y) = \int_{0}^{1} \operatorname{Tr}\left(X\rho^{\lambda}Y\rho^{(1-\lambda)}\right)d\lambda$$
 (34)

5. Noncommutative Orlicz Spaces

- \mathcal{A} : semifinite von Neumann algebra of operators on \mathcal{H} with a faithful semifinite normal trace τ .
- $L^{0}(\mathcal{A}, \tau)$: closed densely defined operators x = u|x| affiliated with \mathcal{A} with the property that, for each $\varepsilon > 0$, there exits a projection $p \in \mathcal{A}$ such that $p\mathcal{H} \subset \mathcal{D}(x)$ and $\tau(1-p) \leq \varepsilon$ (trace measurable operators).
- $\tilde{x}(t) := \inf\{s > 0 : \tau(e_{(s,\infty)}) \le t\}$, where $e_{(\cdot)}$ are the spectral projections of |x| (rearrangement function).

Lemma 13 (Fack/Kosaki) Let $0 \le a \in L^0(\mathcal{A}, \tau)$. Then $\tau(\phi(a)) = \int_0^\infty \phi(\tilde{a}(t)) dt$ for any continuous increasing function $\phi : [0, \infty) \to [0, \infty)$.

Definition 14 (Kunze) The Orlicz space associated with (A, τ, ϕ) is

 $L^{\phi}(\mathcal{A},\tau) = \{x \in L^{0}(\mathcal{A},\tau) : \tau(\phi(\lambda|x|)) \leq 1, \text{ for some } \lambda > 0\}.$

For Orlicz spaces associated with a state, one has

Definition 15 (Zegarlinski) Given a state $\omega(a) = \tau(\rho a)$, for an invertible density operator ρ , the Orlicz space associated with $(\mathcal{A}, \omega, \phi)$ is

$$L^{\phi}(\mathcal{A},\tau) = \{ x \in L^{0}(\mathcal{A},\tau) : O(\lambda x) \leq 1, \text{ for some } \lambda > 0 \},\$$

where, for a given $s \in [0, 1]$,

$$O(x) = \tau(\phi(|(\phi^{-1}(\rho))^s x(\phi^{-1}(\rho))^{1-s}|)).$$

Question: What is the classical analogue for $\phi = cosh(x) - 1$ and A commutative ?

Alternatively,

Definition 16 (Streater) A map Φ from H_0 -bounded forms to $R_+ \cup \infty$ is called a quantum Young function if it is convex, even, satisfy $\Phi(0) = 0$ and $\Phi(X) > 0$ if $X \neq 0$, and is finite for all X with sufficiently small Kato bounds.

Lemma 17 The function

$$\Phi(X) = \frac{1}{2} Tr \left(e^{-H_0 - \Psi_0 - X} + e^{-H_0 - \Psi_0 + X} \right) - 1$$

is a quantum Young function.

One can then define a quantum analogue of the Luxemburg norm and prove analogue's of Young's and Hölder's inequality (using the BKM metric).

Question: Are the norms on overlapping charts equivalent ?