Duality, Monotonocity and the WYD Metrics

M. R. Grasselli Dept. of Mathematics and Statistics McMaster University

04/07/2002

1. Overview

- Classical information geometry: differential geometric properties of families of classical probability densities.
 - parametric and nonparametric (very complete).
 - Fisher metric (unique);
 - equivalent definitions of α -connections (including exponential and mixture);
 - divergence functions (minimization and orthogonality);

- Quantum information geometry: differential geometric properties of families of quantum probabilities.
 - parametric (density matrices) and nonparametric (very incomplete).
 - multitude of monotone metrics (BKM, WYD, Bures,...);
 - exponential and mixture connections;
 - inequivalent definitions of α -connections;
 - divergence functions and quantum entropies.

Finite Dimensional Quantum Setup

- \mathcal{H}^N : finite dimensional complex Hilbert space;
- $\mathcal{B}(\mathcal{H}^N)$: algebra of operators on \mathcal{H}^N ;
- \mathcal{A} : N^2 -dimensional real vector subspace of self-adjoint operators;
- \mathcal{M} : *n*-dimensional submanifold of all invertible density operators on \mathcal{H}^N , with $n = N^2 - 1$.

2. The Quantum α -connections

2.1 The α -representation

For $\alpha \in (-1, 1)$, define the α -embedding of \mathcal{M} into \mathcal{A} as

$$\ell_{\alpha} : \mathcal{M} \to \mathcal{A}$$

 $\rho \mapsto \frac{2}{1-\alpha} \rho^{\frac{1-\alpha}{2}}$

In the next lemma, for $A \in \mathcal{B}(\mathcal{H}^N)$, let

$$\mathcal{C}(A) = \{ B \in \mathcal{B}(\mathcal{H}^N) : [A, B] = 0 \}$$

denote its commutant.

Lemma 1 (Hasegawa, 1996) Let $S = \rho(\theta)$ be a smooth manifold of invertible density matrices. Then there exists a antiselfadjoint operator Δ_i such that

$$\frac{\partial \rho}{\partial \theta^{i}} = \frac{\partial^{c} \rho}{\partial \theta^{i}} + [\rho, \Delta_{i}], \qquad (2)$$

where $\frac{\partial^c \rho}{\partial \theta^i} \in C(\rho)$ and $[\rho, \Delta_i] \in C(\rho)^{\perp}$. Moreover, for any function F which is differentiable on a neighbourhood of the spectrum of ρ we have

$$\frac{\partial F(\rho)}{\partial \theta^{i}} = \frac{\partial^{c} F(\rho)}{\partial \theta^{i}} + [F(\rho), \Delta_{i}], \qquad (3)$$

where $\frac{\partial^c F(\rho)}{\partial \theta^i} \in \mathcal{C}(\rho)$ and $[F(\rho), \Delta_i] \in \mathcal{C}(\rho)^{\perp}$.

At each point $\rho \in \mathcal{M}$, consider the subspace of \mathcal{A} defined by

$$\mathcal{A}_{\rho}^{(\alpha)} = \left\{ A \in \mathcal{A} : \operatorname{Tr}\left(\rho^{\frac{1+\alpha}{2}}A\right) = 0 \right\},\,$$

and define the isomorphism

$$(\ell_{\alpha})_{*(\rho)} : T_{\rho}\mathcal{M} \to \mathcal{A}_{\rho}^{(\alpha)} v \mapsto (\ell_{\alpha} \circ \gamma)'(0),$$
 (4)

where $\gamma: (-\varepsilon, \varepsilon) \to \mathcal{M}$ is a curve in the equivalence class of the tangent vector v. We call this isomorphism the α -representation of the tangent space $T_{\rho}\mathcal{M}$. If $(\theta^1, \ldots, \theta^n)$ is a coordinate system for \mathcal{M} , then the α -representation of a basis tangent vector is

$$rac{\partial}{\partial heta^i} \mapsto rac{\partial \ell_lpha(
ho)}{\partial heta^i}.$$

Using (3) with $F(\rho) = \ell_{\alpha}(\rho)$, we obtain $\frac{\partial \ell_{\alpha}(\rho)}{\partial \theta^{i}} = \rho^{\frac{1-\alpha}{2}} \frac{\partial^{c} \log \rho}{\partial \theta^{i}} + \frac{2}{1-\alpha} [\rho^{\frac{1-\alpha}{2}}, \Delta_{i}].$ (5)

Therefore, it follows from the normalisation condition $Tr\rho = 1$ and the cyclicity of the trace that

$$\operatorname{Tr}\left(\rho^{\frac{1+\alpha}{2}}\frac{\partial\ell_{\alpha}(\rho)}{\partial\theta^{i}}\right) = \operatorname{Tr}\left(\frac{\partial^{c}\rho}{\partial\theta^{i}} + \frac{2}{1-\alpha}[\rho,\Delta_{i}]\right) = 0,$$

so that $\frac{\partial \ell_{\alpha}(\rho)}{\partial \theta^{i}} \in \mathcal{A}_{\rho}^{(\alpha)}$.

2.2 The Covariant Derivative $\nabla^{(\alpha)}$

Let
$$r = \frac{2}{1-\alpha}$$
. If we equip \mathcal{A} with the the *r*-norm

$$||A||_r := (\operatorname{Tr}|A|^r)^{1/r},$$

then the α -embedding can be vied as a mapping from \mathcal{M} to the positive part of the sphere of radius r, since for any $\rho \in \mathcal{M}$ we have

$$\|\ell_{\alpha}(\rho)\|_{r} = \left(\operatorname{Tr}\left|r\rho^{1/r}\right|^{r}\right)^{1/r} = r,$$

so that $\ell_{\alpha}(\rho) \in S^r$.

The tangent space at a point $\mathbf{0} \leq \boldsymbol{\sigma} \in S^r$ is

$$T_{\sigma}S^{r} = \left\{ A \in \mathcal{A} : \operatorname{Tr}(A\sigma^{r-1}) = 0 \right\}.$$

If we put $\sigma = \ell_{\alpha}(\rho) = r \rho^{1/r}$, we find that

$$T_{r\rho^{1/r}}S^r = \left\{ A \in \mathcal{A} : \operatorname{Tr}(A\rho^{1-1/r}) = 0 \right\} = \mathcal{A}_{\rho}^{(\alpha)},$$

so that the α -representation (4) is indeed an isomorphism between tangent spaces, as the push-forward notation suggests.

For each $0 \leq \sigma \in S^r$, the canonical projection from the tangent space $T_{\sigma}A$ onto the tangent space $T_{\sigma}S^r$ is uniquely given by

$$\Pi_{\sigma} : T_{\sigma} \mathcal{A} \to T_{\sigma} S^{r} A \mapsto A - \left(r^{-r} \operatorname{Tr} \left[A \sigma^{r-1} \right] \right) \sigma.$$

For $\sigma = \ell_{\alpha}(\rho) = r \rho^{1/r}$, this gives

$$\begin{array}{ll} \Pi_{r\rho^{1/r}} & : & T_{r\rho^{1/r}}\mathcal{A} \to T_{r\rho^{1/r}}S^r \\ & & A \mapsto A - \left(\operatorname{Tr}\left[\rho^{\frac{1+\alpha}{2}}A\right] \right) \rho^{\frac{1-\alpha}{2}}. \end{array}$$

Definition 6 For $\alpha \in (-1,1)$, let $\gamma : (-\varepsilon,\varepsilon) \to \mathcal{M}$ be a smooth curve such that $\rho = \gamma(0)$ and $v = \dot{\gamma}(0)$ and let $s \in S(T\mathcal{M})$ be a differentiable vector field. The α -connection on $T\mathcal{M}$ is given by

$$\left(\nabla_{v}^{(\alpha)}s\right)(\rho) = (\ell_{\alpha})_{*(\rho)}^{-1} \left[\mathsf{\Pi}_{r\rho^{1/r}} \widetilde{\nabla}_{(\ell_{\alpha})_{*(\rho)}v}(\ell_{\alpha})_{*(\gamma(t))}s \right].$$
(7)

Using the definition (7), we find that the α -representation of the α -covariant derivative of the vector field $\partial/\partial\theta^j$ in the direction of the tangent vector $\partial_i := \partial/\partial\theta^i$ is

$$\left(\nabla_{\partial_i}^{(\alpha)} \frac{\partial}{\partial \theta^j}\right)^{(\alpha)} = \frac{\partial^2 \ell_\alpha(\rho)}{\partial \theta^i \partial \theta^j} - \operatorname{Tr}\left(\rho^{\frac{1+\alpha}{2}} \frac{\partial^2 \ell_\alpha(\rho)}{\partial \theta^i \partial \theta^j}\right) \rho^{\frac{1-\alpha}{2}}.$$
 (8)

2.3 The α -parallel Transport and the Extend Manifold $\hat{\mathcal{M}}$

Consider the extended manifold $\hat{\mathcal{M}}$ of positive definite matrices. Observe first that the α -embedding in this case maps $\hat{\mathcal{M}}$ to itself. Moreover, $T\hat{\mathcal{M}} = T\mathcal{A} \simeq \mathcal{A}$. We can therefore define the α -parallel transport on $\hat{\mathcal{M}}$ simply by

$$\widehat{\tau}_{\sigma_0,\sigma_1}^{(\alpha)} : T_{\sigma_0}\widehat{\mathcal{M}} \to T_{\sigma_1}\widehat{\mathcal{M}} \\
v \mapsto (\ell_\alpha)_{*(\sigma_1)}^{-1} \left((\ell_\alpha)_{*(\sigma_0)} v \right),$$

and we find (using (7) without the projection step) that the α -representation of its covariant derivative is

$$\left(\widehat{\nabla}_{\partial_i}^{(\alpha)} \frac{\partial}{\partial \theta^j}\right)^{(\alpha)} = \frac{\partial^2 \ell_\alpha(\rho)}{\partial \theta^i \partial \theta^j},\tag{9}$$

Now let $\{X_1, \ldots, X_{n+1}\}$ be a basis for \mathcal{A} . For each $\sigma \in \hat{\mathcal{M}}$, we have that $\sigma^{\frac{1-\alpha}{2}} \in \mathcal{A}$, so that there exist real numbers $\xi = \{\xi^1, \ldots, \xi^{n+1}\}$ such that

$$\frac{2}{1-\alpha}\sigma^{\frac{1-\alpha}{2}} = \xi^1 X_1 + \dots + \xi^{n+1} X_{n+1}$$

Then $\xi = \{\xi^1, \dots, \xi^{n+1}\}$ is a $\widehat{\nabla}^{(\alpha)}$ -affine coordinate system for $\widehat{\mathcal{M}}$, since (9) gives

$$\left(\widehat{\nabla}_{\partial_i}^{(\alpha)}\frac{\partial}{\partial\xi^j}\right)^{(\alpha)} = \frac{\partial^2\ell_\alpha(\rho)}{\partial\xi^i\partial\xi^j} = \frac{\partial X_j}{\partial\xi^i} = 0.$$

Therefore, $\hat{\mathcal{M}}$ is $\hat{\nabla}^{(\alpha)}$ -flat, even though its submanifold \mathcal{M} is not $\nabla^{(\alpha)}$ -flat.

3. Duality and the WYD Metric

 Dual connections: two connections ∇ and ∇* on a Riemannian manifold (M,g) are dual with respect to g if and only if

$$Xg(Y,Z) = g\left(\nabla_X Y, Z\right) + g\left(Y, \nabla_X^* Z\right), \tag{10}$$

for any vector fields X, Y, Z on \mathcal{M} . Equivalently, if $\tau_{\gamma(t)}$ and $\tau_{\gamma(t)}^*$ are the respective parallel transports along a curve $\{\gamma(t)\}_{0 \le t \le 1}$ on \mathcal{M} , with $\gamma(0) = \rho$, then ∇ and ∇^* are dual with respect to g if and only if for all $t \in [0, 1]$,

$$g_{\rho}(Y,Z) = g_{\gamma(t)}\left(\tau_{\gamma(t)}Y,\tau_{\gamma(t)}^{*}Z\right).$$
(11)

• Dual coordinate systems: two coordinate systems $\theta = (\theta^i)$ and $\eta = (\eta_i)$ on a Riemannian manifold (\mathcal{M}, g) are dual with respect to g if and only if their natural bases for $T_{\rho}\mathcal{M}$ are biorthogonal at every point $\rho \in \mathcal{M}$, that is,

$$g\left(\frac{\partial}{\partial\theta^i}, \frac{\partial}{\partial\eta_j}\right) = \delta^i_j.$$

Equivalently, $\theta = (\theta^i)$ and $\eta = (\eta_i)$ are dual with respect to g if and only if

$$g_{ij} = \frac{\partial \eta_i}{\partial \theta^j}$$
 and $g^{ij} = \frac{\partial \theta_i}{\partial \eta^j}$

at every point $\rho \in \mathcal{M}$, where, as usual, $g^{ij} = (g_{ij})^{-1}$.

Theorem 12 (Amari, 1985) When a Riemannian manifold (\mathcal{M}, g) has a pair of dual coordinate systems (θ, η) , there exist potential functions $\Psi(\theta)$ and $\Phi(\eta)$ such that

$$g_{ij}(\theta) = \frac{\partial^2 \Psi(\theta)}{\partial \theta^i \partial \theta^j}$$
 and $g^{ij} = \frac{\partial^2 \Phi(\eta)}{\partial \eta_i \partial \eta_j}$.

Conversely, when either potential function Ψ or Φ exists from which the metric is derived by differentiating it twice, there exist a pair of dual coordinate systems. The dual coordinate systems and the potential functions are related by the folloing Legendre transforms

$$\theta^{i} = \frac{\partial \Phi(\eta)}{\partial \eta_{i}}, \quad \eta_{i} = \frac{\partial \Psi(\theta)}{\partial \theta^{i}}$$

and

$$\Psi(\theta) + \Phi(\eta) - \theta^i \eta_i = 0$$

Theorem 13 (Amari, 1985) Suppose that ∇ and ∇^* are two flat connections on a manifold \mathcal{M} . If they are dual with respect to a Riemannian metric g on \mathcal{M} , then there exists a pair (θ, η) of dual coordinate systems such that θ is ∇ -affine and η is a ∇^* -affine.

Let us now consider the definition of a Riemannian metric for our manifold \mathcal{M} of density matrices. Using the α -representation to obtain a concrete realization of tanget vectors on \mathcal{M} in terms of operators in \mathcal{A} , a Riemannian metric on \mathcal{M} is deemed to be provided by the smooth assignment of an inner product $\langle \cdot, \cdot \rangle_{\rho}$ in $\mathcal{A} \subset B(\mathcal{H}^N)$ for each point $\rho \in \mathcal{M}$.

For a fixed $\alpha \in (-1, 1)$, the WYD (Wigner-Yanase-Dyson) metric on \mathcal{M} is given by

$$g_{\rho}^{(\alpha)}(A,B) := \operatorname{Tr}\left(A^{(\alpha)}B^{(-\alpha)}\right), \qquad A, B \in T_{\rho}\mathcal{M}.$$
 (14)

In a coordinate system $(\theta^1, \ldots, \theta^n)$ for \mathcal{M} , we have that

$$g_{ij}^{(\alpha)}(\theta) := g_{\rho}^{(\alpha)} \left(\frac{\partial}{\partial \theta^{i}}, \frac{\partial}{\partial \theta^{j}} \right) = \operatorname{Tr} \left(\frac{\partial \ell_{\alpha}(\rho)}{\partial \theta^{i}} \frac{\partial \ell_{-\alpha}(\rho)}{\partial \theta^{j}} \right)$$
(15)
$$= \operatorname{Tr} \left(\rho \frac{\partial^{c} \log \rho}{\partial \theta^{i}} \frac{\partial^{c} \log \rho}{\partial \theta^{j}} \right) + \frac{4}{1 - \alpha^{2}} \operatorname{Tr} \left[\rho^{\frac{1 - \alpha}{2}}, \Delta_{i} \right] \left[\rho^{\frac{1 + \alpha}{2}}, \Delta_{j} \right].$$

It is clear that $g_{ij}^{(\alpha)} = g_{ji}^{(\alpha)} = g_{ij}^{(-\alpha)}$.

Observe also that for the extreme cases $\alpha \to \pm 1$, formula (14) leads to the familiar *BKM* (Bogoliubov-Kubo-Mori) metric

$$g_{\rho}^{(\pm 1)}(A,B) = g_{\rho}^{B}(A,B) = \operatorname{Tr}\left(A^{(-1)}B^{(1)}\right)$$
 (16)

where $A^{(\pm 1)}, B^{(\pm 1)}$ are the ± 1 -representations of the tangent vectors $A, B \in T_{\rho}\mathcal{M}$. In coordinates, the *BKM* metric assumes the form

$$g_{ij}^{B}(\theta) := g_{\rho}^{B}\left(\frac{\partial}{\partial\theta^{i}}, \frac{\partial}{\partial\theta^{j}}\right) = \operatorname{Tr}\left(\frac{\partial\log\rho}{\partial\theta^{i}}\frac{\partial\rho}{\partial\theta^{j}}\right)$$
$$= \operatorname{Tr}\left(\rho\frac{\partial^{c}\log\rho}{\partial\theta^{i}}\frac{\partial^{c}\log\rho}{\partial\theta^{j}}\right) + \operatorname{Tr}[\log\rho, \Delta_{i}][\rho, \Delta_{j}]. (17)$$

It follows directly from the definition (14), that the $\pm \alpha$ -connections are dual with respect to the metric $g^{(\alpha)}$ for each fixed value of $\alpha \in (-1, 1)$ (just as the ± 1 -connections are dual with respect to the *BKM* metric). Our purpose is to discover what other metrics have the same property.

From now on confine our attention to those metrics on \mathcal{M} which are obtained as restrictions of metrics on the extended manifold $\hat{\mathcal{M}}$, which is $\hat{\nabla}^{(\pm \alpha)}$ -flat, and treat the latter as our primary objects.

Observe first that the WYD metric extends quite naturally to $\hat{\mathcal{M}}$, simply using the $\pm \alpha$ -representations of tangent vectors \hat{A}, \hat{B} (that is, the representation induced by the $\pm \alpha$ -embedding of $\hat{\mathcal{M}}$ into \mathcal{A}):

$$\widehat{g}_{\sigma}^{(\alpha)}\left(\widehat{A},\widehat{B}\right) := \operatorname{Tr}\left(\widehat{A}^{(\alpha)}\widehat{B}^{(-\alpha)}\right), \qquad \widehat{A},\widehat{B} \in T_{\sigma}\widehat{\mathcal{M}}.$$
(18)

Lemma 19 If $(\theta^1, \ldots, \theta^{n+1})$ is a $\widehat{\nabla}^{(\alpha)}$ -affine coordinate system for the extended manifold $\widehat{\mathcal{M}}$, then the function

$$\widetilde{\Psi}_{\alpha}(\theta) = \frac{2}{1+\alpha} Tr\sigma(\theta), \qquad \sigma(\theta) \in \widehat{\mathcal{M}}$$
(20)

satisfies

$$\hat{g}_{ij}^{(\alpha)}(\theta) = \frac{\partial^2 \tilde{\Psi}_{\alpha}(\theta)}{\partial \theta^i \partial \theta^j}.$$
(21)

Moreover,

$$\tilde{\eta}_i = \frac{\partial \tilde{\Psi}_{\alpha}(\theta)}{\partial \theta^i} \tag{22}$$

is a $\widehat{\nabla}^{(-\alpha)}$ -affine coordinate system for $\widehat{\mathcal{M}}$.

Theorem 23 For a fixed value of $\alpha \in (-1,1)$, suppose that the connections $\nabla^{(\alpha)}$ and $\nabla^{(-\alpha)}$ are dual with respect to a Riemannian metric \hat{g} on $\hat{\mathcal{M}}$. Then there exist a constant (that is, independent of σ) $(n + 1) \times (n + 1)$ matrix M, such that $(\hat{g}_{\sigma})_{ij} = \sum_{k=1}^{n+1} M_i^k (\hat{g}_{\sigma}^{(\alpha)})_{kj}$, in some α -affine coordinate system.

Proof: (Ato 1, primo movimento) Since the two connections are flat on the extend manifold $\hat{\mathcal{M}}$, theorem 13 tell us that there exist dual coordinate systems (θ, η) such that θ is $\nabla^{(\alpha)}$ -affine and η is $\nabla^{(-\alpha)}$ -affine.

(Act 1, secondo movimento) Using lemma 19, we know that the function $\tilde{\Psi}_{\alpha}(\theta) = \frac{2}{1+2} \operatorname{Tr} \sigma(\theta)$ satisfies

$$\hat{g}_{ij}^{(\alpha)}(\theta) = \frac{\partial^2 \tilde{\Psi}_{\alpha}(\theta)}{\partial \theta^i \partial \theta^j}$$
(24)

and also that

$$\tilde{\eta}_i = \frac{\partial \tilde{\Psi}_{\alpha}(\theta)}{\partial \theta^i} \tag{25}$$

is a another $\widehat{\nabla}^{(-\alpha)}$ -affine coordinate system for $\widehat{\mathcal{M}}$.

(*Intermezzo*) Therefore, the coordinate systems (η) and $(\tilde{\eta})$ are related by an affine transformation, so there must exist a matrix M and numbers (a_1, \ldots, a_{n+1}) such that

$$\eta_i = \sum_{k=1}^n M_i^k \tilde{\eta}_k + a_i.$$
(26)

(Ato 2, movimento unico) But from theorem 12, there exists a potential function $\Psi(\theta)$ such that

$$\hat{g}_{ij}(\theta) = \frac{\partial^2 \Psi(\theta)}{\partial \theta^i \partial \theta^j}$$

and

$$\eta_i = \frac{\partial \Psi(\theta)}{\partial \theta^i}.$$

Equation (26) then gives

$$\frac{\partial \Psi(\theta)}{\partial \theta^i} = \sum_{k=1}^{n+1} M_i^k \frac{\partial \tilde{\Psi}_{\alpha}(\theta)}{\partial \theta^k} + a_i.$$

(*Finale*) Differentiating this equation with respect to θ^{j} leads to

$$\widehat{g}_{ij}(\theta) = \frac{\partial^2 \Psi(\theta)}{\partial \theta^i \partial \theta^j} = \sum_{k=1}^n M_i^k \frac{\partial^2 \widetilde{\Psi}_{\alpha}(\theta)}{\partial \theta^j \partial \theta^k} = \sum_{k=1}^n M_i^k \widehat{g}_{kj}^{(\alpha)}(\theta).$$
(27)