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1. Introduction

We consider an employee who has been awarded a compensation
package consisting of A identical call options on the company’s
stock with the following features:

• strike price K, maturity date T and vesting period Tv < T ;

• options are non-transferible;

• hedge using the underlying stock Yt is not allowed;

• hedge using a correlated asset St is allowed.
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2. Accounting reccomendations

• The Financial Accounting Standard Board instructed in 1972
(Opinion 25) that stock options should be accounted accord-
ing to their intrinsic value, that is (Yt−K)+ on the date their
are granted.

• In 1995, the FASB 123 recommended using a fair value ap-
proach instead: estimate the expected life of the option and
insert this into either Black–Scholes or a Cox–Rubenstein-
Ross tree. It still accepted Opinion 25 as a valid method.

• In 2004, it revised FASB 123, eliminating the possibility of
using intrinsic value methods.
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3. Previous literature

• Detemple and Sudaresan (1999) and Hall and Murphy (2002)
propose to use utility methods to deal with the market in-
completeness created by trading and hedging restrictions, but
without using a correlated asset.

• Musiela and Zariphopoulou (2004) developed a multiperiod
model to price European style contracts based on a non-
traded underlying asset in the presence of a correlated traded
asset using indifference pricing techniques.

• Henderson (2005) applied indifference pricing to value a sin-
gle American call options on a non-traded asset.
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• Rogers and Scheinkman (2003) and Jain and Subramanian

(2004) investigate the effect of partial exercise, but with no

correlated asset.

• Hull and White (2004) use a binomial model with no corre-

lated asset, no partial exercise and no risk preferences. The

incompleteness is accounted for by a parameter M - the ef-

fective stock-to-strike exercise threshold.



4. The one-period model

Consider a one-period market model

(ST , YT ) =


(uS0, hY0) with probability p1,
(uS0, `Y0) with probability p2,
(dS0, hY0) with probability p3,
(dS0, `Y0) with probability p4,

(1)

where 0 < d < 1 < u and 0 < ` < 1 < h, for positive initial values

S0, Y0 and historical probabilities p1, p2, p3, p4
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Let CT = C(YT ) be a T–claim and consider a utility function

U(x) = −e−γx. An investor who buys this claim for a price π will

then try to solve the optimal portfolio problem

uC(x− π) = sup
H

E[U(XT + CT )]. (2)

The indifference price for this claim is defined to be a solution

to the equation

u0(x) = uC(x− π),

where u0 is defined by (2) for the degenerate case C ≡ 0.
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An explicit calculation then leads to

π = g(Ch, C`) (3)

where, for fixed parameters (u, d, p1, p2, p3, p4) the function g :

R× R → R is given by

g(x1, x2) =
q

γ
log

(
p1 + p2

p1e−γx1 + p2e−γx2

)
+

1− q

γ
log

(
p3 + p4

p3e−γx1 + p4e−γx2

)
,

with

q =
1− d

u− d
.
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Now suppose C is an American claim. It is clear that early

exercise will occur whenever

C(Y0) ≥ π,

where πB is the (European) indifference price. For example, an

American call option with strike price K will be exercised if Y0

exceeds the solution to

(Y ∗ −K)+ = g((hY0 −K)+, (`Y0 −K)+)
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5. Multiple claims

As a result of risk aversion, the early exercise threshold for an

American call option obtained above is different (and higher)

than the exercise threshold for a contract consisting of A units

of identical Americal calls. Explicitly, it is the solution to

A(Y ∗ −K)+ = g(A(hY0 −K)+, A(`Y0 −K)+) (4)
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If partial exercise is allowed, then the optimal number of options

to be exercised is the solution a∗ to

max
a

[
a(Y0 −K)+ + π(A−a)B

]
. (5)

The value of A units of the option is therefore

C
(A)
0 = a0(Y0 −K)+ + π(A−a0)
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6. Two-period model: inter-temporal exercise

Let us label the nodes in of a tow-period binomial tree by 0 at

time t0 = 0, (h, `) at time t1 and (hh, h`, ``) at time t2 = T .

The number of option that the holder of A calls at the node h

should immediately exercise is given by

ah = arg max
0≤a≤A

[
a(hY0 −K)+ + π

(A−a)
h

]
, (6)

where π
(A−a)
h denotes the indifference of an European claim to

starting at the node h and maturing at time T .
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The pay-offs for such claim are with

C
(A−a)
hh = (A− a)(hhY0 −K)+

with probability (p1 + p3) and

C
(A−a)
h` = (A− a)(h`Y0 −K)+

with probability (p2 + p4), where we have used hh and h` to

denoted, respectively, the nodes where the non-traded asset has

values hhY0 and h`Y0. Its indifference price is explicitly given by

π
(A−a)
h = g(C(A−a)

hh , C
(A−a)
h` ) (7)
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In the same vein, the optimal number of options to be exercised
at the node `, where the non-trade asset has value `Y0, is

a` = arg max
0≤a≤A

[
a(`Y0 −K)+ + π

(A−a)
`

]
, (8)

where

π
(A−a)
` = g(C(A−a)

h` , C
(A−a)
`` ) (9)

Therefore, at the intermediate time t1, the total value of A

options at the node h is

C
(A)
h :=

[
ah(hY0 −K)+ + π

(A−ah)
h1

]
, (10)

while the total value of A options at the node ` is

C
(A)
` :=

1

A

[
a`(`Y0 −K)+ + π

(A−a`)
`1

]
. (11)
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Finally, starting with A units of the option, the number of options

that should be exercised at the initial time t0 is

a0 = arg max
0≤a≤A

[
a(Y0 −K)+ + π

(A−a)
0

]
, (12)

where

π
(A−a)
h = g(C(A−a)

h , C
(A−a)
` ) (13)

Therefore the value at time zero of A units of an American call

option on the non-traded asset is

C
(A)
0 :=

[
a0(Y0 −K)+ + π

(A−a0)
0

]
. (14)
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6. The multi-period model: inter-temporal exercise

We first have to choose discrete time parameters (u, d, h, `, p1, p2, p3, p4)

that match the distributional properties of the continuos time

diffusion

dS = (µ− r)Sdt + σSdW (15)

dY = (a− r − δ)Y dt + bY (ρdW +
√

1− ρ2)dZ, (16)
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These are given by the system

u = eσ
√

∆t, h = eb
√

∆t

d = e−σ
√

∆t, ` = e−b
√

∆t

p1 + p2 =
e(µ−r)∆t − d

u− d

p1 + p3 =
e(a−r−δ)∆t − `

h− `
ρbσ∆t = (u− d)(h− `)[p1p4 − p2p3]

1 = p1 + p2 + p3 + p4



The valuation algorithm is then:

• Begin at the final period.

• At each node of the tree, compute the (European) indiffer-

ence prices for different values of (A− a).

• Determining the maximum of (5).

• Use this as the value for the entire position at that node.

• Iterate backwards.
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7.Numerical Results

We first determine the optimal exercise surface for the holder of

A = 10 options with strike price K = 1 and

µ = 0.12, σ = 0.2, S0 = 1 (17)

a = 0.15 b = 0.3, Y0 = 1 (18)

r = 0.06 T = 5, N = 500 (19)

For our base case, δ = 0.075, γ = 0.125 and ρ = −0.5. We then

modify it by having δ = 0, γ = 10 and ρ = 0.95.

18



19



Next we consider the impact that time-to-maturity, risk aversion,

correlation and volatility have on the option price. When not

indicated in the graphs, the parameter values are

µ = 0.09, σ = 0.4, S0 = 1 (20)

a = 0.08 b = 0.45, Y0 = 1 (21)

r = 0.06 δ = 0, N = 100 (22)
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