#### Chaotic Interest Rate Model Calibration

M. Grasselli, T. Tsujimoto

Mathematics and Statistics McMaster University

> UCSB May 18, 2009

## Axiomatic Interest Rate Theory

We follow the axiomatic framework proposed by Hughston and Rafailidis (2005). For this we need:

- ▶ a probability space  $(\Omega, \mathcal{F}, P)$  (physical measure);
- ▶ the augmented filtration  $\mathcal{F}_t$  generated by a k-dimensional Brownian motion  $W_t$ ;
- $\triangleright$  asset prices  $S_t$  given by continuous semimartingales;
- ▶ a non–dividend–paying asset with adapted price process  $\xi_t > 0$  (natural numeraire).

## Axiomatic Interest Rate Theory (continued)

The following axioms define an arbitrage–free interest rate model:

- 1. There exists a strictly increasing asset with absolutely continuous price process  $B_t$  (bank account).
- 2. If  $S_t$  is the price of any asset with an adapted dividend rate  $D_t$  then

$$\frac{S_t}{\xi_t} + \int_0^t \frac{D_s}{\xi_s} ds \qquad \text{is a martingale} \tag{1}$$

- There exists an asset that offers a dividend rate sufficient to ensure that the value of the asset remains constant (floating rate note).
- 4. There exists a system of discount bond price processes  $P_{tT}$  satisfying

$$\lim_{T\to\infty}P_{tT}=0.$$

## The state price density

- ▶ Define  $V_t = 1/\xi_t$  (state price density).
- Since  $B_tV_t$  is a martingale (A2) and  $B_t$  is strictly increasing (A1), we have

$$E_t[V_T] = E_t \left[ \frac{B_T V_T}{B_T} \right] < E_t \left[ \frac{B_T V_T}{B_t} \right] = \frac{B_t V_t}{B_t} = V_t,$$

which means that  $V_t$  is a positive supermartingale.

▶ Writing  $B_t = B_0 \exp\left(\int_0^t r_s ds\right)$  for an adapted process  $r_t > 0$  and

$$d(B_tV_t) = -(B_tV_t)\lambda_t dW_t,$$

for an adapted vector process  $\lambda_t$ , we have that the dynamics for  $V_t$  is

$$dV_t = -r_t V_t dt - V_t \lambda_t dW_t. (2)$$

## Conditional variance representation

▶ Integrating (2), taking conditional expectations and the limit  $T \to \infty$  (all well defined thanks to (A3) and (A4)) leads to

$$V_t = E_t \left[ \int_t^\infty r_s V_s ds \right].$$

Now let  $\sigma_t$  be a vector process satisfying  $\sigma_t^2 = r_t V_t$  and define the square integrable random variable

$$X_{\infty} := \int_0^{\infty} \sigma_s dW_s.$$

It then follows from the Ito isometry that

$$V_t = E_t \left[ (X_\infty - X_t)^2 \right], \tag{3}$$

where  $X_t := E_t[X_{\infty}] = \int_0^t \sigma_s dW_s$ .

## Related quantities and bond prices

▶ Defining  $A_t := [X, X]_t = \int_0^t \sigma_s^2 ds = \int_0^t r_s V_s ds$  leads to the Doob-Meyer decomposition

$$V_t = E_t[A_{\infty}] - A_t$$
 (potential approach)

▶ Defining the family of martingales  $M_{ts} = E_t[\sigma_s^2]$  leads to

$$V_t = \int_t^{\infty} M_{ts} ds$$
 (Flesaker–Hughston approach)

In general, bond prices and forward rates are given by

$$P_{tT} = \frac{E_t[V_T]}{V_t} = \frac{\int_T^{\infty} M_{ts} ds}{\int_t^{\infty} M_{ts} ds}$$
 (4)

$$f_{tT} = -\partial_T \log P_{tT} = \frac{M_{tT}}{\int_{-\tau}^{\infty} M_{ts} ds},$$
 (5)

which are manifestly positive.

#### Wiener chaos

Define the Hermite polynomials

$$H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}$$
 (6)

▶ For  $h \in L^2(\mathbb{R}_+^k)$ , define the Gaussian random variable

$$W(h) := \int_0^\infty h(s)dW_s.$$

▶ Then the Wiener chaos of order n,

$$\begin{split} \mathcal{H}_n &:= & \operatorname{span}\{H_n(W(h))|h \in L^2(\Delta)\}, \quad n \geq 1, \\ \mathcal{H}_0 &:= & \mathbb{C}, \end{split}$$

provide an orthogonal decomposition of square integrable random variables:

$$L^2(\Omega, \mathcal{F}_{\infty}, P) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n.$$

## Wiener chaos expansion

- $\blacktriangleright \text{ Let } \Delta_n := \{(s_1, \dots, s_n) \in \mathbb{R}^n_+ | 0 \le s_n \le \dots \le s_2 < s_1 \le \infty\}.$
- ▶ Each  $\mathcal{H}_n$  can be identified with  $L^2(\Delta_n)$  via the isometries

$$J_n:L^2(\Delta_n)\to\mathcal{H}_n$$

given by

$$\phi_n \mapsto J_n(\phi_n) = \int_{\Delta_n} \phi_n(s_1, \dots, s_n) dW_{s_1} \dots dW_{s_n}, \quad (7)$$

▶ With these ingredients, one is then led to the result that any  $X \in L^2(\Omega, \mathcal{F}_{\infty}, P)$  can be represented as a Wiener chaos expansion

$$X = \sum_{n=0}^{\infty} J_n(\phi_n), \tag{8}$$

where the deterministic functions  $\phi_n \in L^2(\Delta_n)$  are uniquely determined by the random variable X.

#### First order chaos

In a first order chaos model we have

$$X_{\infty} = \int_{0}^{\infty} \phi(s) dW_{s}.$$

▶ In this case  $\sigma_s = \phi(s)$ , so that  $M_{ts} = E_t[\sigma_s^2] = \phi^2(s)$  and

$$V_t = \int_t^\infty M_{ts} ds = \int_t^\infty \phi^2(s) ds$$

▶ This corresponds to a deterministic interest rate theory, since

$$P_{tT} = \frac{\int_{T}^{\infty} \phi^2(s) ds}{\int_{t}^{\infty} \phi^2(s) ds}, \quad f_{tT} = \frac{\phi^2(T)}{\int_{T}^{\infty} \phi^2(s) ds} = r_T.$$

► The remaining asset prices can be stochastic, however. Indeed, for a derivative with payoff H<sub>T</sub> we have

$$H_t = \frac{E_t[V_T H_T]}{V_t} = \frac{V_T}{V_t} E_t[H_T] = P_{tT} E_t[H_T]$$

### Second order chaos: definition

▶ In a second order chaos model we have

$$X_{\infty} = \int_0^{\infty} \phi_1(s) dW_s + \int_0^{\infty} \int_0^s \phi_2(s, u) dW_u dW_s$$

▶ In this case  $M_{ts} = E_t[\sigma_s^2]$  where

$$\sigma_s = \phi_1(s) + \int_0^s \phi_2(s, u) dW_u.$$

Using the Ito isometry we find that

$$M_{ts} = \left(\phi_1(s) + \int_0^t \phi_2(s, u) dW_u\right)^2 + \int_t^s \phi_2^2(s, u) du,$$

which, for each t, is a squared Gaussian RV plus a constant.

## Second order chaos: bond and option prices

▶ Defining  $Z_{tT} = \int_{T}^{\infty} M_{ts} ds$  (integral of a parametric family of squared Gaussian RVs plus a constant), we see that bond prices are given by

$$P_{tT} = \frac{Z_{tT}}{Z_{tt}}.$$

▶ In particular, since  $M_{0s} = \phi_1^2(s) + \int_0^s \phi_2^2(s, u) du$ , it follows that

$$P_{0T} = \frac{\int_{T}^{\infty} \left(\phi_1^2(s) + \int_{0}^{s} \phi_2^2(s, u) du\right) ds}{\int_{s}^{\infty} \left(\phi_2^2(s) + \int_{s}^{s} \phi_2^2(s, u) du\right) ds}.$$

Moreover, the price at time zero of an option with payoff  $(P_{tT} - K)^+$  is

$$ZBC(0,t,T,K) = \frac{1}{V_0} E\left[V_t \left(P_{tT} - K\right)^+\right] = \frac{1}{V_0} E\left[\left(Z_{tT} - KZ_{tt}\right)^+\right],$$

which can be calculated in terms of the joint distribution of  $Z_{tT_1}$  and  $Z_{tT_2}$ .

### Factorizable second order chaos: definition

- ▶ Consider  $\phi_1(s) = \gamma(s)$  and  $\phi_2(s, u) = \beta(s)\gamma(u)$ .
- ▶ Then  $\sigma_s = \phi(s) + \beta(s)R_s$  where

$$R_t = \int_0^t \gamma(s) dW_s$$

is a martingale with quadratic variation  $Q(t) = \int_0^t \gamma^2(s) ds$ .

▶ Therefore

$$M_{ts} = (\alpha^{2}(s) + \beta(s)R_{t})^{2} + \beta^{2}(s)[Q(s) - Q(t)]$$
  
=  $\alpha^{2}(s) + \beta^{2}(s)Q(s) + 2\alpha(s)\beta(s)R_{t} + \beta^{2}(s)(R_{t}^{2} - Q(t))$ 

Notice that the scalar random variable  $R_t$  is the sole state variable for the interest rate model at time t, even in the case of a multidimensional Brownian motion  $W_t$ .

## Factorizable second order chaos: bond prices

▶ Integrating the previous expression gives

$$Z_{tT} = \int_{T}^{\infty} M_{ts} ds = A(T) + B(T)R_t + C(T)(R_t^2 - Q(t)),$$

where

$$A(T) = \int_{t}^{\infty} (\alpha^{2}(s) + \beta^{2}(s)Q(s))ds$$

$$B(T) = 2\int_{T}^{\infty} \alpha(s)\beta(s)ds, \quad C(T) = \int_{T}^{\infty} \beta^{2}(s)ds$$

▶ Therefore

$$V_t = A(t) + B(t)R_t + C(t)(R_t^2 - Q(t))$$

and

$$P_{tT} = \frac{A(T) + B(T)R_t + C(T)(R_t^2 - Q(t))}{A(t) + B(t)R_t + C(t)(R_t^2 - Q(t))}$$

## Factorizable second order chaos: option prices

▶ Fixing t, T and K, it follows that

$$Z_{tT} - KZ_{tt} = A + BY + CY^2,$$

where  $Y = R(t)/\sqrt{Q(t)} \sim N(0,1)$  and

$$A = [A(T) - KA(t)] - [C(T) - KC(t)]Q(t) B = [B(T) - KB(t)]\sqrt{Q(t)}, C = [C(T) - KC(t)]Q(t)$$

► Therefore, defining  $p(y) = A + By + Cy^2$ , we have

$$ZBC(0, t, T, K) = \frac{1}{A(0)\sqrt{2\pi}} \int_{p(y)>0} p(y)e^{-\frac{1}{2}y^2} dy,$$

which can be calculated explicitly in terms of the roots of the polynomial p(y).

► Analogous expressions can be derived for puts, swaptions, caps, floors, etc...

#### One-variable second order chaos

Consider now

$$X_{\infty} = \int_{0}^{\infty} \alpha(s)dW_{s} + \int_{0}^{\infty} \int_{0}^{s} \beta(s)dW_{u}dW_{s}$$
$$= \int_{0}^{\infty} [\alpha(s) + \beta(s)W_{s}]dW_{s}$$

- ▶ As far as fitting the initial term structure, this behaves like a first order chaos model with  $\phi^2(s) = \alpha^2(s) + \beta^2(s)s$
- However, the stochastic evolution of bond prices is now

$$P_{tT} = \frac{A(T) + B(T)W_t + C(T)(W_t^2 - t)}{A(t) + B(t)W_t + C(t)(W_t^2 - t)}$$

▶ Option prices are determined by the same expression as before by setting Q(t) = t.

### One-variable third order chaos

▶ Motivated by the previous example, we consider

$$X_{\infty} = \int_{0}^{\infty} \alpha(s)dW_{s} + \int_{00}^{\infty} \int_{0}^{s} \beta(s)dW_{u}dW_{s} + \int_{000}^{\infty} \int_{0}^{s} \delta(s)dW_{v}dW_{u}dW_{s}$$
$$= \int_{0}^{\infty} \left[ \alpha(s) + \beta(s)W_{s} + \frac{1}{2}\delta(s)(W_{s}^{2} - s) \right] dW_{s}$$

- Again, for fitting  $P_{0T}$  this behaves like a first order chaos model with  $\phi(s) = \alpha^2(s) + \beta^2(s)s + \delta^2(s)s^2/2$ .
- Moreover, since

$$Z_{tT} = a(T) + b(T)W_t + c(T)W_t^2 + d(T)W_t^3 + e(T)W_t^4,$$

general bond prices are expressed as the ratio of 4th–order polynomials in  $\mathcal{W}_t$ .

Similarly, option prices can be found explicitly by integrating a 4th-order polynomial of a standard normal random variable.

## Initial term structure for a generic chaos model

▶ In a general chaos model we that

$$Z_{0T} = \int_{T}^{\infty} \mathbb{E}\left[\left(\phi_{1}(s_{1}) + \int_{0}^{s_{1}} \phi_{2}(s_{1}, s_{2})dW_{s_{2}} + \cdots\right)^{2}\right] ds_{1}$$

$$= \int_{T}^{\infty} \left(\phi_{1}^{2}(s_{1}) + \int_{0}^{s_{1}} \phi_{2}^{2}(s_{1}, s_{2})ds_{2} + \cdots\right) ds_{1}.$$

Therefore

$$P_{0T} = \frac{Z_{0T}}{Z_{0t}} = \frac{\int_T^\infty \psi(s) ds}{\int_t^\infty \psi(s) ds},$$

where

$$\psi(s_1) = \begin{cases} \phi_1^2(s_1) & \text{first chaos} \\ \phi_1^2(s_1) + \int_0^{s_1} \phi_2^2(s_1, s_2) ds_2 & \text{second chaos} \\ \phi_1^2(s_1) + \int_0^{s_1} \phi_2^2(s_1, s_2) ds_2 + \int_0^{s_1} \int_0^{s_2} \phi_3^2(s_1, s_2, s_3) ds_3 ds_2 \\ \vdots & \vdots \end{cases}$$

#### Data

- ► For P<sub>0T</sub> we use clean prices of treasury coupon strips in the Gilt Market using data from the UK Debt Management Office (DMO).
- We consider bond prices at 146 dates (every other business day) from Jan 1998 to Jan 1999 with 50 maturities for each date.
- We also consider bond prices at 10 dates (every 3 months) from Sep 2006 to March 2008 with 150 maturities for each date.
- ▶ For interest rate options we consider (initially) ATM caps/floors quotes from ICAP (via Bloomberg) on March 4th, 2009 with 10 maturities, as well as 148 bond prices for the same date.

## Parametric specification

 Motivated by the vast literature on forward rate curve fitting (so-called descriptive-form interest rate models), we consider the exponential-polynomial family (Bjork and Christensen 99):

$$\phi(s) = \sum_{i=1}^n \left(\sum_{j=1}^{\mu_i} b_{ij} s^j\right) e^{-c_i s}$$

Special cases in this family are the Nelson-Sigel (87), Svensson (94) and Cairns (98) models:

$$\phi_{NS}(s) = b_0 + (b_1 + b_2 s)e^{-c_1 s}$$

$$\phi_{Sv}(s) = b_0 + (b_1 + b_2 s)e^{-c_1 s} + b_3 se^{c_2 s}$$

$$\phi_C(s) = \sum_{i=1}^4 b_1 e^{c_i s}$$

### Term structure calibration

For calibration to  $P_{0T}$  we consider the following cases (N is number of parameters):

1. 1st chaos (N = 3):

$$\phi(s) = (b_1 + b_2 s)e^{-c_1 s}$$

2. 1st chaos (N = 6):

$$\phi^{2}(s) = [(b_{1} + b_{2}s)e^{-c_{1}s}]^{2} + [(b_{3} + b_{4}s)e^{-c_{2}s}]^{2}$$

3. One-variable 2nd chaos (N = 6):

$$\alpha(s) = (b_1 + b_2 s)e^{-c_1 s}, \quad \beta(s) = (b_3 + b_4 s)e^{-c_2}$$

4. One-variable 2nd chaos (N = 6):

$$\alpha(s) = b_1 e^{-c_1 s}, \quad \beta(s) = b_2 e^{-c_2 s} + b_3 e^{-c_3 s}$$

5. One-variable 3rd chaos (N = 6):

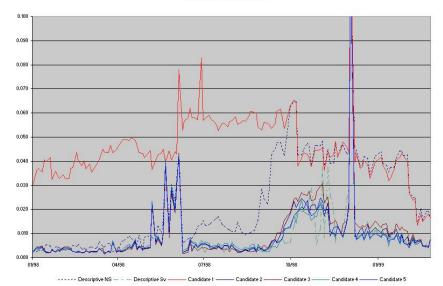
$$\alpha(s) = b_1 e^{-c_1 s}, \quad \beta(s) = b_2 e^{-c_2 s}, \quad \delta(s) = b_3 e^{-c_3 s}$$

# Calibration results: bonds from Jan/98 to Feb/99

| Model                 | N | Speed | -L      | RMSE   |
|-----------------------|---|-------|---------|--------|
| 1st chaos             | 3 | 68    | 13.5930 | 0.0454 |
| 1st chaos             | 6 | 211   | 0.3801  | 0.0092 |
| One-var 2nd chaos (a) | 6 | 289   | 0.4008  | 0.0100 |
| One-var 2nd chaos (b) | 6 | 114   | 0.3806  | 0.0087 |
| One-var 3rd chaos     | 6 | 129   | 0.3721  | 0.0088 |
| Descriptive NS        | 4 | 150   | 3.5579  | 0.0228 |
| Descriptive Sv        | 6 | 251   | 0.3499  | 0.0091 |

# Stability of parameters



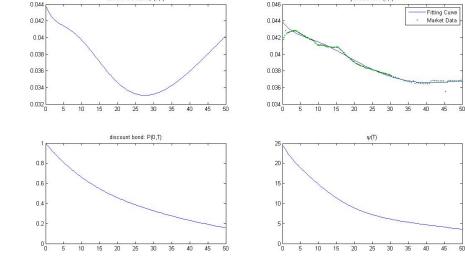


# Calibration results: bonds from Sept/06 to March/08

| Model                 | N | Speed | -L       | RMSE   |
|-----------------------|---|-------|----------|--------|
| 1st chaos             | 3 | 65    | 110.8482 | 0.0393 |
| 1st chaos             | 6 | 185   | 2.6163   | 0.0098 |
| One-var 2nd chaos (a) | 6 | 206   | 2.7283   | 0.0080 |
| One-var 2nd chaos (b) | 6 | 396   | 2.6995   | 0.0089 |
| One-var 3rd chaos     | 6 | 234   | 2.3534   | 0.0096 |
| Descriptive NS        | 4 | 215   | 3.8481   | 0.0124 |
| Descriptive Sv        | 6 | 417   | 2.3668   | 0.0078 |

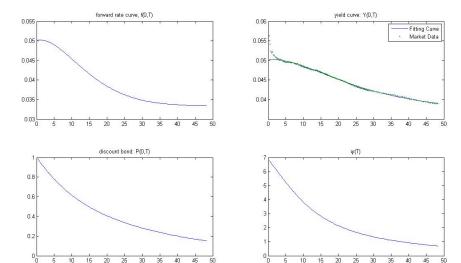
## Fitted curves on Feb 3rd, 2006

forward rate curve, f(0,T)



yield curve: Y(0,T)

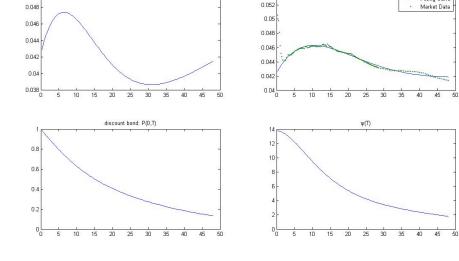
## Fitted curves on June 7th, 2007



## Fitted curves on September 7th, 2007

forward rate curve, f(0,T)

0.05



0.054

yield curve: Y(0,T)

Fitting Curve

## Term structure and option price calibration

For calibration to  $P_{0T}$  and caps/floor prices we consider

1. (1st chaos, 3 par.)

$$\phi(s) = (b_1 + b_2 s)e^{-c_1 s}$$

2. (1st chaos, 5 par.)

$$\phi(s) = (b_1 + b_2 s)e^{-c_1 s} + b_3 se^{-c_2 s}$$

3. (one-variable 2nd chaos, 5 par.)

$$\alpha(s) = (b_1 + b_2 s)e^{-c_1 s}, \quad \beta(s) = b_3 e^{-c_2 s}$$

4. (factorizable 2nd chaos, 6 par.)

$$\alpha = (b_1 + b_2 s)e^{-c_1 s}, \beta(s) = b_3 e^{-c_2 s}, \quad \gamma(s) = e^{-c_3 s}$$

5. (one-variable 2nd chaos, 7 par)

$$\alpha(s) = (b_1 + b_2 s)e^{-c_1 s}, \beta(s) = b_3 e^{-c_2 s} + b_4 e^{-c_3 s}$$

6. (one-variable 3rd chaos, 7 par)

$$\alpha(s) = (b_1 + b_2 s)e^{-c_1 s}, \beta(s) = b_3 e^{-c_2 s}, \delta(s) = b_3 e^{-c_3 s}$$

# Calibration results: bonds and options on March 6th, 2009

| Model                  | N | Bond error | Option error | RMSE   |
|------------------------|---|------------|--------------|--------|
| 1st chaos              | 3 | 0.0745     | 0.0044       | 0.2808 |
| 1st chaos              | 5 | 0.0354     | 0.0069       | 0.2056 |
| One-var 2nd chaos      | 5 | 0.0037     | 0.0053       | 0.0944 |
| Factorizable 2nd chaos | 6 | 0.0033     | 0.0002       | 0.0586 |
| One-var 2nd chaos      | 7 | 0.0034     | 0.0001       | 0.0590 |
| One-var 3rd chaos      | 7 | 0.0030     | 0.0000       | 0.0553 |

#### Conclusions

- 1. We propose a systematic way to calibrate interest rate model in the chaotic approach.
- 2. For term structure calibration, the performance of first order chaos models is comparable to their deterministic descriptive form analogues (Nelson–Sigel and Svensson models).
- One-variable higher order chaos models slightly improve the performance, but have the advantage of being fully stochastic and automatically consistent with non-arbitrage and positivity conditions.
- 4. Preliminary results on option calibration reinforce the need for at least a second order chaos model.
- 5. Further work will compare (factorizable) second and (2-variable) third order chaos models for option calibration.
- 6. Higher order chaos models are likely to be unnecessary (and possibly made illegal anyway...)
- 7. THANK YOU!