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Axiomatic Interest Rate Theory

We follow the axiomatic framework proposed by Hughston and
Rafailidis (2005). For this, we need:

I a probability space (Ω,F ,P) (physical measure)

I the augmented filtration Ft generated by a k–dimensional
Brownian motion Wt

I asset prices St given by continuous semimartingales

I a non–dividend–paying asset with adapted price process
ξt > 0 (natural numeraire).



Axiomatic Interest Rate Theory (continued)

The following axioms define an arbitrage–free interest rate model:

1. There exists a strictly increasing asset with absolutely
continuous price process Bt (bank account).

2. If St is the price of any asset with an adapted dividend rate
Dt then

St

ξt
+

∫ t

0

Ds

ξs
ds is a martingale (1)

3. There exists an asset that offers a dividend rate sufficient to
ensure that the value of the asset remains constant (floating
rate note).

4. There exists a system of discount bond price processes PtT

satisfying
lim

T→∞
PtT = 0.



The state price density

I Define Vt = 1/ξt (state price density).

I Since BtVt is a martingale (A2) and Bt is strictly increasing
(A1), we have

Et [VT ] = Et

[
BTVT

BT

]
< Et

[
BTVT

Bt

]
=

BtVt

Bt
= Vt ,

which means that Vt is a positive supermartingale.

I Writing Bt = B0 exp
(∫ t

0 rsds
)

for an adapted process rt > 0

and
d(BtVt) = −(BtVt)λtdWt ,

for an adapted vector process λt , we have that the dynamics
for Vt is

dVt = −rtVtdt − VtλtdWt . (2)



Conditional variance representation

I Integrating (2), taking conditional expectations and the limit
T →∞ (all well defined thanks to (A3) and (A4)) leads to

Vt = Et

[∫ ∞

t
rsVsds

]
.

I Now let σt be a vector process satisfying σ2
t = rtVt and define

the square integrable random variable

X∞ :=

∫ ∞

0
σsdWs .

I It then follows from the Ito isometry that

Vt = Et

[
(X∞ − Xt)

2
]
, (3)

where Xt := Et [X∞] =
∫ t
0 σsdWs .



Related quantities and bond prices

I Defining At := [X ,X ]t =
∫ t
0 σ2

s ds =
∫ t
0 rsVsds leads to the

Doob-Meyer decomposition

Vt = Et [A∞]− At (potential approach)

I Defining the family of martingales Mts = Et [σ
2
s ] leads to

Vt =

∫ ∞

t
Mtsds (Flesaker–Hughston approach)

I In general, bond prices and forward rates are given by

PtT =
Et [VT ]

Vt
=

∫∞
T Mtsds∫∞
t Mtsds

(4)

ftT = −∂T log PtT =
MtT∫∞

T Mtsds
, (5)

which are manifestly positive.



Wiener chaos
I Define the Hermite polynomials

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2 (6)

I For h ∈ L2(Rk
+), define the Gaussian random variable

W (h) :=

∫ ∞

0
h(s)dWs .

I Then the Wiener chaos of order n,

Hn := span{Hn(W (h))|h ∈ L2(∆)}, n ≥ 1,

H0 := C,

provide an orthogonal decomposition of square integrable
random variables:

L2(Ω,F∞,P) =
∞⊕

n=0

Hn.



Wiener chaos expansion

I Let ∆n := {(s1, . . . , sn) ∈ Rn
+|0 ≤ sn ≤ · · · ≤ s2 < s1 ≤ ∞}.

I Each Hn can be identified with L2(∆n) via the isometries

Jn : L2(∆n) → Hn

given by

φn 7→ Jn(φn) =

∫
∆n

φn(s1, . . . , sn)dWs1 . . . dWsn , (7)

I With these ingredients, one is then led to the result that any
X ∈ L2(Ω,F∞,P) can be represented as a Wiener chaos
expansion

X =
∞∑

n=0

Jn(φn), (8)

where the deterministic functions φn ∈ L2(∆n) are uniquely
determined by the random variable X .



First order chaos

I In a first order chaos model we have

X∞ =

∫ ∞

0
φ(s)dWs .

I In this case σs = φ(s), so that Mts = Et [σ
2
s ] = φ2(s) and

Vt =

∫ ∞

t
Mtsds =

∫ ∞

t
φ2(s)ds

I This corresponds to a deterministic interest rate theory, since

PtT =

∫∞
T φ2(s)ds∫∞
t φ2(s)ds

, ftT =
φ2(T )∫∞

T φ2(s)ds
= rT .

I The remaining asset prices can be stochastic, however.
Indeed, for a derivative with payoff HT we have

Ht =
Et [VTHT ]

Vt
=

VT

Vt
Et [HT ] = PtTEt [HT ]



Second order chaos: definition

I In a second order chaos model we have

X∞ =

∫ ∞

0
φ1(s)dWs +

∫ ∞

0

∫ s

0
φ2(s, u)dWudWs

I In this case Mts = Et [σ
2
s ] where

σs = φ1(s) +

∫ s

0
φ2(s, u)dWu.

I Using the Ito isometry we find that

Mts =

(
φ1(s) +

∫ t

0
φ2(s, u)dWu

)2

+

∫ s

t
φ2

2(s, u)du,

which, for each t, is a parametric family of squared Gaussian
RV plus a constant.



Second order chaos: bond and option prices

I Defining ZtT =
∫∞
T Mtsds, we see that bond prices are given

by

PtT =
ZtT

Ztt
.

I In particular, since M0s = φ2
1(s) +

∫ s
0 φ2

2(s, u)du, it follows
that

P0T =

∫∞
T

(
φ2

1(s) +
∫ s
0 φ2

2(s, u)du
)
ds∫∞

0

(
φ2

1(s) +
∫ s
0 φ2

2(s, u)du
)
ds

.

I Moreover, the price at time zero of an option with payoff
(PtT − K )+ is

ZBC (0, t,T ,K ) =
1

V0
E

[
Vt (PtT − K )+

]
=

1

V0
E

[
(ZtT − KZtt)

+]
,

which can be calculated in terms of the joint distribution of
ZtT1 and ZtT2 .



Factorizable second order chaos: definition

I Consider φ1(s) = α(s) and φ2(s, u) = β(s)γ(u).

I Then σs = φ(s) + β(s)Rs where

Rt =

∫ t

0
γ(s)dWs

is a martingale with quadratic variation Q(t) =
∫ t
0 γ2(s)ds.

I Therefore

Mts = (α2(s) + β(s)Rt)
2 + β2(s)[Q(s)− Q(t)]

= α2(s) + β2(s)Q(s) + 2α(s)β(s)Rt + β2(s)(R2
t − Q(t))

I Notice that the scalar random variable Rt is the sole state
variable for the interest rate model at time t, even in the case
of a multidimensional Brownian motion Wt .



Factorizable second order chaos: bond prices

I Integrating the previous expression gives

ZtT =

∫ ∞

T
Mtsds = A(T ) + B(T )Rt + C (T )(R2

t − Q(t)),

where

A(T ) =

∫ ∞

t
(α2(s) + β2(s)Q(s))ds

B(T ) = 2

∫ ∞

T
α(s)β(s)ds, C (T ) =

∫ ∞

T
β2(s)ds

I Therefore

Vt = A(t) + B(t)Rt + C (t)(R2
t − Q(t))

and

PtT =
A(T ) + B(T )Rt + C (T )(R2

t − Q(t))

A(t) + B(t)Rt + C (t)(R2
t − Q(t))



Factorizable second order chaos: option prices

I Fixing t,T and K , it follows that

ZtT − KZtt = A + BY + CY 2,

where Y = R(t)/
√

Q(t) ∼ N(0, 1) and

A = [A(T )− KA(t)]− [C (T )− KC (t)]Q(t)

B = [B(T )− KB(t)]
√

Q(t), C = [C (T )− KC (t)]Q(t)

I Therefore, defining p(y) = A + By + Cy2, we have

ZBC (0, t,T ,K ) =
1

A(0)
√

2π

∫
p(y)≥0

p(y)e−
1
2
y2

dy ,

which can be calculated explicitly in terms of the roots of the
polynomial p(y).

I Analogous expressions can be derived for puts, swaptions,
caps, floors, etc...



One–variable second order chaos

I Consider now

X∞ =

∫ ∞

0
α(s)dWs +

∫ ∞

0

∫ s

0
β(s)dWudWs

=

∫ ∞

0
[α(s) + β(s)Ws ]dWs

I For fitting the initial term structure, this behaves like a first
order chaos model with φ2(s) = α2(s) + β2(s)s

I However, the stochastic evolution of bond prices is now

PtT =
A(T ) + B(T )Wt + C (T )(W 2

t − t)

A(t) + B(t)Wt + C (t)(W 2
t − t)

I Option prices are determined by the same expression as before
by setting Q(t) = t.



One–variable third order chaos

I Motivated by the previous example, we consider

X∞ =

∞∫
0

α(s)dWs +

∞ s∫∫
0 0

β(s)dWudWs +

∞ s u∫∫∫
0 0 0

δ(s)dWvdWudWs

=

∫ ∞

0

[
α(s) + β(s)Ws +

1

2
δ(s)(W 2

s − s)

]
dWs

I Again, for fitting P0T this behaves like a first order chaos
model with φ(s) = α2(s) + β2(s)s + δ2(s)s2/2.

I Moreover, since

ZtT = a(T ) + b(T )Wt + c(T )W 2
t + d(T )W 3

t + e(T )W 4
t ,

general bond prices are expressed as the ratio of 4th–order
polynomials in Wt .

I Similarly, option prices can be found explicitly by integrating a
4th–order polynomial of a standard normal random variable.



Data

I For P0T we use clean prices of treasury coupon strips in the
Gilt Market using data from the UK Debt Management Office
(DMO).

I We consider bond prices at 146 dates (every other business
day) from Jan 1998 to Jan 1999 with 50 maturities for each
date.

I We also consider bond prices at 15 dates (every 3 months)
from June 2003 to December 2006 with about 150 maturities
for each date.

I For interest rate options we consider ATM floors quotes from
ICAP (via Bloomberg) on the dates with 10 maturities for
each date.



Parametric specification

I Motivated by the vast literature on forward rate curve fitting
(so-called descriptive–form interest rate models), we consider
the exponential–polynomial family (Bjork and Christensen 99):

φ(s) =
n∑

i=1

 µi∑
j=1

bijs
j

 e−ci s

I Special cases in this family are the Nelson–Sigel (87),
Svensson (94) and Cairns (98) models:

φNS(s) = b0 + (b1 + b2s)e
−c1s

φSv (s) = b0 + (b1 + b2s)e
−c1s + b3se

c2s

φC (s) =
4∑

i=1

b1e
ci s



The rational lognormal model (Flesaker and Hughston 96)

I For comparison, we also consider the following model:

Mts = g1(s)Mt + g2(s),

where

Mt = exp

[∫ t

0
θ(s)dWs −

1

2

∫ t

0
θ(s)2ds

]
.

I Bond prices in this model are given by

PtT =
G1(T )Mt + G2(T )

G1(t)Mt + G2(t)

where

G1(t) =

∫ ∞

t
g1(s)ds, G2(t) =

∫ ∞

t
g2(s)ds.

I Because Mt is an exponentiated first–chaos, this interest rate
model has chaos terms of all orders.



Calibration results: bonds from Jan/98 to Feb/99

Model N Speed -L RMSE

1st chaos 3 68 13.5930 0.0454

1st chaos 6 211 0.3801 0.0092

One–var 2nd chaos (a) 6 289 0.4008 0.0100

One–var 2nd chaos (b) 6 114 0.3806 0.0087

One–var 3rd chaos 6 129 0.3721 0.0088

Descriptive NS 4 150 3.5579 0.0228

Descriptive Sv 6 251 0.3499 0.0091



Stability of parameters

Figure: RMSE as a function of time.



Fitted curves on Feb 3rd, 2006
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Figure: Market data and calibrated curves on Feb 3rd, 2006



Calibration results: options and bonds from Jun/03 to
Dec/06

Model N Bond error Option error RMSPE

1st chaos 3 0.0283 0.0201 0.2078

1st chaos 5 0.0029 0.0008 0.0582

One-var 2nd chaos 5 0.0010 0.0010 0.0415

One-var 2nd chaos 6 0.0008 0.0007 0.0354

One-var 2nd chaos 7 0.0003 0.0002 0.0202

Factorizable 2nd chaos 6 0.0010 0.0004 0.0348

One-var 3rd chaos 6 0.0001 0.0001 0.0133

One-var 3rd chaos 7 0.0001 0.0000 0.0086

Rational lognormal 7 0.0002 0.0001 0.0165

Rational lognormal 9 0.0001 0.0001 0.0134



Performance of Chaos Models

Figure: Squared-errors for different dates (green for yields, yellow for
options)



Comparison with Rational Lognormal

Figure: Squared-errors for different dates (green for yields, yellow for
options)



Detailed performance

Figure: Relative option errors for different dates and maturities



Conclusions

1. We propose a systematic way to calibrate interest rate model
in the chaotic approach.

2. For term structure calibration, the performance of 1st–order
chaos is comparable to their deterministic descriptive form
analogues (Nelson–Sigel and Svensson).

3. One–variable higher–order chaos slightly improves the
performance, with the advantage of being fully stochastic and
consistent with non-arbitrage and positivity conditions.

4. Option calibration requires at least a factorizable 2nd–order
chaos.

5. One–variable 3rd–order chaos outperforms rational lognormal.

6. Further work will compare factorizable 2nd–order and
two–variable 3rd–order chaos models for option calibration.

7. Higher–order chaos models are likely to be unnecessary (and
possibly made illegal anyway...)




