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1. Introduction

We consider an employee who has been awarded a compensation
package consisting of A identical call options on the company’s
stock with the following features:

e sStrike price K, maturity date T' and vesting period T, < T’;

e Ooptions are non-transferible;

e hedge using the underlying stock Y; is not allowed,

e hedge using a correlated asset S; is allowed.



2. Accounting reccomendations

e T he Financial Accounting Standard Board instructed in 1972
(Opinion 25) that stock options should be accounted accord-
ing to their intrinsic value, that is (Y;— K)7T on the date their
are granted.

e In 1995, the FASB 123 recommended using a fair value ap-
proach instead: estimate the expected life of the option and
insert this into either Black—Scholes or a Cox—Rubenstein-
Ross tree. It still accepted Opinion 25 as a valid method.

e In 2004, it revised FASB 123, eliminating the possibility of
using intrinsic value methods.



3. Previous literature

e Detemple and Sudaresan (1999) and Hall and Murphy (2002)
propose to use utility methods to deal with the market in-
completeness created by trading and hedging restrictions, but
without using a correlated asset.

e Musiela and Zariphopoulou (2004) developed a multiperiod
model to price BEuropean style contracts based on a non-
traded underlying asset in the presence of a correlated traded
asset using indifference pricing techniques.

e Henderson (2005) applied indifference pricing to value a sin-
gle American call options on a non-traded asset.



e Rogers and Scheinkman (2003) and Jain and Subramanian
(2004) investigate the effect of partial exercise, but with no
correlated asset.

e Hull and White (2004) use a binomial model with no corre-
lated asset, no partial exercise and no risk preferences. The
incompleteness is accounted for by a parameter M - the ef-
fective stock-to-strike exercise threshold.



4. The one-period model

Consider a one-period market model

( (uSp,hYp)  with probability pq,

) (uSp,4Yy)  with probability po,

B W) = (dSp, hYp)  with probability ps, (1)
| (dSp,Yy)  with probability pa,

where 0 <d< 1l <wuand O0<¥£<1<h, for positive initial values
So, Yo and historical probabilities pq, po, p3, Pa




Let Cp = C(Yp) be a T—claim and consider a utility function

U(x) = —e 7*. An investor who buys this claim for a price = will
then try to solve the optimal portfolio problem
w(z —m) = sup B[U (X7 + Cr)l. (2)

The indifference price for this claim is defined to be a solution
to the equation

w0 (z) = v (z — 7),

where 49 is defined by (2) for the degenerate case C = 0.



An explicit calculation then leads to

™ = g(Cp, Cp) (3)

where, for fixed parameters (u,d,p1,po2,p3,p4) the function g :
R xR — R is given by

q p1 + po 1—gq p3 + pa
g(x1,z2) = —l0g — — -+ log — — ,
7Y p1e 1Tl 4 poe— VT2 9 p3e~ 7%l 4 pge— VT2

with
_1—d
q_u—d.




Now suppose C is an American claim. It is clear that early
exercise will occur whenever

C(Yp) > m,

where 78 is the (European) indifference price. For example, an
American call option with strike price K will be exercised if Yj
exceeds the solution to

(Y*— K)T = g((hYp — K)T, (¢Yg — K)T)



5. Multiple claims

As a result of risk aversion, the early exercise threshold for an
American call option obtained above is different (and higher)
than the exercise threshold for a contract consisting of A units
of identical Americal calls. Explicitly, it is the solution to

A(Y* — K)T = g(A(hYy — K)T, A(fYy — K)T) (4)



exercise threshold

2.8

2.7

5 6
number of options



If partial exercise is allowed, then the optimal number of options
to be exercised is the solution a* to

max [a(YO —K)T + r(A—a)B] (5)

The value of A units of the option is therefore

CC()A) = ap(Yp — K)T + ~(A—ap)
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6. Two-period model: inter-temporal exercise

Let us label the nodes in of a tow-period binomial tree by O at
time tog = 0, (h,£) at time t1 and (hh,ht,£0) at time to = T.

The number of option that the holder of A calls at the node A
should immediately exercise is given by

— arg max hYy — K)T A=)
ap S RS a(hYq )T+ 7y : (6)
where wf(LA_a’) denotes the indifference of an European claim to

starting at the node A and maturing at time T
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T he pay-offs for such claim are with
A—
=) — (A — a)(hhYy — K)T
with probability (p; + p3) and
A—
cU=0) = (A — a)(htyy — K)T

with probability (p> + ps), where we have used hh and h{ to
denoted, respectively, the nodes where the non-traded asset has
values hhYp and hfYp. Its indifference price is explicitly given by

r47Y = g(opim, cy ) (7)
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In the same vein, the optimal number of options to be exercised
at the node ¢, where the non-trade asset has value £Yy, is

ay = arg Orga<xA a(lYy — K)T + lSA—‘O : (8)
where
m T = g(Crp Y, G ) (9)

Therefore, at the intermediate time t1, the total value of A
options at the node h is

i 1= [an(h¥o — KO 4 iy~ (10)
while the total value of A options at the node ¢ is

o = L [ag(evp — KT 4 xS . (11)
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Finally, starting with A units of the option, the number of options
that should be exercised at the initial time tg is

ap = arg max |a(Yo - k)t 4 79| (12)
where

Therefore the value at time zero of A units of an American call
option on the non-traded asset is

Cc\M = |ag(Yy — K)T + =90 (14)
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6. T he multi-period model: inter-temporal exercise

We first have to choose discrete time parameters (u,d, h, ¢, p1, p>, p3,P4)
that match the distributional properties of the continuos time

diffusion

dS = (u—r)Sdt+ ocSdW (15)
dY = (a—r—08)Ydt+bY(pdW + /1 —p)dZ,  (16)
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These are given by the system
OV AL h — VAL

u =
J — oVt ) — o—bVAE
(u—r)At _ 4
(&
p1+p2 =
u—d
(a—r—0)At _ y
e
p1+p3 = T
pbo At = (u—d)(h —£)[p1ps — pop3]

1l = p1+po+p3+ps



T he valuation algorithm is then:

e Begin at the final period.

e At each node of the tree, compute the (European) indiffer-
ence prices for different values of (A — a).

e Determining the maximum of (5).

e Use this as the value for the entire position at that node.

e Iterate backwards.
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7.Numerical Results

We first determine the optimal exercise surface for the holder of
A = 10 options with strike price K =1 and

u = 012, =02, Sp=1 (17)
a = 015 b=0.3, Yy=1 (18)
r = 0.06 T =5, N = 500 (19)

For our base case, § = 0.075, v = 0.125 and p = —0.5. We then
modify it by having 6 =0, v = 10 and p = 0.95.
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Next we consider the impact that time-to-maturity, risk aversion,
correlation and volatility have on the option price. When not
indicated in the graphs, the parameter values are

4 = 0.09, c0=04, Sy=1 (20)
a = 008 b=0.45 Yy=1 (21)
r = 0.06 §=0, N = 100 (22)
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