

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Modelling Minsky

In search of the Minsky moment

M. R. Grasselli

Mathematics and Statistics - McMaster University Joint work with O. Ismail and B. Costa Lima

Oberwolfach, January 24, 2011

Outline

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Modelling Minsky

1 Asset Price Bubbles

- Rational bubbles
- Market Inefficiencies
- Noise Traders
- The role of credit

2 Banks

- Liquidity preferences
- Banking network
- Bank formation
- 3 Modelling Minsky
 - Basic Goodwin's model
 - Keen's model

Minsky's Financial Instability Hypothesis

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

- Start when the economy is doing well but firms and banks are conservative (perhaps because of memory of previous crisis).
- Most projects succeed "Existing debt is easily validated and units that are heavily in debt prospered: it pays to lever".
- Revised valuation of cash flows, exponential growth in credit, investment and asset prices.
- Highly liquid, low-yielding financial instruments are devalued, rise in corresponding interest rate.
- Beginning of "euphoric economy": increased debt to equity ratios, development of Ponzi financier.
- Viability of business activity is eventually compromised.
- Ponzi financiers have to sell assets, liquidity dries out, asset market is flooded.
- Euphoria becomes a panic.

Defintion

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles

Market Inefficiencies Noise Traders The role of credit

Banks

Modelling Minsky • Consider a representative agent solving

$$\sup_{c} E_t \left[\sum_{j=1}^{\infty} \beta^{j-t} u(c_j) \right]$$

for exogenously given (e_t, d_t) .

• Denoting $q_t = u'(e_t + d_t)p_t$, the FOC for optimality give

$$q_t - \beta E_t [q_{t+1}] = \beta E_t [d_{t+1}u'(e_{t+1} + d_{t+1})]$$

• The general solution is of the form $q_t = F_t + B_t$ where

$$F_t = \sum_{j=1}^{\infty} \beta^j E_t \left[d_{t+j} u' (e_{t+j} + d_{t+j}) \right]$$

is the fundamental price and B_t is a bubble term satisfying $E_t[B_{t+1}] = \beta^{-1}B_t$ (1)

Positivity and inception

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles

Market Inefficiencies Noise Traders The role of credit

Banks

Modelling Minsky • The general form for B_t satisfying (1) is

$$B_t = \beta^{-t} B_0 + \sum_{s=1}^t \beta^{s-t} z_s, \quad E_t[z_{t+1}] = 0.$$
 (2)

• Observe that it follows directly from (1) that

$$\Xi_t[B_{t+j}] = \beta^{-j} B_t, \quad \forall j > 0.$$
(3)

- Since $\beta^{-1} > 1$, we see that $E_t[q_{t+j}] \to \pm \infty$.
- Given free disposal, we conclude that $B_t \ge 0$ for all t.
- But this implies that $z_{t+1} \ge -\beta^{-1}B_t$ for all t.
- Now if $B_s = 0$ for some s, then $z_{s+1} \ge 0$.
- But since $E_s[z_{s+1}] = 0$ we see that $z_{s+1} = 0$ a.s.
- Therefor any nonzero rational bubble must start with $B_0 > 0$.

Rational expectations

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles

Market Inefficiencies Noise Traders The role of credit

Banks

Modelling Minsky Consider a model with finitely many infinitely lived agents with diverse information and rational expectations.

Proposition (Tirole, 1982)

 In a stock market with horizon T < ∞, bubbles are all equal to zero for all agents.

In the infinite horizon case, bubbles satisfy

 $B(s_t^i, p_t) = \beta^T E[B(s_{t+T}^i, p_{t+T})|s_t^i, S_t(p_t)].$

Whether short-sales are allowed or not, bubbles do not exist in a fully dynamic REE and

$$F(s_t^i, S_t(p_t)) = p_t.$$

Overlapping generations

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles

Market Inefficiencies Noise Traders The role of credit

Banks

- An alternative is to consider overlapping agents in a Diamond (1965) growth model.
- This consists of consumers who live for two periods and have utility u(c^y, c^o)
- Define wages w_t , production function $Y_t = L_t f(k_t)$ (for labor force L_t and capital stock k_t), savings function $s(w_t, r_{t+1})$, and real interest rate $r_t = f'(k_t)$.
- These assumptions uniquely define an asymptotic real interest rate \bar{r} .
- Tirole (1985) then shows that a bubble can exist provided $0 < \bar{r} < g$, where g is the rate of growth of the economy.

The Efficient Markets Hypothesis

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles

Market Inefficiencies Noise Traders The role of credit

Banks

Modelling Minsky

- Denote $R_{t+1} = \frac{p_{t+1} p_t + d_{t+1}}{p_{t+1}}$.
- As we have seen, a first-order rational expectations condition for risk-neutral agents lead to

$$E_t[R_{t+1}] = 1 + r.$$
 (4)

• Solving this recursively leads to

$$p_t = \sum_{j=1}^{\infty} \frac{1}{(1+r)^j} E_t[d_{t+j}],$$
(5)

plus a possible rational bubble term satisfying $E_t[B_{t+1}] = (1+r)B_t$.

- Either (4) or (5) can be taken as an EMH.
- Statistical tests on actual returns indicate that they are not *very* forecastable, leading to the conclusion that the EMH cannot be rejected.

Volatility bounds

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

- Rational bubbles Market
- Inefficiencies Noise Traders

The role of credit

Banks

- Suppose that $p_t = E_t[p_t^*]$, where p_t^* is a perfect foresight price.
- Then $p_t^* = p_t + \varepsilon_t$, where ε_t is the forecast error and is uncorrelated with p_t .
- It follows that $\sigma(p_t) \leq \sigma(p_t^*)$.
- This, however, is found to be dramatically violated by data (Shiller (1981)).

Violation of Volatility Bounds

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles Market Inefficiencies Noise Traders The role of credit

Banks

Modelling Minsky

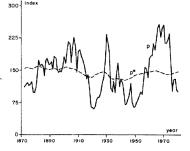


Figure 1

Note: Real Standard and Poor's Composite Stock Price Index (solid line p) and ex post rational price (dotted line p'), 1871–1979, both detrended by dividing a longrun exponential growth factor. The variable p^* is the present value of actual subsequent real detrended dividends, subject to an assumption about the present value in 1979 of dividends thereafter. Data are from Data Set I, Appendix.

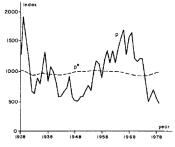


FIGURE 2

Note: Real modified Dow Jones Industrial Average (solid line p) and ex post rational price (dotted line p^*), 1928-1979, both detrended by dividing by a long-run exponential growth factor. The variable p^* is the present value of actual subsequent real detrended dividends, subject to an assumption about the present value in 1979 of dividends thereafter Data are from Data Set 2, Appendix.

Figure: Source: Shiller (1981)

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles

Market Inefficiencies Noise Traders

The role of credit

Banks

Modelling Minsky

Alternative models (Shiller, 1984)

• Consider a model where sophisticated investors have a demand function (portion of shares) of the form

$$Q_t^i = \frac{E_t[R_{t+1}] - \alpha}{\phi}.$$
 (6)

- In addition, suppose there are noise traders who react to fads Y_t through a demand function $Q_t^n = Y_t/p_t$.
- In equilibrium we have $Q_t + \frac{Y_t}{p_t} = 1$.
- Inserting this into (6) and solving recursively leads to

$$p_t = \sum_{j=1}^{\infty} \frac{E_t[d_{t+j}] + \phi E_t[Y_{t-1+j}]}{(1+\alpha+\phi)^j}.$$
 (7)

• This is also consistent with prices being not very forecastable.

Noise Trader Risk (DeLong, Shleifer, Summers and Waldmann, 1990)

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles Market Inefficiencies Noise Traders

The role of credit

Banks

- Consider a safe asset (s) with perfectly elastic supply paying a dividend leading to a constant price 1 and an unsafe asset (u) with fixed unit supply and the same dividend rate.
- Suppose that a proportion μ of the agents are noise traders.
- According to their beliefs when young, all agents want to maximize the expected values of an identical utility u(w) = -e^{-2γw}, where w is their wealth when old.
- Sophisticated investors accurately perceive the distribution of (u), whereas noise traders young at *t* misperceives its expected value by an i.i.d random variable

$$\rho_t \sim N(\rho^*, \sigma_{\rho}^2)$$

Equilibrium price

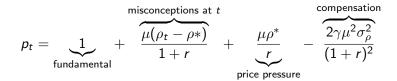
In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles Market Inefficiencies Noise Traders

The role of credit


Banks

Modelling Minsky

- After each group maximizes their utility, at equilibrium we have $(1 \mu)Q_t^i + \mu Q_t^n = 1$.
- This leads to the pricing equation

$$p_t = \frac{1}{1+r} \big(r + E_t[p_{t+1}] + \mu \rho_t - 2\gamma \mathsf{Var}_t[p_{t+1}] \big).$$

• Assuming stationary unconditional distributions, we find the steady state solution

Financial Intermediation (Allen and Gale, 2000)

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles Market Inefficiencies Noise Traders The role of credit

Banks

- Suppose there is a continuum of small, risk-neutral investors with no wealth of their own and a continuum of small, risk-neutral banks with B > 0 funds to lend at rate r trading at t = 1,2.
- Consider a safe asset (s) with return (1 + r) and a risky asset (R) with price at t = 2 given by a random variable p₂ with density h(p₂) on [0, p₂^{max}] and mean p₂.
- In addition, there is a production function f(x) for the economy and an investment cost c(x).

Existence of bubbles

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Rational bubbles Market Inefficiencies Noise Traders The role of credit

Banks

Modelling Minsky

- A representative investor needs to choose quantities Q_1^s and Q_1^R of the safe and unsafe assets at time t = 1 at prices 1 and p_1 , respectively.
- The equilibrium price in the presence of banks is then

$$p_{1} = \frac{1}{1+r} \left[\frac{\int_{(1+r)p_{1}}^{p_{2}^{\max}} p_{2}h(p_{2})dp_{2} - c'(1)}{\operatorname{Prob}[p_{2} \ge (1+r)p_{1}]} \right].$$
(8)

- Define the fundamental value as the price that an investor would pay if he had to use his own money B > 0.
- This leads to

$$p_1^F = {\overline{p_2} - c'(1) \over 1 + r}.$$
 (9)

• We can then show that $p_1 \ge p_1^F$ with strict inequality iff $\operatorname{Prob}[p_2 < (1+r)p_1] > 0$

Liquidity preferences

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

Modelling Minsky

- An asset is illiquid if its liquidation value at an earlier time is less than the present value of its future payoff.
- For example, an asset can pay $1 \le r_1 \le r_2$ at dates T = 0, 1, 2.
- Let $(r_1 = 1, r_2 = R)$ be an illiquid asset and $(r_1 > 1, r_2 < R)$ be a liquid one.
- At time *t* = 0, consumers don't know in which future date they will consume.
- The consumer's expected utility is

$$pU(r_1)+(1-p)U(r_2),$$

where p is the proportion of early consumers.

- Sufficiently risk-averse consumers prefer the liquid asset.
- A similar story holds for entrepreneurs.

A model for a bank, Diamond and Dybvig (1983)

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

- Banks borrow short and lend long.
- Suppose a bank offers a liquid asset ($r_1 = 1.28, r_2 = 1.813$) to 100 depositors each with \$1 at t = 0.
- In addition, the bank can invest in an illiquid asset $(r_1 = 1, r_2 = 2)$.
- If w = 1/4, the bank needs to pay $25 \times 1.28 = 32$ at t = 1.
- At t = 2 the remaining depositors receive $\frac{68 \times 2}{75} = 1.813$ and the bank is solvent.
- This is a Nash equilibrium is *all* depositors expect only 25 to withdraw at *t* = 1.
- *But* liquidity preferences are unverifiable private information.
- Another Nash equilibirum consisting of *all* depositors forecasting that everyone will withdraw at *t* = 1.

A model for interbank loans, Allen and Gale (2000)

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

Modelling Minsky

- Consider a Diamond and Dybvig model with a liquid asset (1, 1) and an illiquid asset (r < 1, R > 1).
- Consumer preferences are given by,

$$U(c_1,c_2)=\left\{egin{array}{cc} u(c_1) & ext{with probability } w\ u(c_2) & ext{with probability } (1-w) \end{array}
ight.$$

- The economy is divided into 4 identical regions labeled A, B, C, D, each corresponding to a single bank (or a representitive bank).
- The probability *w*, varies from region to another and can take one of two values, *w_H* and *w_L*.

Table: Regional Liquidity Shocks

	Α	В	С	D
S_1	WH	WL	WH	WL
S_2	WL	WH	WL	WH

Optimal interbank loans - centralized solution

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

Modelling Minsky

- Banks can invest in either the liquid or illiquid assets and promise consumption (c_1, c_2) to consumers.
- The **centralized solution** consists of the best allocation at time *t* = 0

$$\begin{array}{ll} \gamma c_1 &= y \\ (1-\gamma)c_2 &= Rx \end{array}$$

where $\gamma = \frac{w_H + w_L}{2}$ is the fraction of early consumers.

• At time t = 1 the planner transfer the $(\gamma - w_L)c_1 = (w_H - \gamma)c_2$ excess resources from two of the regions to the other two.

Optimal interbank loans - decentralized solution

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

Modelling Minsky Banks exchange deposits at t = 0, each of a total amount z_i = (w_H - γ), and when faced with liquidity shortange they follow the 'pecking order'.

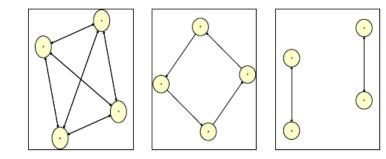


Figure: Networks, complete connected (left), incomplete connected (middle), incomplete disconnected (right)

Shocks and stability

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

Modelling Minsky • We then consider external shocks of the forms

Table: Regional Liquidity Shocks

	Α	В	С	D
S_1	WH	WL	WH	WL
$\frac{S_2}{\bar{S}}$	WL	WH	WL	WH
S	$\gamma + \varepsilon$	γ	γ	γ

- Allen and Gale then prove that in the incompletely connected case, if bank A went bankrupt, and accordingly causing bank D to bankrupt, then all other banks must go also bankrupt at t = 1.
- More importantly, for the same parameter values that caused bank A in the previous case to default, there exist we can find an equilibrium with completely connected networks that does not involve runs in state \bar{S} .

Our model, The summarized story

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

- Society
- Liquidity Preference
- Searching for partners
- Learning and Predicting
- Bank birth
- Interbank Links
- Contagion

Society

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

- We have a society of individuals investing at the beginning of each period.
- There is a shock to their preferences at the mid of the period
- If the shock is big enough the individual would have wished he made his investment differently.
- For each individual *i*, an initial preference is drawn from a continuous uniform random variable *U_i*
- If $U_i < 0.5$ the investor is set to be liquid asset investor, otherwise he is long term asset investor.
- At time t = 2, $W_i = |U_i + (-1)^{ran_i} \frac{\epsilon_i}{2}|$
- If $W_i < 0.5$ the investor wants to be a short term investor, otherwise he wants to be long term investor
- Because of anticipated shocks, individuals explore the society searching to partners to exchange investments.

Searching for partners

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

- We impose some constrains on the individual capacity to go around and seek other individuals to trade.
- This reflects the inherited limited capability of information gathering and environment knowledge of individual agents.
- We use a combination of Von Neumann and Moore neighborhood:
 - 5 1 6 2 X 3
 - 7 4 8

To join or not to join a bank

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

- Assume a bank offers a fixed contract promising a payment of $c_1 > 1$ at t = 1 for each unit (dollar) deposited and $1 < c_2 < R$ for t = 2 under the assumption there is no bank run.
- The an agent will join if:
 - has short term preferences and expects NOT to change preference for the coming day
 - and NOT find a partner to trade
 - In a state of the state of t
- The agent will NOT join if:
 - has short term preferences, expects to change and believes he can find a partner
 - a has long term preferences and is confident they will not change

Bank birth

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

- We follow the work of Following Howitt and Clower (1999,2007) on the emergence of economic organizations
 - With probability 0 < h < 1 an agent will have the 'idea of entrepreneurship'
- Market search for an opportunnity to establish a bank
- Establish a bank if he can find x and y such that $x + y \le 1$ and

$$y = c_1 W_i$$
$$Rx = c_2 (1 - W_i)$$

- Individuals become aware of bank existence only if the bank lies in their neighborhood
- In addition we give the bank the reach of its new members

Experiments: In a perfect bank world

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

Modelling Minsky

- Probability of being hit with bank idea h = 0.9.
- 50 time steps
- Promised payoff $c_1 = 1.1$, $c_2 = 1.5$ and R = 2.

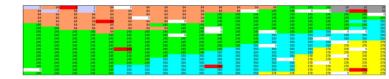


Figure: Banks established.Banks highlighted in red, while other colors indicating individuals joined banks [245 350 84 378 2 38]

Next steps

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Liquidity preferences Banking network Bank formation

- Need to incorporate bank run
- Individuals moving between banks
- Banks form a new kind of agents that can in turn trade with each other (form links), and form their strategies to predict the number of early customers.

Goodwin's Model

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model

- Let $N = n_0 e^{\beta t}$ be the labour force, $a = a_0 e^{\alpha t}$ be its productivity and $\lambda = L/N$ be the employment rate.
- Define the total output Y = aL and total capital as $K = \nu Y$.
- Assume that wages satisfy

$$\frac{dw}{dt}=F_w(\lambda)w,$$

where $F_w(\lambda)$ is a Phillips curve.

- Let the wages share of total output be ω and profit share be $\pi=1-\omega.$
- Suppose further that the rate of new investment is given by

$$I = \frac{dK}{dt} = (1 - \omega)Y - \gamma K$$

Differential Equations

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model • It is easy to deduce that this leads to

$$\frac{d\omega}{dt} = \omega(F_w(\lambda) - \alpha) \tag{10}$$

$$\frac{d\lambda}{dt} = \lambda \left(\frac{1-\omega}{\nu} - \alpha - \gamma - \beta \right)$$
(11)

• This system is globally stable and leads to endogenous cycles of employment.

Keen's extended model

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Consider the same model as before, but with a Phillips-type investment function I_g = k(π_n) of the net profit share is

$$\pi_n = 1 - \omega - rd,$$

where d = D/Y and the absolute debt level D evolves according to

$$\frac{dD}{dt} = I_g - \pi_n = rD + k(\pi_n) - (1 - \omega)$$

Differential Equations

In search of the Minsky moment

M. R. Grasselli

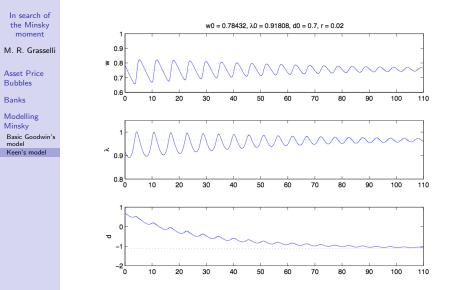
Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model • The corresponding dynamical systems now reads

$$\frac{d\omega}{dt} = \omega(F_w(\lambda) - \alpha) \tag{12}$$


$$\frac{d\lambda}{dt} = \lambda \left(\frac{k(\pi_n)}{\nu} - \alpha - \gamma - \beta \right)$$
(13)

$$\frac{dd}{dt} = k(\pi_n) - (1 - \omega) - d\left(\frac{k(\pi_n)}{\nu} - \gamma\right)$$
(14)

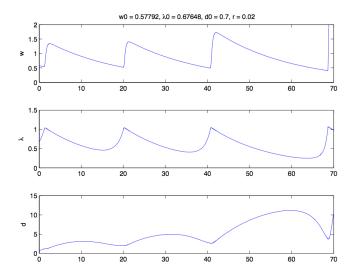
• This system is locally stable but globally unstable.

Example 1: convergence to equilibrium

Example 1: convergence to equilibrium (continued)

In search of the Minsky moment
M. R. Grasselli
Asset Price Bubbles
Banks
Modelling Minsky
Basic Goodwin's model
Keen's model

Example 2: financial meltdown


M. R. Grasselli

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model

In search of

Example 2: financial meltdown (continued)

the Minsky moment		
M. R. Grasselli		
Asset Price Bubbles		
Banks		
Modelling Minsky		
Basic Goodwin's model		

Keen's model

Next steps

In search of the Minsky moment

M. R. Grasselli

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model

- Add government (regulatory) sector.
- Incorporate asset prices explicitly.
- Introduce noise (stochastic interest rates, risk premium, etc)
- Move to systems of SDE
- Thanks !