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1. Overview

• Classical information geometry: differential geometric prop-

erties of families of classical probability densities.

– parametric and nonparametric (very complete).

– Fisher metric (unique);

– equivalent definitions of α-connections (including expo-

nential and mixture);

– divergence functions (minimization and orthogonality);
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• Quantum information geometry: differential geometric prop-

erties of families of quantum probabilities.

– parametric (density matrices) and nonparametric (very in-

complete).

– multitude of monotone metrics (BKM, WYD, Bures,...);

– exponential and mixture connections;

– inequivalent definitions of α-connections;

– divergence functions and quantum entropies.

2



Finite Dimensional Quantum Setup

• HN : finite dimensional complex Hilbert space;

• B(HN): algebra of operators on HN ;

• A: N2-dimensional real vector subspace of self-adjoint oper-

ators;

• M: n-dimensional submanifold of all invertible density oper-

ators on HN , with n = N2 − 1.
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2. The Quantum α-connections

2.1 The α-representation

For α ∈ (−1,1), define the α-embedding of M into A as

`α : M→A

ρ 7→
2

1− α
ρ

1−α
2 .

In the next lemma, for A ∈ B(HN), let

C(A) = {B ∈ B(HN) : [A, B] = 0}

denote its commutant.
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Lemma 1 (Hasegawa, 1996) Let S = ρ(θ) be a smooth man-

ifold of invertible density matrices. Then there exists a anti-

selfadjoint operator ∆i such that

∂ρ

∂θi
=

∂cρ

∂θi
+ [ρ,∆i], (2)

where ∂cρ
∂θi ∈ C(ρ) and [ρ,∆i] ∈ C(ρ)⊥. Moreover, for any function

F which is differentiable on a neighbourhood of the spectrum of

ρ we have

∂F (ρ)

∂θi
=

∂cF (ρ)

∂θi
+ [F (ρ),∆i], (3)

where ∂cF (ρ)
∂θi ∈ C(ρ) and [F (ρ),∆i] ∈ C(ρ)⊥.
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At each point ρ ∈M, consider the subspace of A defined by

A(α)
ρ =

{
A ∈ A : Tr

(
ρ

1+α
2 A

)
= 0

}
,

and define the isomorphism

(`α)∗(ρ) : TρM→A(α)
ρ

v 7→ (`α ◦ γ)′(0), (4)

where γ : (−ε, ε) →M is a curve in the equivalence class of the

tangent vector v. We call this isomorphism the α-representation

of the tangent space TρM. If (θ1, . . . , θn) is a coordinate system

for M, then the α-representation of a basis tangent vector is

∂

∂θi
7→

∂`α(ρ)

∂θi
.
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Using (3) with F (ρ) = `α(ρ), we obtain

∂`α(ρ)

∂θi
= ρ

1−α
2

∂c log ρ

∂θi
+

2

1− α
[ρ

1−α
2 ,∆i]. (5)

Therefore, it follows from the normalisation condition Trρ = 1

and the cyclicity of the trace that

Tr

(
ρ

1+α
2

∂`α(ρ)

∂θi

)
= Tr

(
∂cρ

∂θi
+

2

1− α
[ρ,∆i]

)
= 0,

so that ∂`α(ρ)
∂θi ∈ A(α)

ρ .
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2.2 The Covariant Derivative ∇(α)

Let r = 2
1−α. If we equip A with the the r-norm

‖A‖r := (Tr|A|r)1/r ,

then the α-embedding can be vied as a mapping from M to the

positive part of the sphere of radius r, since for any ρ ∈ M we

have

‖`α(ρ)‖r =
(
Tr

∣∣∣rρ1/r
∣∣∣r)1/r

= r,

so that `α(ρ) ∈ Sr.

The tangent space at a point 0 ≤ σ ∈ Sr is

TσSr =
{
A ∈ A : Tr(Aσr−1) = 0

}
.
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If we put σ = `α(ρ) = rρ1/r, we find that

T
rρ1/rS

r =
{
A ∈ A : Tr(Aρ1−1/r) = 0

}
= A(α)

ρ ,

so that the α-representation (4) is indeed an isomorphism be-
tween tangent spaces, as the push-forward notation suggests.

For each 0 ≤ σ ∈ Sr, the canonical projection from the tangent
space TσA onto the tangent space TσSr is uniquely given by

Πσ : TσA → TσSr

A 7→ A−
(
r−rTr

[
Aσr−1

])
σ.

For σ = `α(ρ) = rρ1/r, this gives

Π
rρ1/r : T

rρ1/rA → T
rρ1/rS

r

A 7→ A−
(
Tr

[
ρ

1+α
2 A

])
ρ

1−α
2 .
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Definition 6 For α ∈ (−1,1), let γ : (−ε, ε) → M be a smooth

curve such that ρ = γ(0) and v = γ̇(0) and let s ∈ S(TM) be a

differentiable vector field. The α-connection on TM is given by(
∇(α)

v s

)
(ρ) = (`α)−1

∗(ρ)

[
Π

rρ1/r∇̃(`α)∗(ρ)v
(`α)∗(γ(t))s

]
. (7)

Using the definition (7), we find that the α-representation of the

α-covariant derivative of the vector field ∂/∂θj in the direction

of the tangent vector ∂i := ∂/∂θi is(
∇(α)

∂i

∂

∂θj

)(α)
=

∂2`α(ρ)

∂θi∂θj
−Tr

(
ρ

1+α
2

∂2`α(ρ)

∂θi∂θj

)
ρ

1−α
2 . (8)
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2.3 The α-parallel Transport and the Extend Manifold M̂

Consider the extended manifold M̂ of positive definite matrices.

Observe first that the α-embedding in this case maps M̂ to itself.

Moreover, TM̂ = TA ' A. We can therefore define the α-parallel

transport on M̂ simply by

τ̂
(α)
σ0,σ1 : Tσ0M̂ → Tσ1M̂

v 7→ (`α)−1
∗(σ1)

(
(`α)∗(σ0)

v
)

,

and we find (using (7) without the projection step) that the

α-representation of its covariant derivative is(
∇̂(α)

∂i

∂

∂θj

)(α)
=

∂2`α(ρ)

∂θi∂θj
, (9)
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Now let {X1, . . . , Xn+1} be a basis for A. For each σ ∈ M̂,

we have that σ
1−α
2 ∈ A, so that there exist real numbers ξ =

{ξ1, . . . , ξn+1} such that

2

1− α
σ

1−α
2 = ξ1X1 + · · ·+ ξn+1Xn+1.

Then ξ = {ξ1, . . . , ξn+1} is a ∇̂(α)-affine coordinate system for

M̂, since (9) gives(
∇̂(α)

∂i

∂

∂ξj

)(α)

=
∂2`α(ρ)

∂ξi∂ξj
=

∂Xj

∂ξi
= 0.

Therefore, M̂ is ∇̂(α)-flat, even though its submanifold M is not

∇(α)-flat.
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3. Duality and the WYD Metric

• Dual connections: two connections ∇ and ∇∗ on a Rieman-

nian manifold (M, g) are dual with respect to g if and only

if

Xg(Y, Z) = g (∇XY, Z) + g
(
Y,∇∗

XZ
)
, (10)

for any vector fields X, Y, Z on M. Equivalently, if τγ(t)

and τ∗
γ(t) are the respective parallel transports along a curve

{γ(t)}0≤t≤1 on M, with γ(0) = ρ, then ∇ and ∇∗ are dual

with respect to g if and only if for all t ∈ [0,1],

gρ(Y, Z) = gγ(t)

(
τγ(t)Y, τ∗γ(t)Z

)
. (11)
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• Dual coordinate systems: two coordinate systems θ = (θi)

and η = (ηi) on a Riemannian manifold (M, g) are dual with

respect to g if and only if their natural bases for TρM are

biorthogonal at every point ρ ∈M, that is,

g

(
∂

∂θi
,

∂

∂ηj

)
= δi

j.

Equivalently, θ = (θi) and η = (ηi) are dual with respect to g

if and only if

gij =
∂ηi

∂θj
and gij =

∂θi

∂ηj

at every point ρ ∈M, where, as usual, gij = (gij)
−1.
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Theorem 12 (Amari, 1985) When a Riemannian manifold (M, g)
has a pair of dual coordinate systems (θ, η), there exist potential
functions Ψ(θ) and Φ(η) such that

gij(θ) =
∂2Ψ(θ)

∂θi∂θj
and gij =

∂2Φ(η)

∂ηi∂ηj
.

Conversely, when either potential function Ψ or Φ exists from
which the metric is derived by differentiating it twice, there exist
a pair of dual coordinate systems. The dual coordinate systems
and the potential functions are related by the folloing Legendre
transforms

θi =
∂Φ(η)

∂ηi
, ηi =

∂Ψ(θ)

∂θi

and

Ψ(θ) + Φ(η)− θiηi = 0
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Theorem 13 (Amari, 1985) Suppose that ∇ and ∇∗ are two

flat connections on a manifold M. If they are dual with respect

to a Riemannian metric g on M, then there exists a pair (θ, η)

of dual coordinate systems such that θ is ∇-affine and η is a

∇∗-affine.
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Let us now consider the definition of a Riemannian metric for

our manifold M of density matrices. Using the α-representation

to obtain a concrete realization of tanget vectors on M in terms

of operators in A, a Riemannian metric on M is deemed to be

provided by the smooth assignment of an inner product 〈·, ·〉ρ in

A ⊂ B(HN) for each point ρ ∈M.

For a fixed α ∈ (−1,1), the WYD (Wigner-Yanase-Dyson) metric

on M is given by

g
(α)
ρ (A, B) := Tr

(
A(α)B(−α)

)
, A, B ∈ TρM. (14)
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In a coordinate system (θ1, . . . , θn) for M, we have that

g
(α)
ij (θ) := g

(α)
ρ

(
∂

∂θi
,

∂

∂θj

)
= Tr

(
∂`α(ρ)

∂θi

∂`−α(ρ)

∂θj

)
(15)

= Tr

(
ρ
∂c log ρ

∂θi

∂c log ρ

∂θj

)
+

4

1− α2
Tr

[
ρ

1−α
2 ,∆i

] [
ρ

1+α
2 ,∆j

]
.

It is clear that g
(α)
ij = g

(α)
ji = g

(−α)
ij .
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Observe also that for the extreme cases α → ±1, formula (14)

leads to the familiar BKM (Bogoliubov-Kubo-Mori) metric

g
(±1)
ρ (A, B) = gB

ρ (A, B) = Tr
(
A(−1)B(1)

)
(16)

where A(±1), B(±1) are the ±1-representations of the tangent

vectors A, B ∈ TρM. In coordinates, the BKM metric assumes

the form

gB
ij(θ) := gB

ρ

(
∂

∂θi
,

∂

∂θj

)
= Tr

(
∂ log ρ

∂θi

∂ρ

∂θj

)
= Tr

(
ρ
∂c log ρ

∂θi

∂c log ρ

∂θj

)
+ Tr[log ρ,∆i][ρ,∆j]. (17)
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It follows directly from the definition (14), that the ±α-connections
are dual with respect to the metric g(α) for each fixed value of
α ∈ (−1,1) (just as the ±1-connections are dual with respect to
the BKM metric). Our purpose is to discover what other metrics
have the same property.

From now on confine our attention to those metrics on M which
are obtained as restrictions of metrics on the extended manifold
M̂, which is ∇̂(±α)-flat, and treat the latter as our primary ob-
jects.

Observe first that the WYD metric extends quite naturally to
M̂, simply using the ±α-representations of tangent vectors Â, B̂
(that is, the representation induced by the ±α-embedding of M̂
into A):

ĝ
(α)
σ

(
Â, B̂

)
:= Tr

(
Â(α)B̂(−α)

)
, Â, B̂ ∈ TσM̂. (18)
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Lemma 19 If (θ1, . . . , θn+1) is a ∇̂(α)-affine coordinate system

for the extended manifold M̂, then the function

Ψ̃α(θ) =
2

1 + α
Trσ(θ), σ(θ) ∈ M̂ (20)

satisfies

ĝ
(α)
ij (θ) =

∂2Ψ̃α(θ)

∂θi∂θj
. (21)

Moreover,

η̃i =
∂Ψ̃α(θ)

∂θi
(22)

is a ∇̂(−α)-affine coordinate system for M̂.
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Theorem 23 For a fixed value of α ∈ (−1,1), suppose that

the connections ∇(α) and ∇(−α) are dual with respect to a Rie-

mannian metric ĝ on M̂. Then there exist a constant (that

is, independent of σ) (n + 1) × (n + 1) matrix M , such that

(ĝσ)ij =
n+1∑
k=1

Mk
i (ĝ(α)

σ )kj, in some α-affine coordinate system.

Proof: (Ato 1, primo movimento) Since the two connections

are flat on the extend manifold M̂, theorem 13 tell us that there

exist dual coordinate systems (θ, η) such that θ is ∇(α)-affine and

η is ∇(−α)-affine.
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(Act 1, secondo movimento) Using lemma 19, we know that the
function Ψ̃α(θ) = 2

1+2Trσ(θ) satisfies

ĝ
(α)
ij (θ) =

∂2Ψ̃α(θ)

∂θi∂θj
(24)

and also that

η̃i =
∂Ψ̃α(θ)

∂θi
(25)

is a another ∇̂(−α)-affine coordinate system for M̂.

(Intermezzo) Therefore, the coordinate systems (η) and (η̃) are
related by an affine transformation, so there must exist a matrix
M and numbers (a1, . . . , an+1) such that

ηi =
n∑

k=1

Mk
i η̃k + ai. (26)
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(Ato 2, movimento unico) But from theorem 12, there exists a
potential function Ψ(θ) such that

ĝij(θ) =
∂2Ψ(θ)

∂θi∂θj

and

ηi =
∂Ψ(θ)

∂θi
.

Equation (26) then gives

∂Ψ(θ)

∂θi
=

n+1∑
k=1

Mk
i

∂Ψ̃α(θ)

∂θk
+ ai.

(Finale) Differentiating this equation with respect to θj leads to

ĝij(θ) =
∂2Ψ(θ)

∂θi∂θj
=

n∑
k=1

Mk
i

∂2Ψ̃α(θ)

∂θj∂θk
=

n∑
k=1

Mk
i ĝ

(α)
kj (θ). (27)
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