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Abstract

Utility based methods provide a very general theoretically consistent approach to pricing

and hedging of securities in incomplete financial markets. Solving problems in the utility

based framework typically involves dynamic programming, which in practise can be difficult

to implement. This article presents a Monte Carlo approach to optimal portfolio problems

for which the dynamic programming is based on the exponential utility function U(x) =

− exp(−x). The algorithm, inspired by the Longstaff-Schwartz approach to pricing American

options by Monte Carlo simulation, involves learning the optimal portfolio selection strategy

on simulated Monte Carlo data. It shares with the LS framework intuitivity, simplicity and

flexibility.
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1 Introduction

As realized in the pioneering work of Black, Scholes, Merton and others, financial assets in

complete markets can be priced uniquely by construction of replicating portfolios and application

of the no arbitrage principle. This conceptual framework forms the basis of much of the currently

used methodology for financial engineering. In recent years, however, finance practitioners have

been increasingly led by competitive pressures to the use of more general incomplete market

models, such as those driven by noise with stochastic volatility, jumps or general Lévy processes.

In incomplete markets, matters are much more complicated, and the pricing and hedging of

financial assets depends on the risk preferences of the investor.

Utility based pricing and hedging are extensions growing naturally out of portfolio opti-

mization, and much work is now in progress to place these methods in the broadest context

and to explore their various ramifications. This framework leads to new concepts, notably the

Davis price [8] and the indifference price of the contingent claim [18]. This general theory is

naturally applicable in areas where the complete market theory appears inappropriate, such as

real options [16], insurance [27] and the general valuation of non-traded assets [15, 28]. In the

insurance context, the indifference price can be thought of as the reservation price of the claim,

that is the amount the insurer should set aside to deal with its future liability.

The basic problem is that of a rational agent who seeks to find their optimal hedging portfolio

when they have sold (or bought) a contingent claim B which matures at time T . In the language

of utility theory, the agent tries to solve the problem

u(x) = sup
H∈A

E
[
U

(
Xx,H

T −B
)]

, (1)

for a concave, strictly increasing, differentiable utility function U : R → R ∪ {−∞}. Here Xx,H
T

denotes the agent’s discounted wealth at time T achieved by adopting a portfolio strategy H

starting with initial wealth x. In the absence of the claim B, we see that (1) is reduced to

Merton’s optimal investment problem, for which key results were obtained in [19, 20, 21]. In

general, B is the FT –measurable random variable corresponding to the discounted liability to
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be faced at time T .

If St = (S1
t , . . . , Sd

t ) is the Rd–valued process which describes the discounted prices of traded

assets, and Ht = (H1
t , . . . ,Hd

t ) is an Rd-valued process representing the agent’s asset allocations,

then

Xx,H
T = x + (H · S)T

0 .

The change in wealth over a period [s, t] achieved by the self financing portfolio is the stochastic

integral (H ·S)t
s :=

∑d
i=1

∫ t
s H i

udSi
u defined for example in [25], where the integrators St are taken

to be càdlàg semimartingales on a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ). In financial

terms this framework offers the flexibility of including discrete time and jump processes, rather

than just continuous diffusions. The integrands H i
t are assumed to be predictable S–integrable

processes, which has the financial interpretation of investment decisions based on information

available immediately before the investment date. They include as special cases portfolios which

are piecewise constant but jump at discrete times, which correspond to the realistic situations

when continuous reallocation of funds is impossible to implement. The domain of optimization

is some convex set A of admissible self–financing portfolios, which must be restrictive enough

to rule out trading strategies for which the agent’s wealth assumes arbitrarily negative values

(such as “doubling strategies”) while still allowing for an optimal strategy to exist. For instance

[14], one might take it to be the set for which the wealth process Xx,H
t is uniformly bounded

from below.

A general approach to solve (1) is via convex duality, by means of which the utility max-

imization problem over the appropriate class of admissible portfolios (the “primal problem”)

is related to a minimization problem over a suitable domain in the set of measures on Ω (the

“dual problem”). Let us denote the set of equivalent local martingale measures for the price

process S by Me(S) and assume that Me(S) 6= ∅ (which, for markets where the price process S

is locally bounded, is equivalent to “No Free Lunch with Vanishing Risk”, a slightly restrictive

notion of “No Arbitrage” [10, sections 2 and 3]). For bounded claims and under economically

acceptable technical conditions on the class of utility functions (such as “reasonable asymptotic
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elasticity”) and admissible portfolios, one has that both the primal and dual problems have

unique optimizers X̂(x) and Q̂(y) satisfying the fundamental equation

U ′(X̂(x)−B) = y
dQ̂(y)
dP

, (2)

where x and y are related by u′(x) = y [7, 9, 24].

Practical implementation of incomplete market models based on these new theoretical de-

velopments requires the development of efficient numerical methods. Three distinct approaches

can be considered and ultimately all three are needed for a complete understanding of imple-

mentation issues. One approach, adopted for example in [13] is the numerical solution of general

Hamilton–Jacobi–Bellman equations, which are the partial differential equations derived from

stochastic control theory. A second approach could be broadly classified as “state space dis-

cretization”, by which we mean Markov chain or lattice based methods [23]. A third broad

approach can be called Monte Carlo or random simulation methods. It is this third approach

we attempt to realize in the present paper.

To our knowledge, Monte Carlo methods, although widely used for pricing derivatives [4, 12],

have not been extensively used for optimal portfolio theory. Some works related to this in the

context of complete markets are [11] and [6]. Our proposed application of Monte Carlo is

intrinsically more difficult than for example its use in the pricing of American style options,

a problem which has only quite recently been efficiently implemented with the least squares

algorithm of [22]. Despite these difficulties, which we will see quite clearly in this paper, Monte

Carlo methods have a great asset in being very simple and intuitive. By implementing such

methods, we can gain key intuition and understanding which may be difficult to learn from the

abstract theory.

The remaining of the paper is organized as follows. Section 2 describes optimal hedging

strategies in discrete time, in particular the concepts of certainty equivalent value, indifference

price and the Davis price. The main innovation of the paper is the exponential utility algorithm

given in section 3. It is a Monte Carlo method for learning the optimal trading strategy in a
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Markovian market for the class of discrete time hedging problems introduced in section 2. This

algorithm is inspired by, but is quite different from, the least-squares algorithm of Longstaff

and Schwartz for pricing American options. Interestingly, our method works well only for the

exponential utility: our suggested extension to general utilities is much less efficient. Towards

the end of this section we discuss the systematic sources of error arising from the algorithm.

In section 4 we present two preliminary numerical implementations of our algorithm. The

first one is for the exactly solvable one–dimensional geometric Brownian motion model, where

we compare the results obtained from our Monte Carlo simulations with those arising from the

explicit theoretical formulas for both the Merton and hedging portfolios. In order to analyze

the performance of the algorithm in detail, we compute several different risk measures of the

profit/loss empirical distribution realized at terminal time for both the learned and theoretical

trading strategies. Our second example is a two factor stochastic volatility model, inequivalent

to but as rich as the Heston model [17], for which tractable expressions for indifference prices and

hedging portolios for pure volatility claims were obtained using an alternative method in [13].

We complement the results of [13] by computing the indifference prices and hedging portfolios

for general claims written on the traded asset and the volatility factor. In our concluding section

5, we discuss the various advantages and drawbacks we observe in the method.

2 Discrete time hedging

We consider discrete time hedgings, that is, in addition to the criteria of admissibility mentioned

in the introduction, we restrict the class A of admissible portfolios to processes of the form

Ht =
K∑

k=1

Hk 1(tk−1,tk](t), (3)

where each Hk is an Rd–valued Fk−1 := Ftk−1
random variable (we write Hk ∈ Fk−1). That is,

based on the information available at time tk−1 the investor chooses the portfolio allocation Hk

to be held until the next reallocation time tk. We take the discrete time partition of the interval
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[0, T ] to be of the form

t0 = 0 < t1 =
T

K
< . . . < tk =

kT

K
. . . < tK = T

and use the notation Sj := Stj for discrete time stochastic processes. The discounted wealth for

self–financing portfolios is

Xj = x + (H · S)j
0, (4)

with the notation (H · S)j
k :=

∑d
i=1

∑j
l=k+1 H i

l ∆Si
l and ∆Sk := Sk − Sk−1.

To better understand the optimal selection problem it is useful to formulate a dynamical

version of it. Let us write HB
t for the optimal solution to the static primal problem (1). For

any intermediate time tk ∈ [0, T ] and x ∈ dom(U), we can write

u(x) = sup
H∈A(0,tk]

E

[
ess sup

H∈A(tk,T ]

Ek[U(x + (H · S)k
0 + (H · S)K

k −B)]

]
, (5)

where we use Ek[·] to denote the conditional expectation with respect to Fk. This leads us to

the study of the conditional problem

uk(w) = ess sup
H∈A(tk,T ]

Ek[U(w + (H · S)K
k −B)], (6)

where w ∈ Fk represents the stochastic wealth accumulated up to time tk. If we trade according

to HB
t up to time t, that is, if w = x + (HB · S)k

0, then we must have

uk(w) = Ek[U(w + (HB · S)K
k −B)], (7)

for the restriction HB
u , tk ≤ u ≤ T . In other words, the optimal portfolio HB

t is also conditionally

optimal. This is a special instance of the dynamic programming principle, which for this discrete

time stochastic control problem has the form of K subproblems

uk−1(w) = ess sup
Hk∈Fk−1

Ek−1[uk(w + (H · S)k
k−1], k = K, K − 1, . . . , 1, (8)
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subject to the terminal condition uK(x) = U(x−B).

There is a useful way to view the value function uk(w). Since the utility function is invertible

on its domain, for each (w, tk) we can define the certainty equivalent value of the claim B at

time t as the random variable cB
k (w) satisfying

U(w − cB
k (w)) = Ek[U(w + (HB · S)K

k −B)]. (9)

That is, the certain utility achieved by investing the amount w− cB
k (w) in the risk free account

equals the expected utility of the terminal wealth w + (HB · S)K
k − B of the optimal hedging

portfolio. From (8), we see that the certainty equivalent process cB
k (w) satisfies

U(w − cB
k−1(w)) = ess sup

Hk∈Fk−1

Ek−1[U(w + Hk∆Sk − cB
k (w + Hk∆Sk)] (10)

with cB
K(w) taken equal to the terminal discounted claim B. Therefore, cB

k (w) represents a

wealth dependent effective value of the claim B at time tk.

Following [18] (according to [2]), a clear interpretation of the certainty equivalent can be

given by considering an investor who, holding wealth w at time tk, must decide the minimum

amount π to charge when selling a claim B. If he sells the claim for π and hedges optimally

against the claim he will achieve a maximal expected utility

ess sup
H∈A(tk,T ]

Ek[U(w + (H · S)K
k −B)] = U(w + π − cB

k (w + π))

If, however, the investor does not sell the claim and invests optimally according to the solution

for Merton’s problem, he achieves

ess sup
H∈A(tk,T ]

Ek[U(w + (H · S)K
k )] = U(w − c0

k(w)).

The seller’s indifference price of the claim B at time tk for wealth w is the value π = πB
t (w)
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which makes these equal, that is, it is the solution (if it exists) for

πB
k (w) = cB

k (w + πB
k (w))− c0

k(w). (11)

To obtain the correct notion of a “buyer’s price” we need to consider the reverse claim −B

in (1): the buyer’s indifference price for the claim B at time tk and wealth w is given by

π̃B
k (w) = −π−B

k (w). (12)

If, for each ε, we let πεB
k (w) denote the indifference price of the claim εB, then the Davis

price [8] of the claim B is defined to be

πDavis
k (w) =

dπεB
k (w)
dε

∣∣∣∣
ε=0

. (13)

By differentiating the identity

U(w − cεB
k (w)) = Ek[U(w + (HεB · S)K

k − εB)]

at ε = 0 it is straightforward to see that the Davis price of B is given by the expectation pricing

πDavis
k (w) = E

bQ(y)
k [B]. (14)

where Q̂(y) stands for the optimal solution to the dual to Merton’s problem. We remark that

the indifference price, being intrinsically nonlinear, does not in general satisfy useful criteria

such as put-call parity. The Davis price, on the other hand, does.

To conclude this section, we observe what happens if there exists a portfolio HB of the form

(3) which replicates the claim B in the sense that B = B0 +(HB ·S)T
0 for some constant B0 (this

is true for any claim in complete markets). Then we can write (1) in the form of the Merton
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problem

sup
H∈A

E
[
U

(
x−B0 + ((H −HB) · S)T

0

)]
.

If Ĥ(x − B0) is the optimal portfolio for the Merton problem starting with wealth x − B0, it

follows that the optimal portfolio for the hedging problem for the claim B starting with wealth

x will be given by

HB(x) = Ĥ(x−B0) +HB, (15)

and the indifference price for the claim B can be expressed as

πB
k = B0 + (HB · S)k

0. (16)

3 The exponential utility allocation algorithm

In this section we introduce a Monte Carlo method for learning the optimal trading strategy (8)

for the discrete time problems of the previous section. We want an algorithm which will generate

an approximate trading rule, based on a data set {(Si
k, Y

i
k )}i=1,...,N ;k=1,...,K where (Si

k, Y
i
k ) ∈ Rn

denotes the state of the ith sample path at time tk = kT/K. We fix the initial values to be

(Si
0, Y

i
0 ) = (S0, Y0). In what follows, we will be largely concerned with an exponential utility

function and with markets and claims satisfying Markovian conditions. More explicitly, we

assume the following:

Assumption 1 The market is Markovian and its state variables (S1, . . . , Sd, Y 1, . . . , Y n−d) lie

in a finite dimensional state space S ⊂ Rn.

Assumption 2 The contingent claim is taken to be of the form BT = B(ST , YT ) for a bounded

Borel function B : S → R.

Assumption 3 The utility function has the form U(x) = − e−γx

γ , γ > 0.

In these assumptions, we interpret S as discounted asset prices as before and the additional

variables Y as values of nontraded quantities such as stochastic volatilities which may or may
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not be observed directly.

As for the choice of an exponential utility, consider the discrete time problem (8) for a general

utility function U in this Markovian setting. The optimal portfolio (HB)i
k+1 ∈ Rd should be

selected as a function of (Xi
k, S

i
k, Y

i
k ) where Xi

k is the wealth held at the point (i, k). We can see

a basic difficulty with a Monte Carlo approach: to “learn” the function for HB
k+1 from the data

{(S, Y )} will require being able to fill in the optimal wealth from time t0 to tk. One way to do

this would be to perform an additional simulation of the pair (Xi
k, X

i
k+1) at each point (i, k):

this would however result in a drastic drop in efficiency. In contrast, for the special case of an

exponential utility, a look at (6) shows that uk(w) factorizes as

uk(w) = −e−γw

γ
ess inf

H∈A(tk,T ]

Ek

[
e−γ(H·S)K

k +γB
]

=: −e−γw

γ
vk, (17)

so that the reduced value function vk, as well as the certainty equivalent cB
k and the optimal

hedging portfolio HB
k are all wealth independent processes. In the Markovian setting this means

that they have the form

vk = vk(Sk, Yk) (18)

cB
k = ck(Sk, Yk) (19)

HB
k+1 = hk+1(Sk, Yk) (20)

for (deterministic) Borel scalar functions {vk, ck}K−1
k=0 and Rd–valued functions {hk+1}K−1

k=0 on

the state space S. For this reason our algorithm is at this point restricted to exponential utility

functions, and we take γ = 1 for simplicity.
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3.1 The algorithm

First observe that, if HB
K is the optimizer of (8) for k = K then for any other random variable

HK ∈ FK−1 we have

E[U(x + (HB
K ·∆SK)−B)] = E[EK−1[U(x + (HB

K ·∆SK)−B)]]

≥ E[EK−1[U(x + (HK ·∆SK)−B)]

= E[U(x + (HK ·∆SK)−B)]],

so that HB
K is also the optimizer for

sup
HK∈FK−1

E[U(x + (HK ·∆SK)−B], (21)

and similarly for the other time steps. With this in mind, we proceed to describe our algorithm

as follows.

1. Step k = K: The final optimal allocation HB
K is the Rd–valued FK−1–random variable

which solves

min
HK∈FK−1

E[exp(−HK ·∆SK + B)]. (22)

Since the solution is known to be given by HB
K = hK(SK−1, YK−1) for some deterministic

function hK ∈ B(S) (the set of Borel functions on S), we write this as

min
h∈B(S)

E[exp(−hK(SK−1, YK−1) ·∆SK + B)]. (23)

One cannot hope to determine hK on only a finite set of data: we therefore pick an R–

dimensional subspace R(S) ⊂ B(S) of functions on S and “learn” a suboptimal solution

arg min
hK∈R(S)

E[exp(−hK(SK−1, YK−1) ·∆SK + B)].

By the central limit theorem, the expectation above can be approximated by the finite

11



sample estimate

ΨK(hK) =
1
N

N∑
i=1

exp
(
−hK(Si

K−1, Y
i
K−1) ·∆Si

K + B(Si
K , Y i

K)
)
. (24)

This leads to our estimator hRK based on {Si
k, Y

i
k} and the choice of subspace R:

hRK := arg min
hK∈R(S)

ΨK(hK). (25)

2. Inductive step for k = K − 1, . . . , 2: The estimator hRk of the optimal rule hk, for the

intermediate time steps 2 ≤ k < K − 1 is determined inductively given the estimators

hRk+1, . . . , h
R
K . It is defined to be

hRk := arg min
hk∈R(S)

Ψk(hk;hRk+1, . . . , h
R
K) (26)

where

Ψk(hk) =
1
N

N∑
i=1

exp
(
−hk(Si

k, Y
i
k ) ·∆Si

k+1 + ci
k(h

R
k+1, . . . , h

R
K , Si

K , Y i
K)

)
, (27)

with

ci
k(h

R
k+1, . . . , h

R
K) = B(Si

K , Y i
K)−

K∑
j=k+1

hRj (Si
j−1, Y

i
j−1) ·∆Si

j . (28)

3. Final step k = 1: This step is degenerate since the initial values (S0, Y0) are constant over

the sample. Therefore we determine the optimal constant vector h1 ∈ Rd by solving

h1 := arg min
h∈Rd

Ψ1(h;hR2 , . . . , hRK). (29)

To summarize, the algorithm above learns a collection of functions of the form

(h1, h
R
2 , . . . , hRK) ∈ Rd ×R(S)K−1
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from the Monte Carlo simulation. This collection defines a suboptimal allocation strategy for

the exponential hedging problem. The optimal value

Ψ1(h1;hR2 , . . . , hRK) =
1
N

N∑
i=1

exp

−h1(S0, Y0)−
K∑

j=2

hRj (Si
j−1, Y

i
j−1) ·∆Si

j + B(Si
K , Y i

K)

 ,

(30)

is an estimate of the quantity exp(cB
0 ), where cB

0 is the certainty equivalent value of the claim B

at time t = 0. Finally, the indifference price of the claim is approximated by log(Ψ1/Ψ̃1) where

Ψ1, Ψ̃1 are given by (30) with the claims B and 0 respectively.

3.2 Systematic errors

It is important to identify two distinct systematic sources of error in the algorithm. The first,

which we call approximation one (following [5]), is in focusing on suboptimal solutions hRk which

lie in a specified subspace R(S) of the full space B(S). From a pragmatic perspective, we need

to select a set of R basis functions f1, . . . , fR for R(S) which does a good job of representing

the true optimal function over the values of state space covered by the Monte Carlo simulation.

Naively, one might expect to need to choose R exponentially related to the dimension of S;

experience seems to suggest that far fewer functions are needed for higher dimension problems.

For a discussion of this type of question in the context of the Longstaff-Schwartz (LS) method

for American options, see [22] and [5]. Observe that the requirements of our algorithm are much

more stringent than for the American option problem, since the strategy to be learned is not

simply “to exercise or not to exercise”, but must select a high dimensional vector at each point

(i, k) in the simulation. Having said this, we take the point of view that the careful selection of a

subspace R(S) might lead to good performance of the algorithm. Furthermore, our experiments

show that the sensitivity to changes in R(S) of quantities such as indifference prices are much

less than that of quantities such as hedge allocations.

The second source of error, approximation two, is the finite N approximation. We can in

principle estimate this error in terms of the basic model parameters. A detailed analysis for

the one period problem is offered in [1]. The heuristics of that argument is the following. For
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k ≤ K, denote by Ik(hk) the true expectation being approximated by the Monte Carlo sample

sum Ψk(hk), that is

Ik(hk) := E[exp(−hk(Sk−1, Yk−1) ·∆Sk + ck(Sk, Yk)]. (31)

By the central limit theorem, for a given confidence level 1 − α, α � 1, there exist constants

C1, C2 such that, with probability 1− α, we have

|Ψk(hk)− Ik(hk)| ≤
C1√
N

, ‖∇Ψk(hk)−∇Ik(hk)| ≤
C2√
N

,

for hk in a convex neighborhood of the true critical point ĥRk , defined by ∇Ik(ĥRk ) = 0. If we

suppose that the estimated critical point hRk , defined by ∇Ψk(hRk ) = 0, lies in this neighbor-

hood, and furthermore that the operator inequalities 0 < C3 ≤ ∇2Ik ≤ C4 hold on the same

neighborhood, then one immediately derives the inequalities

‖hRk − ĥRk ‖ ≤ C2

C3

√
N

(32)

|Ψk(hRk )− Ik(ĥRk )| ≤ C1√
N

+
C2

2C4

2C2
3N

, (33)

which show convergence of hRk to ĥRk as N →∞.

The above discussion addresses the errors made at the kth time step of the algorithm.

Further study is needed to understand how errors accumulate as k is iterated. The answer to

this question will give guidance on how to distribute computational effort over the different time

steps, and can be expected to parallel the same question as it arises for the LS algorithm.

To conclude this discussion, it is worthwhile to revisit the way in which our method of

dynamic programming (finding HB by induction over K steps backwards in time) leads to

computational efficiency compared to a more direct approach which seeks to compute the optimal

hedging strategy HB simultaneously at all times. Fixing as before an R–dimensional subspace

R(S) for the form of the hedging strategy at each time, direct optimization of a single convex

function of K×R variables costs O(NR2K2) flops. By dynamic programming this is reduced to
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K sequential optimizations of functions of R variables which will take O(NR2K) flops. Accuracy

is preserved by dynamic programming because the KR × KR Hessian matrix of the global

optimization is approximately block diagonal over the individual time steps.

4 Numerical implementation

4.1 Geometric Brownian motion

We start with a one dimensional complete market in order to test the algorithm against well

known exact solutions. Consider a market where the stock price process, discounted by the

constant interest rate r, satisfies

dSt

St
= (µ− r)dt + σdW, (34)

where µ and σ > 0 are constants and W is a one–dimensional P–Brownian motion. As is well

known, the unique equivalent martingale measure Q has density dQ/dP given by the stochastic

exponential of the constant market price of risk λ = (µ− r)/σ and the Merton portfolio for this

market is given by

Ĥt =
µ− r

γσ2

1
St

. (35)

We can now compare the hedging portfolio “learned” by our algorithm with the “true”

optimal hedging portfolio

HB
t = Ĥt +HB

t , (36)

where HB
t is the Black–Scholes delta hedging portfolio replicating B. Similarly, the indifference

prices calculated by the algorithm can be compared with the Black–Scholes price for the same

claim.

We fix the parameters of the model at S0 = 1, µ = 0.1, σ = 0.2 and r = 0.02 over the period of

one year T = 1. We apply the allocation algorithm with N = 100000 to two scenarios involving

portfolio selection at discrete time intervals of 1/50 (i.e. weekly): i) the Merton investment
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problem; and ii) the hedging problem for the writer of a single at–the–money European put. For

comparison to theory, we use the same Monte Carlo simulations, but rehedged weekly according

to the theoretical formula (36). As for the subspace R(S), we use the three dimensional space

spanned by the functions {1, s, s2}.

Our results are displayed in figure 1, which shows the profit/loss distributions at time T = 1

for the true Merton (TM), true put option (TP), learned Merton (LM) and learned put option

(LP) cases respectively. For comparison of their performances, Table 1 shows the mean and the

standard deviation of these distributions in each of the four cases, as well as the final expected

exponential utility with parameters γ = 1/4, 1 and 4, corresponding to an increasing order of

risk-aversion. As measures of the risk associated with each case, we also tabulate their value-

at-risk and conditional value-at-risk for 90% (VaR90 and CVar90) and 99% (VaR99 and CVar99)

confidence levels.

Case Mean St. Dev. γ = 1/4 γ = 1 γ = 4 VaR99 VaR90 CVaR99 CVaR90

TM 0.1577 0.3963 -0.9661 -0.9238 -1.8561 -0.7629 -0.3504 -0.8940 -0.5367
LM 0.1596 0.3999 -0.9657 -0.9233 -1.8564 -0.7632 -0.3559 -0.8868 -0.5418
TP 0.0882 0.3957 -0.9830 -0.9902 -2.4569 -0.8330 -0.4206 -0.9653 -0.6072
LP 0.0901 0.3995 -0.9826 -0.9898 -2.4246 -0.8284 -0.4438 -0.9294 -0.6237

Table 1: Mean, standard deviation, final expected utilities and risk measures for the profit/loss
distribution of the true Merton (TM), learned Merton (LM), true put option (TP), and learned
put option (LP) portfolios for 100000 Monte Carlo simulations of stock prices following a geo-
metric Brownian motion.

The learned estimate of the indifference price based on these 100000 simulations is 0.06944.

Using the true (Black–Scholes delta hedging) strategy on the same simulated paths leads to

the estimate 0.06935, while the theoretical Black-Scholes price is 0.06936. All the results for

this example were obtained on a desktop PC in approximately 1 hour. While the estimates

for the indifference prices are quite accurate in comparison to the Black–Scholes price, the

hedge ratios on individual sample paths based on 100000 simulations are less satisfactory, due

to large oscillations in time for the hedge coefficients calculated from the algorithm. In order

to obtain more stable hedge coefficients (and consequently smoother hedge portfolios) without

resorting to more elaborate smoothing procedures, we found necessary to increase the number
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of simulations considerably. Figures 2 and 3 show the values of the hedge ratio along a single

sample path calculated according to the true strategy and learned strategies for N = 100000

and N = 1000000. While up to N = 100000 the computational time increased linearly with the

number of simulations, the run with N = 1000000 took approximately 24 hours to complete on

the same desktop computer, likely due to larger memory requirements.

4.2 Stochastic Volatility

As an example of an incomplete market, consider a two factor stochastic volatility model of the

form

dSt = St[(µ− r)dt +
√

YtdW 1
t ],

dYt = a(t, Yt)dt + b(t, Yt)[ρdW 1
t +

√
1− ρ2dW 2

t ], (37)

where St is the price of a stock discounted by a constant interest rate r with instantaneous

volatility σt =
√

Yt. The processes St and Yt are driven by the independent one–dimensional

P–Brownian motions W 1
t and W 2

t and are assumed to have constant correlation −1 < ρ < 1. A

popular choice for stochastic volatility models is to take Yt to be a Cox–Ingersoll–Ross process

[17]. In [13] we argue that exponential utility pricing in which the reciprocal of Yt follows a

CIR process leads to very efficient numerical computations of prices and hedge portfolios for the

special case of claims which depend only on the terminal value of Yt, such as a spot volatility

put option. Of course our present method is not restricted to volatility claims, but in order to

compare the results obtained by Monte Carlo simulations with those obtained in [13] we now

adopt the specification of a reciprocal CIR process for Yt, that is, we put

Yt =
(1− ρ2)(µ− r)2

2Rt
(38)

and take Rt evolving according to

dRt = α(κ−Rt)dt + β
√

Rt

[
ρdW 1

t +
√

1− ρ2dW 2
t

]
, (39)
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for constants α, κ, β > 0 with 4ακ > β2.

An application of the Itô formula then gives the following functional form for the coefficients

in (37):

a(t, Yt) = αYt +
2(β2 − ακ)

(1− ρ2)(µ− r)2
Y 2

t , (40)

b(t, Yt) = −
(

2
1− ρ2

)1/2 β

(µ− r)
Y

3/2
t . (41)

We fix the CIR parameters to be α = 5, β = 0.04, κ = 0.001, the stock parameters to be S0 =

1, µ = 0.04, r = 0.02, choose a constant correlation ρ = 0.5 and set the risk aversion parameter

at γ = 1. With these values, the mean reversion time for Yt is approximately two months and

the long term distribution for the volatility σt =
√

Yt has expected value approximately 40%. To

account for the portfolio dependence in both St and Yt we took R(S) to be the six–dimensional

space spanned by the functions {1, y, y2, s, sy, s2}.

We now apply the allocation algorithm to a volatility put option with payoff (K −σ2
T )+ and

strike price K = 0.15. The indifference prices for such options can be quickly and accurately

calculated as in [13] using a Fast Fourier Transform technique. We refer to these as the “exact”

prices for purposes of comparison with the results obtained in the present paper. Due to the mean

reversion in Yt, options with maturity significantly longer than two months (our chosen mean

reversion time) exhibit prices which are virtually independent on the current level of volatility.

To obtain a more interesting behavior, we fix the time to maturity at T = 0.2 and compute the

indifference prices with Y0 varying in the interval [0, 0.5] with equally spaced increments of size

0.01. Our results for N = 1000 and N = 10000 are displayed in figure 4. We observe that a new

set of N Monte Carlo paths needs to be simulated for each initial value Y0. For N = 1000 the

prices and hedging strategies corresponding to 50 different values of Y0 were obtained in about 1

hour, whereas for N = 10000 computational time increased linearly to approximately 10 hours.

Next we consider a put option on the stock, that is, with payoff (K −ST )+. This is our first

result where no exact solution for the indifference price is available for comparison. Instead, we

try to reproduce the qualitative features observed in real markets for which stochastic volatility
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regimes have been proposed. The table below shows the indifference prices obtained with N =

10000 for selected strike prices and times to maturity. Its last column contains the theoretical

Black–Scholes price for the same model parameters and using the realized long term mean

E[σT ] = E[
√

YT ] = 0.4127 (for T = 0.8) as a proxy for a constant volatility σ.

K T = 0.05 T = 0.1 T = 0.2 T = 0.4 T = 0.8 BS price
0.8 0.0003 0.0025 0.0101 0.0265 0.0541 0.0506
0.9 0.0052 0.0140 0.0301 0.0548 0.0902 0.0882
1 0.0344 0.0487 0.0693 0.0981 0.1373 0.1375

1.1 0.1048 0.1141 0.1302 0.1567 0.1953 0.1972
1.2 0.1992 0.2012 0.2092 0.2288 0.2623 0.2659

Table 2: Indifference prices based on N = 10000 Monte Carlo simulations for a put option
(K − ST )+ with different values of strike price and time to maturity, for a reciprocal affine
stochastic volatility model.

Figure 5 shows the volatility surface obtained from the implied volatility for these indifference

prices. The prices in the last two columns above are depicted in figure 6, which shows that the

Black-Scholes prices for in-the-money put options are lower than the indifference prices, while the

reverse occurs for out-of-the-money put options. The entire set of prices and hedging strategies

for 5 different times to maturity and 17 different strike prices based on N = 10000 simulations

was produced by our desktop PC in approximately 3.5 hours.

5 Discussion

This paper seeks to bridge the gap between the theory of exponential hedging in incomplete

markets and the numerical implementation of that theory. Utility based hedging introduces

several key concepts, notably certainty equivalent values and indifference prices which have no

counterpart in complete markets. Therefore we have little experience or intuition on which to

base our understanding of optimal trading in these markets. The simple and flexible Monte Carlo

algorithm we introduce in this paper provides a test bed for realizing the theory of exponential

hedging in essentially any market model. For example, problems involving American style early-
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exercise options can in principle be easily included in our framework by following the Longstaff-

Schwartz Monte Carlo method [22]. Using our method for a variety of problems should help

one gain intuition and understanding of how exponential hedging works in practice and how it

compares with other hedging approaches.

Our preliminary study of the geometric Brownian model shows not unexpectedly that the

method performs better for pricing than hedging. Interestingly the indifference price, perhaps

the key theoretical concept, appears to be better approximated than the two certainty equivalent

values which define it. On the other hand, as we see from the sample path shown in Figure 2,

the actual hedging strategy learned by the algorithm deviates a lot from the theoretical strategy

along individual stock trajectories, and cannot be seen as reliable.

For the reciprocal affine stochastic volatility model, already at N = 10000 the algorithm

produced accurate prices when compared with the explicit solution for pure volatility claims

obtained in [13]. For the case of claims on the traded asset, for which no closed form solution is

available, our algorithm generated option prices reproducing qualitative characteristics present

in certain markets, such as implied volatility smiles or systematic biases when compared to the

Black–Scholes prices for the same level of volatility.

Predictably, the basic method we use shows some distinct shortcomings which prevent it

from being taken as a de jure guide to real trading. Approximation one, arising by restricting

possible hedge strategies to a low dimensional subspace, clearly will often lead to unsuitable

strategies. An improvement in this respect would be to use the known leading order terms for a

given problem, say the Black–Scholes delta hedging strategy, as an input in the algorithm, which

would then search for higher order “corrections’ within the subspace R. Another difficulty we

noticed arising in our method is that learned strategies fluctuate far too much in time. Some

simple smoothing procedure in time might lead to a marked improvement in hedging. Concerning

approximation two, the finite sample size error, a brief study of the size of the constants which

enter the (pessimistic) estimates (32) and (33) suggests that reliable learned strategies will

demand a very large value of N (in our simulations, N = 10000 gave reliable prices, but not

hedging strategies). The possibility of using variance reduction techniques (see e.g. [12]) should
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be considered an area for further study.

Putting aside the obvious drawbacks of the algorithm, we can see that our very simple and

direct method will shed light on most conceptual difficulties arising in exponential hedging in

incomplete markets. It implements the spirit of dynamic programming and prices claims quite

reliably, even if it cannot easily produce accurate estimates of hedging strategies. On these

merits alone, we think our algorithm deserves much further study and refinement.
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[7] J. Cvitanić, W. Schachermayer, and H. Wang. Utility maximization in incomplete markets

with random endowment. Finance Stoch., 5(2):259–272, 2001.

21



[8] M. H. A. Davis. Option pricing in incomplete markets. In Mathematics of derivative

securities (Cambridge, 1995), volume 15 of Publ. Newton Inst., pages 216–226. Cambridge

Univ. Press, Cambridge, 1997.

[9] F. Delbaen, P. Grandits, T. Rheinländer, D. Samperi, M. Schweizer, and C. Stricker. Ex-

ponential hedging and entropic penalties. Math. Finance, 12(2):99–123, 2002.

[10] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset

pricing. Math. Ann., 300(3):463–520, 1994.

[11] J. Detemple, R. Garcia, and M. Rindisbacher. A Monte Carlo method for optimal portfolios.

To appear in Journal of Finance, 2003.

[12] P. Glassermann. Monte Carlo Methods in Financial Engineering Springer–Verlag, 2003.

[13] M. R. Grasselli and T. R. Hurd. Indifference pricing and hedging in stochastic volatility

models. Submitted to Math. Finance, 2004.

[14] J. M. Harrison and S. R. Pliska. Martingales and stochastic integrals in the theory of

continuous trading. Stochastic Process. Appl., 11(3):215–260, 1981.

[15] V. Henderson. Valuation of Claims on Non-Traded Assets using Utility Maximization.

Mathematical Finance, 12:4, 351–373, 2002.

[16] V. Henderson. Valuing Real Options Without a Perfect Spanning Asset. Preprint, 2004.

[17] S. L. Heston. A closed–form solution for options with stochastic volatility with applications

to bond and currency options. Rev. Financial Studies 6, 2, 327–343, 1993.

[18] S. D. Hodges and A. Neuberger. Optimal replication of contingent claims under transaction

costs. Rev. Fut. Markets, 8:222–239, 1989.

[19] I. Karatzas, J. P. Lehoczky, S. E. Shreve, and G.-L. Xu. Martingale and duality methods

for utility maximization in an incomplete market. SIAM J. Control Optim., 29(3):702–730,

1991.

22



[20] I. Karatzas and S. E. Shreve. Methods of mathematical finance, volume 39 of Applications

of Mathematics. Springer-Verlag, New York, 1998.

[21] D. Kramkov and W. Schachermayer. The asymptotic elasticity of utility functions and

optimal investment in incomplete markets. Ann. Appl. Probab., 9(3):904–950, 1999.

[22] F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: a simple

least-square approach. Rev. Fin. Studies, 14:113–147, 2001.

[23] C. Munk. The valuation of contingent claims under portfolio constraints: reservation buying

and selling prices. Euro. Fin. Rev., 3:347-388, 1999.

[24] M. P. Owen. Utility based optimal hedging in incomplete markets. Ann. Appl. Probab.,

12(2):691–709, 2002.

[25] P. Protter. Stochastic integration and differential equations, volume 21 of Applications of

Mathematics. Springer-Verlag, Berlin, 1990. A new approach.

[26] W. Schachermayer. Optimal investment in incomplete markets when wealth may become

negative. Ann. Appl. Probab., 11(3):694–734, 2001.

[27] V. Young and T. Zariphopoulou. Pricing dynamic insurance risks using the principle of

equivalent utility. Scand. Actuarial J., 4:246–279, 2002.

[28] T. Zariphopoulou. A solution approach to valuation with unhedgeable risks. Finance Stoch.

5, 1, 61–82, 2001.

23



−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 fu
nc

tio
n

Profit/Loss

Merton using true strategy

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 fu
nc

tio
n

Profit/Loss

Written put using true strategy

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 fu
nc

tio
n

Profit/Loss

Merton using learned strategy

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 fu
nc

tio
n

Profit/Loss

Written put using learned strategy

Figure 1: Profit/loss distributions at time T = 1 year for Merton’s portfolio and the optimal
hedge portfolio for the writer of a put option using both the theoretical and learned trading
strategies based 100000 simulations of a stock following geometric Brownian motion.
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Figure 2: The hedge amounts (number of shares held) for the writer of one put option on a
simulated sample path (dotted line) of duration one year of a stock following geometric Brownian
motion. The solid line shows the strategy learned with N=100000; the broken line shows the
theoretical Black-Scholes-Merton strategy.
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Figure 3: The hedge amounts (number of shares held) for the writer of one put option on a
simulated sample path (dotted line) of duration one year of a stock following geometric Brownian
motion. The solid line shows the strategy learned with N=1000000; the broken line shows the
theoretical Black-Scholes-Merton strategy.
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Figure 4: Indifference prices for volatility put options (K−σ2
T )+ with strike price K = 0.15 and

maturity T = 0.2 for different initial values Y0, calculated using 1000 and 10000 Monte Carlo
simulations of a reciprocal CIR process for Yt. The blue line correspond to the same prices
calculated from the solution of the HJB equation associated with this model.
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Figure 5: Implied volatility surface for put options (K − ST )+ obtained from the indifference
prices based on 10000 Monte Carlo simulations of a reciprocal CIR stochastic volatility model.
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Figure 6: Indifference price for the writer of put options (K − ST )+ with T = 0.8 based on
10000 Monte Carlo simulations of a reciprocal CIR stochastic volatility model compared with
the Black–Scholes price calculated using the realized mean E[σT ] = 0.4127 as a proxy for a
constant volatility.
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