The Reflected BSDE approach to Real Options in Incomplete markets

M. R. Grasselli, C. Gomez

Mathematics and Statistics McMaster University

Pisa, December 15, 2008

 According to a recent survey, 26% of CFOs in North America "always or almost always" consider the value of real options in projects.

- According to a recent survey, 26% of CFOs in North America "always or almost always" consider the value of real options in projects.
- This is due to familiarity with the option valuation paradigm in financial markets and its lessons.

- According to a recent survey, 26% of CFOs in North America "always or almost always" consider the value of real options in projects.
- This is due to familiarity with the option valuation paradigm in financial markets and its lessons.
- But most of the literature in Real Options is based on one or both of the following assumptions: (1) infinite time horizon and (2) a perfectly correlated spanning asset.

- According to a recent survey, 26% of CFOs in North America "always or almost always" consider the value of real options in projects.
- This is due to familiarity with the option valuation paradigm in financial markets and its lessons.
- But most of the literature in Real Options is based on one or both of the following assumptions: (1) infinite time horizon and (2) a perfectly correlated spanning asset.
- Though some problems have long time horizons (30 years or more), most strategic decisions involve much shorter times.

- According to a recent survey, 26% of CFOs in North America "always or almost always" consider the value of real options in projects.
- This is due to familiarity with the option valuation paradigm in financial markets and its lessons.
- But most of the literature in Real Options is based on one or both of the following assumptions: (1) infinite time horizon and (2) a perfectly correlated spanning asset.
- Though some problems have long time horizons (30 years or more), most strategic decisions involve much shorter times.
- The vast majority of underlying projects are not perfectly correlated to any asset traded in financial markets.

The use of well-known numerical methods (e.g binomial trees or finite differences) allows to consider finite-time horizons.

- The use of well-known numerical methods (e.g binomial trees or finite differences) allows to consider finite-time horizons.
- As for the spanning asset assumption, the absence of perfect correlation with a financial asset leads to an incomplete market.

- The use of well-known numerical methods (e.g binomial trees or finite differences) allows to consider finite-time horizons.
- As for the spanning asset assumption, the absence of perfect correlation with a financial asset leads to an incomplete market.

 Replication arguments can no longer be applied to value managerial opportunities.

- The use of well-known numerical methods (e.g binomial trees or finite differences) allows to consider finite-time horizons.
- As for the spanning asset assumption, the absence of perfect correlation with a financial asset leads to an incomplete market.

- Replication arguments can no longer be applied to value managerial opportunities.
- Instead, one needs to rely on risk preferences.

- The use of well-known numerical methods (e.g binomial trees or finite differences) allows to consider finite-time horizons.
- As for the spanning asset assumption, the absence of perfect correlation with a financial asset leads to an incomplete market.
- Replication arguments can no longer be applied to value managerial opportunities.
- Instead, one needs to rely on risk preferences.
- The most widespread way to do this in the strategic decision making literature is to introduce a risk adjusted discount factor, which replaces the risk-free rate, and use dynamic programming.

- The use of well-known numerical methods (e.g binomial trees or finite differences) allows to consider finite-time horizons.
- As for the spanning asset assumption, the absence of perfect correlation with a financial asset leads to an incomplete market.
- Replication arguments can no longer be applied to value managerial opportunities.
- Instead, one needs to rely on risk preferences.
- The most widespread way to do this in the strategic decision making literature is to introduce a risk adjusted discount factor, which replaces the risk-free rate, and use dynamic programming.
- This approach lacks the intuitive understanding of opportunities as options.

We treat an investment opportunity as an option on a non-traded asset and price it using the framework of indifference pricing.

- We treat an investment opportunity as an option on a non-traded asset and price it using the framework of indifference pricing.
- For investments with a fixed exercise date (European option), this problem was treated, for instance, in Hobson and Henderson (2002).

- We treat an investment opportunity as an option on a non-traded asset and price it using the framework of indifference pricing.
- For investments with a fixed exercise date (European option), this problem was treated, for instance, in Hobson and Henderson (2002).
- ► For early exercise investment (American option), the problem was solved in Herderson (2005) for the case of infinite time horizon.

- We treat an investment opportunity as an option on a non-traded asset and price it using the framework of indifference pricing.
- For investments with a fixed exercise date (European option), this problem was treated, for instance, in Hobson and Henderson (2002).
- For early exercise investment (American option), the problem was solved in Herderson (2005) for the case of infinite time horizon.
- A different utility-based framework (not using indifference pricing), was treated in Hugonnier and Morellec (2004), using the effect of shareholders control on the wealth of a risk averse manager.

- We treat an investment opportunity as an option on a non-traded asset and price it using the framework of indifference pricing.
- For investments with a fixed exercise date (European option), this problem was treated, for instance, in Hobson and Henderson (2002).
- For early exercise investment (American option), the problem was solved in Herderson (2005) for the case of infinite time horizon.
- A different utility-based framework (not using indifference pricing), was treated in Hugonnier and Morellec (2004), using the effect of shareholders control on the wealth of a risk averse manager.
- For finite time horizons, a different version of the problem was solved Porchet, Touzi and Warin (2008) using the reflected BSDEs approach introduced in complete markets by Hamadène and Jeanblanc (2007).

A gentle introduction to BSDEs in Finance

► Given a terminal random variable ξ ∈ 𝓕_T and a generator function f(t, y, z), a solution of a backward SDE is a pair of adapted processes (Y, Z) satisfying

$$Y_t = \xi - \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z'_s dW_s, \qquad (1)$$

or equivalently

$$dY_t = f(t, Y_t, Z_t)dt + Z'_t dW_t$$
(2)
$$Y_T = \xi$$
(3)

A gentle introduction to BSDEs in Finance

Given a terminal random variable ξ ∈ F_T and a generator function f(t, y, z), a solution of a backward SDE is a pair of adapted processes (Y, Z) satisfying

$$Y_t = \xi - \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z'_s dW_s, \qquad (1)$$

or equivalently

$$dY_t = f(t, Y_t, Z_t)dt + Z'_t dW_t$$
(2)

$$Y_{\mathcal{T}} = \xi \tag{3}$$

Theorem (Pardoux/Peng 1990): If ξ is square-integrable and f is uniformly Lipschitz, then the BSDE has a unique square-integrable solution. First example: pricing and hedging in a complete market

Consider the market

$$dB_t = B_t r_r dt, \qquad (4)$$

$$dS_t^i = S_t^i \left[\mu_t dt + \sum_{j=1}^n \sigma_t^{ij} dW_t^j \right] \qquad (5)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○三 - のへで

First example: pricing and hedging in a complete market

Consider the market

$$dB_t = B_t r_r dt, \qquad (4)$$

$$dS_t^i = S_t^i \left[\mu_t dt + \sum_{j=1}^n \sigma_t^{ij} dW_t^j \right] \qquad (5)$$

• Given a claim $\xi \geq 0$, we look for a portfolio (V, π) satisfying

$$dX_t = r_t X_t dt + \pi'_t \sigma (dW_t + \lambda_t dt)$$
(6)

$$X_T = \xi \tag{7}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\mu_t - r\mathbf{1}_d = \sigma \lambda_t$

First example: pricing and hedging in a complete market

Consider the market

$$dB_t = B_t r_r dt, \qquad (4)$$

$$dS_t^i = S_t^i \left[\mu_t dt + \sum_{j=1}^n \sigma_t^{ij} dW_t^j \right] \qquad (5)$$

• Given a claim $\xi \geq 0$, we look for a portfolio (V, π) satisfying

$$dX_t = r_t X_t dt + \pi'_t \sigma (dW_t + \lambda_t dt)$$
(6)

$$X_T = \xi \tag{7}$$

where $\mu_t - r\mathbf{1}_d = \sigma \lambda_t$

▶ We see that this corresponds to a linear BSDE with

$$Y_t = X_t \tag{8}$$

$$Z_t = \sigma' \pi_t \tag{9}$$

$$f(t, Y_t, Z_t) = rY_t + \lambda'_t Z_t \tag{10}$$

For given (t, x), let $S_s^{t,x}$ be the solution of the forward SDE

$$S_s = x + \int_t^s \mu(u, S_u) du + \int_t^s \sigma(u, S_u) dWu, \quad t \le s \le T$$
 (11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

For given (t, x), let $S_s^{t,x}$ be the solution of the forward SDE

$$S_s = x + \int_t^s \mu(u, S_u) du + \int_t^s \sigma(u, S_u) dWu, \quad t \le s \le T$$
 (11)

Consider than the associated BSDE

$$Y_{s} = \Phi(S_{T}^{t,x}) - \int_{s}^{T} f(u, S_{u}^{t,x}, Y_{u}, Z_{u}) du - \int_{s}^{T} Z_{u}' dW_{u}$$
(12)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

For given (t, x), let $S_s^{t,x}$ be the solution of the forward SDE

$$S_s = x + \int_t^s \mu(u, S_u) du + \int_t^s \sigma(u, S_u) dWu, \quad t \le s \le T$$
 (11)

Consider than the associated BSDE

$$Y_{s} = \Phi(S_{T}^{t,x}) - \int_{s}^{T} f(u, S_{u}^{t,x}, Y_{u}, Z_{u}) du - \int_{s}^{T} Z_{u}' dW_{u}$$
(12)

(日) (同) (三) (三) (三) (○) (○)

When the coefficients satisfy certain Lipschitz and growth conditions, it can be shown that the solution can be written as Y^{t,x}_s = u(s, S^{t,x}) and Z^{t,x}_s = σ'v(s, S^{t,x}_s) for deterministic Borel functions u(·, ·) and v(·, ·).

For given (t, x), let $S_s^{t,x}$ be the solution of the forward SDE

$$S_s = x + \int_t^s \mu(u, S_u) du + \int_t^s \sigma(u, S_u) dWu, \quad t \le s \le T$$
 (11)

Consider than the associated BSDE

$$Y_{s} = \Phi(S_{T}^{t,x}) - \int_{s}^{T} f(u, S_{u}^{t,x}, Y_{u}, Z_{u}) du - \int_{s}^{T} Z_{u}' dW_{u}$$
(12)

- When the coefficients satisfy certain Lipschitz and growth conditions, it can be shown that the solution can be written as Y^{t,x}_s = u(s, S^{t,x}) and Z^{t,x}_s = σ'v(s, S^{t,x}_s) for deterministic Borel functions u(·, ·) and v(·, ·).
- Under additional regularity conditions on f and Φ (such as uniform continuity in x), it can be shown that the function u(t,x) = Y_t^{t,x} is a viscosity solution of the PDE

$$u_t + \mathcal{L}u - f(t, x, u, \sigma' u_x) = 0, \qquad (13)$$

where \mathcal{L} is the generator of S_t .

Second example: utility maximization

• Now let $r_t = 0$ and consider the market

$$dS_t^i = S_t^i \left[\mu_t^i dt + \sum_{j=1}^n \sigma_t^{ij} dW_t^j \right], \quad i = 1, \dots, d \le n.$$
 (14)

where μ_t^i, σ_t^{ij} are predictable uniformly bounded, σ_t is uniformly elliptic and let λ_t be a solution of

$$\sigma_t \lambda_t = \mu_t. \tag{15}$$

Second example: utility maximization

• Now let $r_t = 0$ and consider the market

$$dS_t^i = S_t^i \left[\mu_t^i dt + \sum_{j=1}^n \sigma_t^{ij} dW_t^j \right], \quad i = 1, \dots, d \le n.$$
 (14)

where μ_t^i, σ_t^{ij} are predictable uniformly bounded, σ_t is uniformly elliptic and let λ_t be a solution of

$$\sigma_t \lambda_t = \mu_t. \tag{15}$$

As before, the wealth in a self-financing portfolio satisfies

$$X_t^{\pi} = x + \int_0^t \pi'_s \sigma_s (dW_s + \lambda_s ds)$$
(16)

Second example: utility maximization

• Now let $r_t = 0$ and consider the market

$$dS_t^i = S_t^i \left[\mu_t^i dt + \sum_{j=1}^n \sigma_t^{ij} dW_t^j \right], \quad i = 1, \dots, d \le n.$$
 (14)

where μ_t^i, σ_t^{ij} are predictable uniformly bounded, σ_t is uniformly elliptic and let λ_t be a solution of

$$\sigma_t \lambda_t = \mu_t. \tag{15}$$

As before, the wealth in a self-financing portfolio satisfies

$$X_t^{\pi} = x + \int_0^t \pi'_s \sigma_s(dW_s + \lambda_s ds)$$
(16)

We are then interested in the optimization problem

$$u(x) := \sup_{\pi \in \mathcal{A}} E\left[-e^{-\gamma(X_T^{\pi} + B)}\right]$$
(17)

▶ To solve (17), we follow Hu/Imkeller/Muller (2004) and look for a family of processes R^{π} such that

 To solve (17), we follow Hu/Imkeller/Muller (2004) and look for a family of processes R^π such that

$$\blacktriangleright R_T^{\pi} = U(X_T^{\pi} + B)$$

► To solve (17), we follow Hu/Imkeller/Muller (2004) and look for a family of processes R^π such that

$$R_T^{\pi} = U(X_T^{\pi} + B)$$

•
$$R_0^{\pi} = R_0$$
 for all $\pi \in \mathcal{A}$.

 To solve (17), we follow Hu/Imkeller/Muller (2004) and look for a family of processes R^π such that

- $\blacktriangleright R_T^{\pi} = U(X_T^{\pi} + B)$
- $R_0^{\pi} = R_0$ for all $\pi \in \mathcal{A}$.
- R_t^{π} is a supermartingale for all $\pi \in \mathcal{A}$.

- To solve (17), we follow Hu/Imkeller/Muller (2004) and look for a family of processes R^π such that
 - $\blacktriangleright R_T^{\pi} = U(X_T^{\pi} + B)$
 - $R_0^{\pi} = R_0$ for all $\pi \in \mathcal{A}$.
 - R_t^{π} is a supermartingale for all $\pi \in \mathcal{A}$.
 - There exists a $\pi^* \in \mathcal{A}$ such that $R_t^{\pi^*}$ is a martingale.

- ► To solve (17), we follow Hu/Imkeller/Muller (2004) and look for a family of processes R^π such that
 - $\blacktriangleright R_T^{\pi} = U(X_T^{\pi} + B)$
 - $R_0^{\pi} = R_0$ for all $\pi \in \mathcal{A}$.
 - R_t^{π} is a supermartingale for all $\pi \in \mathcal{A}$.
 - There exists a $\pi^* \in \mathcal{A}$ such that $R_t^{\pi^*}$ is a martingale.

To construct such family we set

$$R_t^{\pi} := -e^{-\gamma(X_t^{\pi} + Y_t^{\mathcal{B}})}, \tag{18}$$

- To solve (17), we follow Hu/Imkeller/Muller (2004) and look for a family of processes R^π such that
 - $\blacktriangleright R_T^{\pi} = U(X_T^{\pi} + B)$
 - $R_0^{\pi} = R_0$ for all $\pi \in \mathcal{A}$.
 - R_t^{π} is a supermartingale for all $\pi \in \mathcal{A}$.
 - There exists a $\pi^* \in \mathcal{A}$ such that $R_t^{\pi^*}$ is a martingale.
- To construct such family we set

$$R_t^{\pi} := -e^{-\gamma(X_t^{\pi} + Y_t^{\mathcal{B}})}, \tag{18}$$

(日) (同) (三) (三) (三) (○) (○)

• Here (Y^B, Z) is a solution of the BSDE

$$Y_t^B = B - \int_t^T f(s, Z_s) ds - \int_t^T Z_s' dW_s, \qquad (19)$$

for a function f to be determined.
To determine f, we write R^π_t as the product of a local martingale and a decreasing process.

- To determine f, we write R^π_t as the product of a local martingale and a decreasing process.
- Using the definitions of X^{π} and Y_t we find

$$\begin{aligned} R_t^{\pi} &= -e^{\gamma(x-Y_0)}e^{-\gamma\left[\int_0^t (\pi_s'\sigma_s + Z_s')dW + \int_0^t (\pi_s'\sigma_s\lambda + f(s,Y_s,Z_s)ds)\right]} \\ &= -e^{\gamma(x-Y_0)}e^{-\gamma\int_0^t (\pi_s'\sigma_s + Z_s')dW - \frac{1}{2}\int_0^t \gamma^2 \|\pi_s'\sigma_s + Z_s'\|^2 ds}e^{\int_0^t v(s,\pi_s,Z_s)ds}, \end{aligned}$$

・ロト・日本・モート モー うへぐ

where
$$v(t, \pi, z) = -\gamma \pi' \sigma_t \lambda_t - \gamma f(t, z) + \frac{1}{2} \gamma^2 ||\pi' \sigma_t + z'||^2$$
.

- To determine f, we write R^π_t as the product of a local martingale and a decreasing process.
- Using the definitions of X^{π} and Y_t we find

$$\begin{aligned} R_t^{\pi} &= -e^{\gamma(x-Y_0)}e^{-\gamma\left[\int_0^t (\pi_s'\sigma_s + Z_s')dW + \int_0^t (\pi_s'\sigma_s\lambda + f(s,Y_s,Z_s)ds)\right]} \\ &= -e^{\gamma(x-Y_0)}e^{-\gamma\int_0^t (\pi_s'\sigma_s + Z_s')dW - \frac{1}{2}\int_0^t \gamma^2 \|\pi_s'\sigma_s + Z_s'\|^2 ds}e^{\int_0^t v(s,\pi_s,Z_s)ds}, \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $v(t, \pi, z) = -\gamma \pi' \sigma_t \lambda_t - \gamma f(t, z) + \frac{1}{2} \gamma^2 ||\pi' \sigma_t + z'||^2$. • We therefore seek for f such that $v(t, \pi_t, Z_t) \ge 0$ for all $\pi_t \in \mathcal{A}$ and $v(t, \pi_t^*, Z_t) = 0$ for some $\pi_t^* \in \mathcal{A}$.

- ► To determine f, we write R^π_t as the product of a local martingale and a decreasing process.
- Using the definitions of X^{π} and Y_t we find

$$R_{t}^{\pi} = -e^{\gamma(x-Y_{0})}e^{-\gamma\left[\int_{0}^{t}(\pi'_{s}\sigma_{s}+Z'_{s})dW + \int_{0}^{t}(\pi'_{s}\sigma_{s}\lambda + f(s,Y_{s},Z_{s})ds)\right]}$$

= $-e^{\gamma(x-Y_{0})}e^{-\gamma\int_{0}^{t}(\pi'_{s}\sigma_{s}+Z'_{s})dW - \frac{1}{2}\int_{0}^{t}\gamma^{2}||\pi'_{s}\sigma_{s}+Z'_{s}||^{2}ds}e^{\int_{0}^{t}v(s,\pi_{s},Z_{s})ds}$

where $v(t, \pi, z) = -\gamma \pi' \sigma_t \lambda_t - \gamma f(t, z) + \frac{1}{2} \gamma^2 ||\pi' \sigma_t + z'||^2$.

- We therefore seek for f such that $v(t, \pi_t, Z_t) \ge 0$ for all $\pi_t \in \mathcal{A}$ and $v(t, \pi_t^*, Z_t) = 0$ for some $\pi_t^* \in \mathcal{A}$.
- Rearranging terms in v, we see that it suffices to take

$$f(t,z) = z\lambda_t - \frac{1}{2\gamma} \|\lambda_t\|^2$$
(20)

$$\pi_t^* \sigma_t = \frac{\lambda_t}{\gamma} - Z_t \tag{21}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- To determine f, we write R^π_t as the product of a local martingale and a decreasing process.
- Using the definitions of X^{π} and Y_t we find

$$\begin{aligned} R_t^{\pi} &= -e^{\gamma(x-Y_0)} e^{-\gamma \left[\int_0^t (\pi_s' \sigma_s + Z_s') dW + \int_0^t (\pi_s' \sigma_s \lambda + f(s, Y_s, Z_s) ds)\right]} \\ &= -e^{\gamma(x-Y_0)} e^{-\gamma \int_0^t (\pi_s' \sigma_s + Z_s') dW - \frac{1}{2} \int_0^t \gamma^2 \|\pi_s' \sigma_s + Z_s'\|^2 ds} e^{\int_0^t v(s, \pi_s, Z_s) ds}, \end{aligned}$$

where $v(t, \pi, z) = -\gamma \pi' \sigma_t \lambda_t - \gamma f(t, z) + \frac{1}{2} \gamma^2 ||\pi' \sigma_t + z'||^2$.

- We therefore seek for f such that $v(t, \pi_t, Z_t) \ge 0$ for all $\pi_t \in \mathcal{A}$ and $v(t, \pi_t^*, Z_t) = 0$ for some $\pi_t^* \in \mathcal{A}$.
- Rearranging terms in v, we see that it suffices to take

$$f(t,z) = z\lambda_t - \frac{1}{2\gamma} \|\lambda_t\|^2$$
(20)

$$\pi_t^* \sigma_t = \frac{\lambda_t}{\gamma} - Z_t \tag{21}$$

► This can be extended for the case of constrained portfolios.

Given a terminal condition ξ, a generator function f(t, y, z) and an obstacle C_t with C_T ≤ ξ, a solution of a reflected BSDE is a triple (Y_t, Z_t, A_t) satisfying

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a terminal condition ξ, a generator function f(t, y, z) and an obstacle C_t with C_T ≤ ξ, a solution of a reflected BSDE is a triple (Y_t, Z_t, A_t) satisfying

1.
$$Y_t = \xi - \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z'_s dW_s + (A_T - A_t),$$

• Given a terminal condition ξ , a generator function f(t, y, z)and an obstacle C_t with $C_T \leq \xi$, a solution of a reflected BSDE is a triple (Y_t, Z_t, A_t) satisfying

1.
$$Y_t = \xi - \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z'_s dW_s + (A_T - A_t),$$

2. $Y_t \ge C_t$

• Given a terminal condition ξ , a generator function f(t, y, z)and an obstacle C_t with $C_T \leq \xi$, a solution of a reflected BSDE is a triple (Y_t, Z_t, A_t) satisfying

1.
$$Y_t = \xi - \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z'_s dW_s + (A_T - A_t),$$

2. $Y_t \ge C_t$

3. A_t is continuous, increasing, $A_0 = 0$, and $\int_0^t (Y_t - C_t) dA_t = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a terminal condition ξ, a generator function f(t, y, z) and an obstacle C_t with C_T ≤ ξ, a solution of a reflected BSDE is a triple (Y_t, Z_t, A_t) satisfying

1.
$$Y_t = \xi - \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z'_s dW_s + (A_T - A_t),$$

2. $Y_t \ge C_t$

3. A_t is continuous, increasing, $A_0 = 0$, and $\int_0^t (Y_t - C_t) dA_t = 0$.

Proposition (El Karoui et al - 1997): Under further square-integrability conditions on (Y_t, Z_t, A_t) we have that

$$Y_t = \operatorname{ess\,sup}_{\tau} E\left[-\int_t^{\tau} f(s, Y_s, Z_s) ds + C_{\tau} \mathbb{1}_{\{\tau < T\}} + \xi \mathbb{1}_{\{\tau = T\}} |\mathcal{F}_t\right]$$

The obstacle problem for PDEs

 Consider again the solution S^{t,x} for the forward SDE (11) and let

$$\xi = \Phi(S_T^{t,x})$$

$$C_s = g(s, S_s^{t,x})$$

$$f(s, y, z) = f(s, S_s^{t,x}, y, z)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The obstacle problem for PDEs

Consider again the solution S^{t,x} for the forward SDE (11) and let

$$\xi = \Phi(S_T^{t,x})$$

$$C_s = g(s, S_s^{t,x})$$

$$f(s, y, z) = f(s, S_s^{t,x}, y, z)$$

Then, under certain continuity, integrability and growth conditions for Φ, g, f, it can be shown that the function u(t,x) = Y_t^{t,x} is a viscosity solution of the obstacle problem

$$\min[-u_t - \mathcal{L}u - f(t, x, u, \sigma'u_x), u(t, x) - h(t, x)] = 0$$
$$u(\mathcal{T}, x) = \Phi(x)$$

(ロ)、

• Let
$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$
.

• Let
$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$
.

It is well-known that the price of an American put option on S_t is given by the Snell envelope

$$P_t = \operatorname{ess\,sup}_{\tau} E^Q[e^{-r(\tau-t)}(K-S_{\tau})^+|\mathcal{F}_t].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let
$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$
.

It is well-known that the price of an American put option on S_t is given by the Snell envelope

$$P_t = \operatorname{ess\,sup}_{\tau} E^Q[e^{-r(\tau-t)}(K-S_{\tau})^+|\mathcal{F}_t].$$

We can see that this corresponds to a reflected BSDE with

$$Y_t = e^{-rt} P_t, \qquad f(t, y, z) = 0$$

 $\xi = e^{-rT} (K - S_T)^+, \quad C_t = e^{-rt} (K - S_t)^+$

• Let
$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$
.

It is well-known that the price of an American put option on S_t is given by the Snell envelope

$$P_t = \operatorname{ess\,sup}_{\tau} E^Q[e^{-r(\tau-t)}(K-S_{\tau})^+|\mathcal{F}_t].$$

We can see that this corresponds to a reflected BSDE with

$$Y_t = e^{-rt} P_t, \qquad f(t, y, z) = 0$$

 $\xi = e^{-rT} (K - S_T)^+, \quad C_t = e^{-rt} (K - S_t)^+$

• Moreover, setting $u(t, S_t) = e^{-rt}P_t$, we have that

$$\max[u_t + \mathcal{L}u_t e^{-rt}(K - x)^+ - u(t, x)] = 0$$
$$u(T, x) = e^{-rT}(K - S_T)^+$$

Again let r_t = 0 and a two-factor model where discounted prices are given by

$$dS_t = \mu_1 S_t dt + \sigma_1 S_t dW_t^1$$

$$dV_t = \mu_2 V_t dt + \sigma_2 V_t (\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Again let r_t = 0 and a two-factor model where discounted prices are given by

$$dS_t = \mu_1 S_t dt + \sigma_1 S_t dW_t^1$$

$$dV_t = \mu_2 V_t dt + \sigma_2 V_t (\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2)$$

In our previous notation this corresponds to

$$\sigma = \begin{pmatrix} \sigma_1 & 0\\ \sigma_2 \rho & \sigma_2 \sqrt{1 - \rho^2} \end{pmatrix}, \quad \lambda = \begin{pmatrix} \mu_1/\sigma_1 \\ \frac{1}{\sqrt{1 - \rho^2}} [\mu_2/\sigma_2 - \rho\mu_1/\sigma_1] \end{pmatrix}$$

・ロト・日本・モート モー うへぐ

Again let r_t = 0 and a two-factor model where discounted prices are given by

$$dS_t = \mu_1 S_t dt + \sigma_1 S_t dW_t^1$$

$$dV_t = \mu_2 V_t dt + \sigma_2 V_t (\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2)$$

In our previous notation this corresponds to

$$\sigma = \begin{pmatrix} \sigma_1 & 0\\ \sigma_2 \rho & \sigma_2 \sqrt{1 - \rho^2} \end{pmatrix}, \quad \lambda = \begin{pmatrix} \mu_1/\sigma_1\\ \frac{1}{\sqrt{1 - \rho^2}} [\mu_2/\sigma_2 - \rho\mu_1/\sigma_1] \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Here S_t represents the price of a traded asset, whereas V_t is the current value of a project.

Again let r_t = 0 and a two-factor model where discounted prices are given by

$$dS_t = \mu_1 S_t dt + \sigma_1 S_t dW_t^1$$

$$dV_t = \mu_2 V_t dt + \sigma_2 V_t (\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2)$$

In our previous notation this corresponds to

$$\sigma = \begin{pmatrix} \sigma_1 & 0\\ \sigma_2 \rho & \sigma_2 \sqrt{1 - \rho^2} \end{pmatrix}, \quad \lambda = \begin{pmatrix} \mu_1/\sigma_1\\ \frac{1}{\sqrt{1 - \rho^2}} [\mu_2/\sigma_2 - \rho\mu_1/\sigma_1] \end{pmatrix}$$

- Here S_t represents the price of a traded asset, whereas V_t is the current value of a project.
- We then model investment in the project as an American call option on V with strike price equals to the sunk cost, which is assumed to grow at rate r_t for simplicity.

Consider then an agent trying to solve the Merton problem

$$u^{0}(t,x) = \sup_{\pi} \mathbb{E}[-e^{-\gamma X_{T}^{\pi}}|X_{t}=x]$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Consider then an agent trying to solve the Merton problem

$$u^{0}(t,x) = \sup_{\pi} \mathbb{E}[-e^{-\gamma X_{T}^{\pi}}|X_{t}=x]$$

• Here π_t is the amount invested in the stock at time t and

$$dX_t = \pi_t \frac{dS_t}{S_t} = \pi_t \sigma (dW_t^1 + \lambda_1 ds).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Consider then an agent trying to solve the Merton problem

$$u^{0}(t,x) = \sup_{\pi} \mathbb{E}[-e^{-\gamma X_{T}^{\pi}}|X_{t}=x]$$

• Here π_t is the amount invested in the stock at time t and

$$dX_t = \pi_t \frac{dS_t}{S_t} = \pi_t \sigma (dW_t^1 + \lambda_1 ds).$$

We denote the solution to this Merton problem by

$$M(t,x) = -e^{-\gamma x}e^{-\frac{\mu^2}{2\sigma^2}(T-t)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider then an agent trying to solve the Merton problem

$$u^{0}(t,x) = \sup_{\pi} \mathbb{E}[-e^{-\gamma X_{T}^{\pi}}|X_{t}=x]$$

• Here π_t is the amount invested in the stock at time t and

$$dX_t = \pi_t \frac{dS_t}{S_t} = \pi_t \sigma (dW_t^1 + \lambda_1 ds).$$

We denote the solution to this Merton problem by

$$M(t,x) = -e^{-\gamma x}e^{-\frac{\mu^2}{2\sigma^2}(T-t)}$$

Finally, consider the modified problem

$$u(t, x, v) = \sup_{\pi, \tau} \mathbb{E}[M(\tau, X_{\tau}^{\pi} + (V_{\tau} - I)^{+})|X_{t} = x, V_{t} = v].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider then an agent trying to solve the Merton problem

$$u^{0}(t,x) = \sup_{\pi} \mathbb{E}[-e^{-\gamma X_{T}^{\pi}}|X_{t}=x]$$

• Here π_t is the amount invested in the stock at time t and

$$dX_t = \pi_t \frac{dS_t}{S_t} = \pi_t \sigma (dW_t^1 + \lambda_1 ds).$$

We denote the solution to this Merton problem by

$$M(t,x) = -e^{-\gamma x}e^{-\frac{\mu^2}{2\sigma^2}(T-t)}$$

Finally, consider the modified problem

$$u(t, x, v) = \sup_{\pi, \tau} \mathbb{E}[M(\tau, X_{\tau}^{\pi} + (V_{\tau} - I)^{+})|X_{t} = x, V_{t} = v].$$

The indifference price for the option to invest in the project is the value p satisfying

$$u^0(x)=u(x-p,v)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

System of reflected BSDEs

From our previous example $u^0(x) = -e^{-\gamma(x+Y_0^1)}$ where

$$Y_{t}^{1} = -\int_{t}^{T} f^{1}(Z_{t}^{1}) dt - \int_{t}^{T} Z_{t}^{1} \cdot dW_{t}, \qquad (22)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

for $f^1(z_1, z_2) = z_1 \lambda_1 - \frac{\lambda_1^2}{2\gamma}$.

System of reflected BSDEs

From our previous example $u^0(x) = -e^{-\gamma(x+Y_0^1)}$ where

$$Y_t^1 = -\int_t^T f^1(Z_t^1) dt - \int_t^T Z_t^1 \cdot dW_t,$$
 (22)

for
$$f^1(z_1,z_2)=z_1\lambda_1-rac{\lambda_1^2}{2\gamma}.$$

• Similarly, we will show that $u(x, v) = -e^{-\gamma(x+Y_0^2)}$ where

$$\begin{split} Y_t^2 &= (V_T - I)^+ - \int_t^T f^2(Z_t^2) dt - \int_t^T Z_t^2 \cdot dW_t + (A_T - A_t) \\ Y_t^2 &\geq (V_t - I)^+ + Y_t^1 \\ A_0 &= 0, \quad \int_0^T (Y_t^2 - (V_t - I)^+ - Y_t^1) dA_t = 0. \end{split}$$

for
$$f^2(z_1, z_2) = \frac{\gamma}{2} \left(\frac{\lambda_2}{\gamma} - z_2\right)^2 + z \cdot \lambda - \frac{\|\lambda\|^2}{2\gamma}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

For this choices, it follows that R^π_t = −e^{γ(X^π_t+Y²_t)} is a supermartingale for any π.

- For this choices, it follows that R^π_t = −e^{γ(X^π_t+Y²_t)} is a supermartingale for any π.
- Now let $0 \le \tau T$ be an arbitrary stopping time, $\pi \in \mathcal{A}_{[0,\tau]}$ and $\bar{\pi} \in \mathcal{A}(\tau, T]$. From the dynamic principle satisfied by $Y^1 + t$ it follows that

$$\mathbb{E}\left[-e^{-\gamma\left(X_{\tau}^{\pi}+(V_{\tau}-I)^{+}+\int_{\tau}^{T}\bar{\pi}\frac{dS}{S}\right)}\right] \leq -e^{-\gamma\left(X_{\tau}^{\pi}+(V_{\tau}-I)^{+}+Y_{\tau}^{1}\right)}$$

- For this choices, it follows that R^π_t = −e^{γ(X^π_t+Y²_t)} is a supermartingale for any π.
- Now let $0 \le \tau T$ be an arbitrary stopping time, $\pi \in \mathcal{A}_{[0,\tau]}$ and $\bar{\pi} \in \mathcal{A}(\tau, T]$. From the dynamic principle satisfied by $Y^1 + t$ it follows that

$$\mathbb{E}\left[-e^{-\gamma\left(X_{\tau}^{\pi}+(V_{\tau}-I)^{+}+\int_{\tau}^{T}\bar{\pi}\frac{dS}{S}\right)}\right]\leq-e^{-\gamma\left(X_{\tau}^{\pi}+(V_{\tau}-I)^{+}+Y_{\tau}^{1}\right)}$$

We then have

$$\mathbb{E}\left[-e^{-\gamma\left(X^{\pi}_{ au}+(V_{ au}-I)^++Y^1_{ au}
ight)}
ight]\leq\mathbb{E}\left[-e^{-\gamma\left(X^{\pi}_{ au}+Y^2_{ au}
ight)}
ight] \ \leq -e^{-\gamma\left(x+Y^2_0
ight)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For this choices, it follows that R^π_t = −e^{γ(X^π_t+Y²_t)} is a supermartingale for any π.
- Now let $0 \le \tau T$ be an arbitrary stopping time, $\pi \in \mathcal{A}_{[0,\tau]}$ and $\bar{\pi} \in \mathcal{A}(\tau, T]$. From the dynamic principle satisfied by $Y^1 + t$ it follows that

$$\mathbb{E}\left[-e^{-\gamma\left(X_{\tau}^{\pi}+(V_{\tau}-I)^{+}+\int_{\tau}^{T}\bar{\pi}\frac{dS}{S}\right)}\right]\leq -e^{-\gamma\left(X_{\tau}^{\pi}+(V_{\tau}-I)^{+}+Y_{\tau}^{1}\right)}$$

We then have

$$\mathbb{E}\left[-e^{-\gamma\left(X^{\pi}_{ au}+(V_{ au}-I)^++Y^1_{ au}
ight)}
ight]\leq\mathbb{E}\left[-e^{-\gamma\left(X^{\pi}_{ au}+Y^2_{ au}
ight)}
ight] \leq -e^{-\gamma\left(x+Y^2_0
ight)}$$

We obtain equalities by setting

$$\tau^* = \inf\{0 \le t \le T : Y_t^2 = (V_t - I)^+ + Y_t^1\}$$

$$\pi_t^* \sigma = \begin{cases} \lambda_1 / \gamma - Z_{1,t}^2 & 0 \le t \le \tau^* \\ \lambda_1 / \gamma - Z_{1,t}^1 & \tau < t \le T \end{cases}$$

The indifference price process

From the definition it is then clear that $p = Y_0^2 - Y_0^1$.

The indifference price process

- From the definition it is then clear that $p = Y_0^2 Y_0^1$.
- Moreover, we have that the process p_t := Y_t² Y_t¹ satisfies the reflected BSDE

$$p_t = (V_T - I)^+ - \int_t^T f(Z_t) dt - \int_t^T Z_t \cdot dW_t + (A_T - A_t)$$

 $p_t \ge (V_t - I)^+, \quad A_0 = 0, \quad \int_0^T (p_t - (V_t - I)^+) dA_t = 0,$

where $f(z_1, z_2) = z_1 \lambda_1 + \frac{\gamma}{2} (z_2)^2$

The indifference price process

- From the definition it is then clear that $p = Y_0^2 Y_0^1$.
- Moreover, we have that the process p_t := Y_t² Y_t¹ satisfies the reflected BSDE

$$p_t = (V_T - I)^+ - \int_t^T f(Z_t) dt - \int_t^T Z_t \cdot dW_t + (A_T - A_t)$$

 $p_t \ge (V_t - I)^+, \quad A_0 = 0, \quad \int_0^T (p_t - (V_t - I)^+) dA_t = 0,$

where $f(z_1, z_2) = z_1 \lambda_1 + \frac{\gamma}{2} (z_2)^2$

We can then characterize the indifference price as the initial value of the viscosity solution of an obstacle problem and calculate it numerically.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sensitivities of indifference price

Using comparison results for solutions of reflected BSDEs we can deduce the following properties for both the indifference price and the investment threshold.

Sensitivities of indifference price

Using comparison results for solutions of reflected BSDEs we can deduce the following properties for both the indifference price and the investment threshold.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If $|\rho_1| \le |\rho_2|$ then $p(\rho_1) \le p(\rho_2)$.
Using comparison results for solutions of reflected BSDEs we can deduce the following properties for both the indifference price and the investment threshold.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- If $|\rho_1| \leq |\rho_2|$ then $p(\rho_1) \leq p(\rho_2)$.
- If $\gamma_1 \leq \gamma_2$ then $p(\gamma_1) \geq p(\gamma_2)$.

- Using comparison results for solutions of reflected BSDEs we can deduce the following properties for both the indifference price and the investment threshold.
- If $|\rho_1| \leq |\rho_2|$ then $p(\rho_1) \leq p(\rho_2)$.
- If $\gamma_1 \leq \gamma_2$ then $p(\gamma_1) \geq p(\gamma_2)$.
- ▶ Define δ := μ
 ₂ − μ₂, where μ
 ₂ is the equilibrium rate for a financial asset with volatility σ₂.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Using comparison results for solutions of reflected BSDEs we can deduce the following properties for both the indifference price and the investment threshold.
- If $|\rho_1| \le |\rho_2|$ then $p(\rho_1) \le p(\rho_2)$.

• If
$$\gamma_1 \leq \gamma_2$$
 then $p(\gamma_1) \geq p(\gamma_2)$.

▶ Define δ := μ
₂ − μ₂, where μ
₂ is the equilibrium rate for a financial asset with volatility σ₂.

• If $-\frac{\sigma_2^2}{2} \leq \delta_1 \leq \delta_2$ then $p(\delta_1) \geq p(\delta_2)$.

- Using comparison results for solutions of reflected BSDEs we can deduce the following properties for both the indifference price and the investment threshold.
- If $|\rho_1| \leq |\rho_2|$ then $p(\rho_1) \leq p(\rho_2)$.
- If $\gamma_1 \leq \gamma_2$ then $p(\gamma_1) \geq p(\gamma_2)$.
- ▶ Define δ := μ
 ₂ − μ₂, where μ
 ₂ is the equilibrium rate for a financial asset with volatility σ₂.
- If $-\frac{\sigma_2^2}{2} \leq \delta_1 \leq \delta_2$ then $p(\delta_1) \geq p(\delta_2)$.
- *p* is an increasing function of σ₂ for δ > 0, but it is decreasing in σ₂ when δ < 0.</p>

Dependence with Correlation and Risk Aversion

◆ロ > ◆母 > ◆臣 > ◆臣 > 「臣 」のへで

Dependence with Dividend Rate

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @

Dependence with Volatility

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

Dependence with Time to Maturity

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Depreciation

Instead of the project value itself, we can model the output cash-flow rate

$$dP_t = \mu_2 P_t dt + \sigma_2 P_t (\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Depreciation

Instead of the project value itself, we can model the output cash-flow rate

$$dP_t = \mu_2 P_t dt + \sigma_2 P_t (
ho dW_t^1 + \sqrt{1 -
ho^2} dW_t^2)$$

If the project has fixed lifetime T
 from moment of investment, then

$$V(P_t) = E\left[\int_0^{\bar{T}} e^{-\bar{\mu}_2 t} P_s ds\right] = \frac{P_t}{\delta} [1 - e^{-\delta \bar{T}}]$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Depreciation

Instead of the project value itself, we can model the output cash-flow rate

$$dP_t = \mu_2 P_t dt + \sigma_2 P_t (
ho dW_t^1 + \sqrt{1 -
ho^2} dW_t^2)$$

If the project has fixed lifetime T

from moment of
investment, then

$$V(P_t) = E\left[\int_0^{\bar{T}} e^{-\bar{\mu}_2 t} P_s ds\right] = \frac{P_t}{\delta} [1 - e^{-\delta \bar{T}}]$$

If the project expires at an exponentially distributed time τ, then

$$V(P_t) = E\left[\int_0^{\tau} e^{-\bar{\mu}_2 t} P_s ds\right] = \frac{P_t}{\lambda + \delta}$$

The previous framework ignores the possibility of negative cash flows arising from the active project, for instance, when operating costs exceed the revenue.

- The previous framework ignores the possibility of negative cash flows arising from the active project, for instance, when operating costs exceed the revenue.
- For a constant operating cost rate C (and no depreciation), we have that

$$V(P_t) = E\left[\int_t^\infty e^{-\bar{\mu}_2 s} P_s ds\right] - \int_t^\infty e^{-rs} C ds = \frac{P_t}{\delta} - \frac{C}{r}$$

- The previous framework ignores the possibility of negative cash flows arising from the active project, for instance, when operating costs exceed the revenue.
- For a constant operating cost rate C (and no depreciation), we have that

$$V(P_t) = E\left[\int_t^\infty e^{-\bar{\mu}_2 s} P_s ds\right] - \int_t^\infty e^{-rs} C ds = \frac{P_t}{\delta} - \frac{C}{r}$$

We now suppose that the active project can be abandoned for a fixed cost E and later restarted at a fixed cost I.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The previous framework ignores the possibility of negative cash flows arising from the active project, for instance, when operating costs exceed the revenue.
- For a constant operating cost rate C (and no depreciation), we have that

$$V(P_t) = E\left[\int_t^\infty e^{-\bar{\mu}_2 s} P_s ds\right] - \int_t^\infty e^{-rs} C ds = \frac{P_t}{\delta} - \frac{C}{r}$$

We now suppose that the active project can be abandoned for a fixed cost E and later restarted at a fixed cost I.

Notice that *E* can be somewhat negative if there is some scrap value to the project, as long as −*I* < *E* < 0.</p>

- The previous framework ignores the possibility of negative cash flows arising from the active project, for instance, when operating costs exceed the revenue.
- For a constant operating cost rate C (and no depreciation), we have that

$$V(P_t) = E\left[\int_t^\infty e^{-\bar{\mu}_2 s} P_s ds\right] - \int_t^\infty e^{-rs} C ds = \frac{P_t}{\delta} - \frac{C}{r}$$

- We now suppose that the active project can be abandoned for a fixed cost E and later restarted at a fixed cost I.
- Notice that E can be somewhat negative if there is some scrap value to the project, as long as −I < E < 0.</p>
- How can we value the combine entry/exit options ?

Investment strategies and stopping times

An entry/exit strategy in this setting is a process

$$\xi_t = \sum_{n \ge 1} \mathbf{1}_{\{\tau_{2n-1} \le t < \tau_{2n}\}}$$

where $\tau_0 = 0$, τ_{2n-1} are investment times and τ_{2n} are abandonment time.

Investment strategies and stopping times

An entry/exit strategy in this setting is a process

$$\xi_t = \sum_{n \ge 1} \mathbf{1}_{\{\tau_{2n-1} \le t < \tau_{2n}\}}$$

where $\tau_0 = 0$, τ_{2n-1} are investment times and τ_{2n} are abandonment time.

For a given ξ , we consider the wealth process

$$\begin{aligned} dX_t^{\pi,\xi} &= \pi_t \sigma(dW_t^1 + \lambda_1 dt), \quad \tau_k \leq t < \tau_{k+1} \\ X_{\tau_{2n-1}}^{\pi,\xi} &= X_{\tau_{2n-1}}^{\pi,\xi} + V(P_{\tau_{2n-1}}) - I \\ X_{\tau_{2n}}^{\pi,\xi} &= X_{\tau_{2n}}^{\pi,\xi} - E \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Utility valuation

We can then show that

$$u(t, x, P) = \sup_{\pi, \xi} E\left[-e^{-\gamma X^{\pi, \xi}} | X_t^{\pi, \xi} = x\right] = -e^{x+Y_0^2},$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Utility valuation

We can then show that

$$u(t, x, P) = \sup_{\pi, \xi} E\left[-e^{-\gamma X^{\pi, \xi}} | X_t^{\pi, \xi} = x\right] = -e^{x+Y_0^2},$$

 Here Y₀² is the solution of the following system of reflected BSDE

$$Y_{t}^{1} = \max(V_{T}, -E) - \int_{t}^{T} f^{1}(Z_{t}^{1})dt - \int_{t}^{T} Z_{t}^{1} \cdot dW_{t} + (A_{T}^{1} - A_{t}^{1})$$

$$Y_{t}^{2} = \max(V_{T} - I, 0) - \int_{t}^{T} f^{2}(Z_{t}^{2})dt - \int_{t}^{T} Z_{t}^{2} \cdot dW_{t} + (A_{T}^{2} - A_{t}^{2})$$

$$Y_{t}^{2} \ge Y_{t}^{1} + (V(P_{t}) - I)^{+}, \qquad Y_{t}^{1} \ge Y_{t}^{2} - E$$

$$A_{0}^{1} = 0, \qquad \int_{0}^{T} (Y_{t}^{1} - Y_{t}^{1} + E)dA_{t}^{1} = 0$$

$$A_{0}^{2} = 0, \qquad \int_{0}^{T} (Y_{t}^{2} - (V(P_{t}) - I)^{+} - Y_{t}^{1})dA_{t}^{2} = 0$$