

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

The Ultimate

Conclusions

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Mathematics and Statistics - McMaster University and Fields Institute for Research in Mathematical Sciences

Oberwolfach, May 07, 2014

James Tobin's contributions to economics

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

The Ultimate Model

- Tobin received the 1981 Nobel Memorial Prize "for his analysis of financial markets and their relations to expenditure decisions, employment, production and prices".
- Well-known contributions included: foundations of modern portfolio theory (with Markowitz), in particular the Separation Theorem (1958), life-cycle model of consumption, Tobit estimator, Tobin's q, Tobin's tax, ...
- Key forgotten contribution: financial intermediation, portfolio balances, flow of funds models and the credit channel.

Tobin 1969: A General Equilibrium Approach to Monetary Theory

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

The Ultimate

Model Conclusions

 Specification of (i) a menu of assets, (ii) the factors that determine the demands and supplies of the various assets, and (iii) the manner in which asset prices and interest rates clear these interrelated markets.

- Spending decisions are independent from portfolio decisions.
- Each asset i has a rate of return r_i and each sector j has a net demand f_{ij} for asset i.
- Adding up constraint: for each rate of return r_k ,

$$\sum_{i=1}^{n} \frac{\partial f_{ij}}{\partial r_k} = 0.$$

 Paper proceeds to analyze several special cases: money-capital, money-treasuries-capital, bank deposits and loans.

Stock-Flow Consistent models

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

The Ultimate Model

- Stock-flow consistent models emerged in the last decade as a common language for many heterodox schools of thought in economics.
- They consider both real and monetary factors simultaneously.
- Specify the balance sheet and transactions between sectors.
- Accommodate a number of behavioural assumptions in a way that is consistent with the underlying accounting structure.
- Reject silly (and mathematically unsound!) hypotheses such as the RARE individual (representative agent with rational expectations).
- See Godley and Lavoie (2007) for the full framework.

Balance Sheets

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models
Goodwin model

Keen model

The Ultimate Model

Conclusions

Balance Sheet	Households	Firms		Banks	Central Bank	Government	Sum
		current	capital				
Cash	$+H_h$			$+H_b$	-H		0
Deposits	$+M_h$		$+M_f$	-M			0
Loans			-L	+L			0
Bills	$+B_h$			$+B_b$	$+B_c$	− <i>B</i>	0
Equities	$+p_f E_f + p_b E_b$		$-p_f E_f$	$-p_bE_b$			0
Advances				-A	+A		0
Capital			+pK				рK
Sum (net worth)	V _h	0	V_f	V_b	0	− <i>B</i>	рK

Table: Balance sheet in an example of a general SFC model.

Transactions

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models
Goodwin model

Keen model
The Ultimate

Model

Conclusions

Transactions	Households	Fir	ms Banks		Central Bank	Government	Sum
		current	capital				
Consumption	$-pC_h$	+pC		$-pC_b$			0
Investment		+pI	-pl				0
Gov spending		+pG				-pG	0
Acct memo [GDP]		[pY]					
Wages	+W	-W					0
Taxes	$-T_h$	$-T_f$				+T	0
Interest on deposits	$+r_M.M_h$	$+r_M.M_f$		$-r_M.M$			0
Interest on loans		$-r_L.L$		$+r_L.L$			0
Interest on bills	$+r_B.B_h$			$+r_B.B_b$	$+r_B.B_c$	−r _B .B	0
Profits	$+\Pi_d + \Pi_b$	-П	$+\Pi_u$	$-\Pi_b$	$-\Pi_c$	$+\Pi_c$	0
Sum	S_h	0	$S_f - pI$	S_b	0	S_g	0

Table: Transactions in an example of a general SFC model.

Flow of Funds

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models
Goodwin model

Keen model

The Ultimate Model

Conclusions

Flow of Funds	Households	Firms		Banks	Central Bank	Government	Sum
		current capital					
Cash	$+\dot{H}_h$			$+\dot{H}_b$	−Ĥ		0
Deposits	$+\dot{M}_h$		$+\dot{M}_f$	- <i>M</i>			0
Loans			– Ĺ	+Ĺ			0
Bills	$+\dot{B}_h$			$+\dot{B}_b$	$+\dot{B}_c$	− <i>Ė</i>	0
Equities	$+p_f \dot{E}_f + p_b \dot{E}_b$		$-p_f \dot{E}_f$	$-p_b\dot{E}_b$			0
Advances				$-\dot{A}$	+À		0
Capital			+pI				pΙ
Sum	S_h	0	S_f	S_b	0	Sg	ρl
Change in Net Worth	$(S_h + \dot{p}_f E_f + \dot{p}_b E_b)$	$(S_f - \dot{p}_f E$	$f + \dot{p}K - p\delta K$	$(S_b - \dot{p}_b E_b)$		Sg	ρK + ρK

Table: Flow of funds in an example of a general SFC model.

Goodwin Model - SFC matrix

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

Goodwin model Keen model

The Ultimate Model

Conclusions

Balance Sheet	Households	Fir	Sum	
		current	capital	
Capital			+pK	рК
Sum (net worth)	0	0	V_f	рK
Transactions				
Consumption	-рС	+ <i>pC</i>		0
Investment		+pI	-pl	0
Acct memo [GDP]		[pY]		
Wages	+W	-W		0
Profits		-Π	$+\Pi_u$	0
Sum	0	0	0	0
Flow of Funds				
Capital			+ <i>pI</i>	pl
Sum	0	0	Пи	pl
Change in Net Worth	0	$pI + \dot{p}K - p\delta K$		pK + pΚ

Table: SFC table for the Goodwin model.

Goodwin Model - Differential equations

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model
The Ultimate

Model Conclusions

Define

$$\omega = rac{\mathrm{w}\ell}{pY} = rac{\mathrm{w}}{pa}$$
 (wage share)
$$\lambda = rac{\ell}{N} = rac{Y}{aN}$$
 (employment rate)

It then follows that

$$\frac{\dot{\omega}}{\omega} = \frac{\mathbf{w}}{\mathbf{w}} - \frac{\dot{p}}{p} - \frac{\dot{a}}{a} = \Phi(\lambda, i, i^{e}) - i - \alpha$$

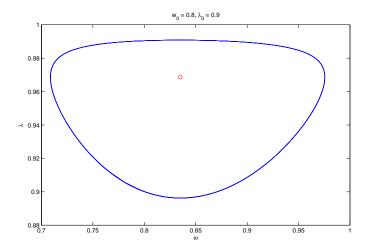
$$\frac{\dot{\lambda}}{\lambda} = \frac{1 - \omega}{\nu} - \alpha - \beta - \delta$$

• In the original model, all quantities were real (i.e divided by p), which is equivalent to setting $i = i^e = 0$.

Example 1: Goodwin model

Tobin's portfolio selection in macroeconomics

M. R. Grasselli


Introduction

SFC models

Goodwin model

Keen model
The Ultimate

Model Conclusions

Testing Goodwin on OECD countries

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

The Ultimate Model

Conclusions

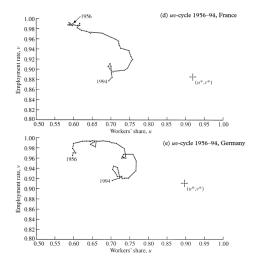
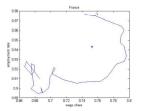
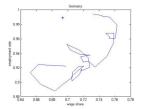


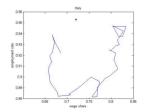
Figure: Harvie (2000)

Correcting Harvie

Tobin's portfolio selection in macroeconomics


M. R. Grasselli


Introduction


SFC models

Goodwin model Keen model

The Ultimate Model

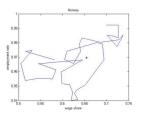


Figure: Grasselli and Maheshwari (2014, in progress)

SFC table for Keen (1995) model

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models
Goodwin model

Keen model

The Ultimate Model

Conclusions

Balance Sheet	Households	Fi	rms	Banks	Sum	
		current	capital			
Deposits	+D			-D	0	
Loans			-L	+L	0	
Capital			+pK		рK	
Sum (net worth)	V_h	0	V_f	0	рK	
Transactions						
Consumption	-pC	+pC			0	
Investment		+pI	-pl		0	
Acct memo [GDP]		[pY]				
Wages	+W	-W			0	
Interest on deposits	+rD			-rD	0	
Interest on loans		-rL		+rL	0	
Profits		-П	$+\Pi_u$		0	
Sum	S_h	0	$S_f - pI$	0	0	
Flow of Funds						
Deposits	+Ď			-Ď	0	
Loans			−L	+L	0	
Capital			+pI		pl	
Sum	S_h	0	Пи	0	pl	
Change in Net Worth	S_h	$(S_f + \dot{p})$	$K - p\delta K$		рK + pi	

Table: SFC table for the Keen model.

Keen model - Investment function

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models
Goodwin model

Keen model

The Ultimate Model

Conclusions

Assume now that new investment is given by

$$\dot{K} = \kappa (1 - \omega - rd)Y - \delta K$$

where $\kappa(\cdot)$ is a nonlinear increasing function of profits $\pi = 1 - \omega - rd$.

 This leads to external financing through debt evolving according to

$$\dot{D} = \kappa (1 - \omega - rd)Y - (1 - \omega - rd)Y$$

Keen model - Differential Equations

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

Goodwin model Keen model

The Ultimate Model

Conclusions

Denote the debt ratio in the economy by d = D/Y, the model can now be described by the following system

$$\dot{\omega} = \omega \left[\Phi(\lambda) - \alpha \right]$$

$$\dot{\lambda} = \lambda \left[\frac{\kappa (1 - \omega - rd)}{\nu} - \alpha - \beta - \delta \right]$$

$$\dot{d} = d \left[r - \frac{\kappa (1 - \omega - rd)}{\nu} + \delta \right] + \kappa (1 - \omega - rd) - (1 - \omega)$$
(1)

Example 2: convergence to the good equilibrium in a Keen model

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

Goodwin model Keen model

The Ultimate Model

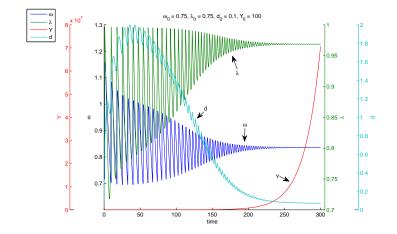


Figure: Grasselli and Costa Lima (2012)

Example 3: explosive debt in a Keen model

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models
Goodwin model

Keen model
The Ultimate

Model

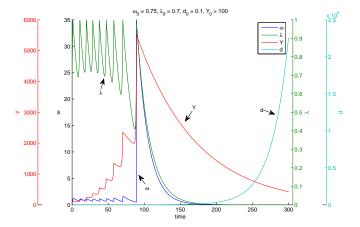


Figure: Grasselli and Costa Lima (2012)

Basin of convergence for Keen model

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

The Ultimate Model

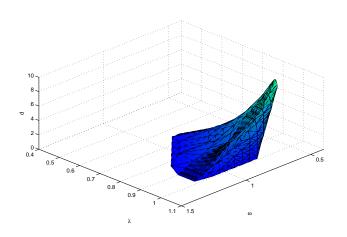


Figure: Grasselli and Costa Lima (2012)

Extensions

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

The Ultimate Model

Conclusions

 Costa Lima and Nguyen (2014) add random productivity to the Goodwin model and prove the existence of stochastic orbits for the generalized Lotka-Volterra system.

- Costa Lima, Grasselli, Wang and Wu (2014) show that government spending and taxation can prevent the bad equilibrium with infinite debt and zero employment.
- Choi and Grasselli (2014, in progress) characterize the Great Moderation in the U.S. as a Shilnikov bifurcation for the Keen model.

Shortcomings of Goodwin and Keen models

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

The Ultimate Model

Inventories Equities

Conclusions

 No independent specification of consumption (and therefore savings) for households:

$$C=W, \quad S_h=0 \qquad \text{(Goodwin)}$$

$$C=(1-\kappa(\pi))Y, \quad S_h=\dot{D}=\Pi_u-I \qquad \text{(Keen)}$$

- Full capacity utilization.
- Everything that is produced is sold.
- No active market for equities.
- Skott (1989) uses prices as an accommodating variable in the short run.
- Chiarella, Flaschel and Franke (2005) propose a dynamics for inventory and expected sales.
- Grasselli and Nguyen (2014) provide a synthesis, including equities and Tobin's portfolio choices.

Inventory dynamics

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

The Ultimate

Inventories Equities

Conclusions

• Denoting demand by Y_d , expected sales by Y_e and capacity utilization by $u = Y/Y_{\text{max}}$ we obtain the system

$$\begin{split} \dot{\omega}_{e} &= \omega_{e} \left[\Phi(\lambda) - \alpha + (1 - \eta_{p}) \gamma (1 - m \omega_{e}) \right] \\ \dot{\lambda} &= \lambda \left[g_{e} y_{e} + g_{d} y_{d} - \eta_{v} - \alpha - \beta \right] \\ \dot{d}_{e} &= d_{e} \left[-g_{e} y_{e} - g_{d} y_{d} + \eta_{v} + \gamma (1 - m \omega_{e}) + r \right] \\ &+ \left[\frac{\kappa (\pi_{e}) + \eta_{u} (u - \overline{u})}{u} - (1 - \omega_{e}) y_{d} \right] \\ \dot{y}_{e} &= y_{e} (\alpha + \beta - \eta_{d} - g_{e} y_{e} - g_{d} y_{d} + \eta_{v}) + \eta_{d} y_{d} \\ \dot{u} &= u \left[g_{e} y_{e} + g_{d} y_{d} - \eta_{v} - \frac{\kappa (\pi_{e}) + \eta_{u} (u - \overline{u})}{\nu} + \delta \right] \end{split}$$

of which the previous model is a special case.

Firm decisions

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

The Ultimate Model Inventories

Equities

Conclusions

- Suppose now that firms finance new investment by issuing equities E at price p_e as well as new loans.
- Assuming that undistributed profits take the form $s_f\Pi$ for a constant s_f , the amount needed to be raised externally for new investment is $pl_k s_f\Pi$, according to the proportions

$$\dot{D} = \nu_D [pI_k - s_f \Pi]$$

$$p_e \dot{E} = \nu_E [pI_k - s_f \Pi],$$

with $\nu_D + \nu_E = 1$.

• Here both I_k and ν_E can be functions of Tobin's $q = \frac{p_e E}{pK}$.

Household decisions

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

The Ultimate Model

Inventories Equities

Conclusions

• On the other hand, the budget constraint for households is

$$W + (1 - s_f)\Pi + rD = pC + \dot{D} + p_e \dot{E},$$

whereas their portfolio allocation is

$$p_e E = f_e(r_e^e) X_h$$

 $D = 1 - f_e(r_e^e) X_h$

where

$$r_e^e = \frac{(1 - s_f)\Pi}{p_e E} + \pi_e^e$$

 $\dot{\pi}_e^e = \beta_{\pi_e} \left(\frac{\dot{p}_e}{p_e} - \pi_e^e \right)$

• This leads to an extended system with two more equations for \dot{e}/e and $\dot{\pi}_e^e$.

Concluding remarks

Tobin's portfolio selection in macroeconomics

M. R. Grasselli

Introduction

SFC models

The Ultimate

- Macroeconomics is too important to be left to macroeconomists.
- Since Keynes's death it has developed in two radically different approaches:
 - The dominant one has the appearance of mathematical rigour (the SMD theorems notwithstanding), but is based on implausible assumptions, has poor fit to data in general, and is disastrously wrong during crises. Finance plays a negligible role
 - The heterodox approach is grounded in history and institutional understanding, takes empirical work much more seriously, but is generally averse to mathematics. Finance plays a major role.
- It's clear which approach should be embraced by mathematical finance.