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Axiomatic Interest Rate Theory

We follow the axiomatic framework proposed by Hughston and
Rafailidis (2005). For this we need:

I a probability space (Ω,F ,P) (physical measure);

I the augmented filtration Ft generated by a k–dimensional
Brownian motion Wt ;

I asset prices St given by continuous semimartingales;

I a non–dividend–paying asset with adapted price process
ξt > 0 (natural numeraire).



Axiomatic Interest Rate Theory (continued)

The following axioms define an arbitrage–free interest rate model:

1. There exists a strictly increasing asset with absolutely
continuous price process Bt (bank account).

2. If St is the price of any asset with an adapted dividend rate
Dt then

St

ξt
+

∫ t

0

Ds

ξs
ds is a martingale (1)

3. There exists an asset that offers a dividend rate sufficient to
ensure that the value of the asset remains constant (floating
rate note).

4. There exists a system of discount bond price processes PtT

satisfying
lim

T→∞
PtT = 0.



The state price density

I Define Vt = 1/ξt (state price density).

I Since BtVt is a martingale (A2) and Bt is strictly increasing
(A1), we have

Et [VT ] = Et

[
BTVT

BT

]
< Et

[
BTVT

Bt

]
=

BtVt

Bt
= Vt ,

which means that Vt is a positive supermartingale.

I Writing Bt = B0 exp
(∫ t

0 rsds
)

for an adapted process rt > 0

and
d(BtVt) = −(BtVt)λtdWt ,

for an adapted vector process λt , we have that the dynamics
for Vt is

dVt = −rtVtdt − VtλtdWt . (2)



Conditional variance representation

I Integrating (2), taking conditional expectations and the limit
T →∞ (all well defined thanks to (A3) and (A4)) leads to

Vt = Et

[∫ ∞

t
rsVsds

]
.

I Now let σt be a vector process satisfying σ2
t = rtVt and define

the square integrable random variable

X∞ :=

∫ ∞

0
σsdWs .

I It then follows from the Ito isometry that

Vt = Et

[
(X∞ − Xt)

2
]
, (3)

where Xt := Et [X∞] =
∫ t
0 σsdWs .



Related quantities and bond prices

I Defining At := [X ,X ]t =
∫ t
0 σ

2
s ds =

∫ t
0 rsVsds leads to the

Doob-Meyer decomposition

Vt = Et [A∞]− At (potential approach)

I Defining the family of martingales Mts = Et [σ
2
s ] leads to

Vt =

∫ ∞

t
Mtsds (Flesaker–Hughston approach)

I In general, bond prices and forward rates are given by

PtT =
Et [VT ]

Vt
=

∫∞
T Mtsds∫∞
t Mtsds

(4)

ftT = −∂T log PtT =
MtT∫∞

T Mtsds
, (5)

which are manifestly positive.



Wiener chaos

I Define the Hermite polynomials

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2 (6)

I For h ∈ L2(Rk
+), define the Gaussian random variable

W (h) :=

∫ ∞

0
h(s)dWs .

I Then the Wiener chaos of order n,

Hn := span{Hn(W (h))|h ∈ L2(∆)}, n ≥ 1,

H0 := C,

provide an orthogonal decomposition of square integrable
random variables:

L2(Ω,F∞,P) =
∞⊕

n=0

Hn.



Wiener chaos expansion

I Let ∆n := {(s1, . . . , sn) ∈ Rn
+|0 ≤ sn ≤ · · · ≤ s2 < s1 ≤ ∞}.

I Each Hn can be identified with L2(∆n) via the isometries

Jn : L2(∆n) → Hn

given by

φn 7→ Jn(φn) =

∫
∆n

φn(s1, . . . , sn)dWs1 . . . dWsn , (7)

I With these ingredients, one is then led to the result that any
X ∈ L2(Ω,F∞,P) can be represented as a Wiener chaos
expansion

X =
∞∑

n=0

Jn(φn), (8)

where the deterministic functions φn ∈ L2(∆n) are uniquely
determined by the random variable X .



First order chaos

I In a first order chaos model we have

X∞ =

∫ ∞

0
φ(s)dWs .

I In this case σs = φ(s), so that Mts = Et [σ
2
s ] = φ2(s) and

Vt =

∫ ∞

t
Mtsds =

∫ ∞

t
φ2(s)ds

I This corresponds to a deterministic interest rate theory, since

PtT =

∫∞
T φ2(s)ds∫∞
t φ2(s)ds

, ftT =
φ2(T )∫∞

T φ2(s)ds
= rT .

I The remaining asset prices can be stochastic, however.
Indeed, for a derivative with payoff HT we have

Ht =
Et [VTHT ]

Vt
=

VT

Vt
Et [HT ] = PtTEt [HT ]



Second order chaos: definition

I In a second order chaos model we have

X∞ =

∫ ∞

0
φ1(s)dWs +

∫ ∞

0

∫ s

0
φ2(s, u)dWudWs

I In this case Mts = Et [σ
2
s ] where

σs = φ1(s) +

∫ s

0
φ2(s, u)dWu.

I Using the Ito isometry we find that

Mts =

(
φ1(s) +

∫ t

0
φ2(s, u)dWu

)2

+

∫ s

t
φ2

2(s, u)du,

which, for each t, is a squared Gaussian RV plus a constant.



Second order chaos: bond and option prices

I Defining ZtT =
∫∞
T Mtsds (integral of a parametric family of

squared Gaussian RVs plus a constant), we see that bond
prices are given by

PtT =
ZtT

Ztt
.

I In particular, since M0s = φ2
1(s) +

∫ s
0 φ

2
2(s, u)du, it follows

that

P0T =

∫∞
T

(
φ2

1(s) +
∫ s
0 φ

2
2(s, u)du

)
ds∫∞

0

(
φ2

1(s) +
∫ s
0 φ

2
2(s, u)du

)
ds
.

I Moreover, the price at time zero of an option with payoff
(PtT − K )+ is

ZBC (0, t,T ,K ) =
1

V0
E

[
Vt (PtT − K )+

]
=

1

V0
E

[
(ZtT − KZtt)

+]
,

which can be calculated in terms of the joint distribution of
ZtT1 and ZtT2 .



Factorizable second order chaos: definition

I Consider φ1(s) = γ(s) and φ2(s, u) = β(s)γ(u).

I Then σs = φ(s) + β(s)Rs where

Rt =

∫ t

0
γ(s)dWs

is a martingale with quadratic variation Q(t) =
∫ t
0 γ

2(s)ds.

I Therefore

Mts = (α2(s) + β(s)Rt)
2 + β2(s)[Q(s)− Q(t)]

= α2(s) + β2(s)Q(s) + 2α(s)β(s)Rt + β2(s)(R2
t − Q(t))

I Notice that the scalar random variable Rt is the sole state
variable for the interest rate model at time t, even in the case
of a multidimensional Brownian motion Wt .



Factorizable second order chaos: bond prices

I Integrating the previous expression gives

ZtT =

∫ ∞

T
Mtsds = A(T ) + B(T )Rt + C (T )(R2

t − Q(t)),

where

A(T ) =

∫ ∞

t
(α2(s) + β2(s)Q(s))ds

B(T ) = 2

∫ ∞

T
α(s)β(s)ds, C (T ) =

∫ ∞

T
β2(s)ds

I Therefore

Vt = A(t) + B(t)Rt + C (t)(R2
t − Q(t))

and

PtT =
A(T ) + B(T )Rt + C (T )(R2

t − Q(t))

A(t) + B(t)Rt + C (t)(R2
t − Q(t))



Factorizable second order chaos: option prices

I Fixing t,T and K , it follows that

ZtT − KZtt = A + BY + CY 2,

where Y = R(t)/
√

Q(t) ∼ N(0, 1) and

A = [A(T )− KA(t)]− [C (T )− KC (t)]Q(t)

B = [B(T )− KB(t)]
√

Q(t), C = [C (T )− KC (t)]Q(t)

I Therefore, defining p(y) = A + By + Cy2, we have

ZBC (0, t,T ,K ) =
1

A(0)
√

2π

∫
p(y)≥0

p(y)e−
1
2
y2

dy ,

which can be calculated explicitly in terms of the roots of the
polynomial p(y).

I Analogous expressions can be derived for puts, swaptions,
caps, floors, etc...



One–variable second order chaos

I Consider now

X∞ =

∫ ∞

0
α(s)dWs +

∫ ∞

0

∫ s

0
β(s)dWudWs

=

∫ ∞

0
[α(s) + β(s)Ws ]dWs

I As far as fitting the initial term structure, this behaves like a
first order chaos model with φ2(s) = α2(s) + β2(s)s

I However, the stochastic evolution of bond prices is now

PtT =
A(T ) + B(T )Wt + C (T )(W 2

t − t)

A(t) + B(t)Wt + C (t)(W 2
t − t)

I Option prices are determined by the same expression as before
by setting Q(t) = t.



One–variable third order chaos

I Motivated by the previous example, we consider

X∞ =

∞∫
0

α(s)dWs +

∞ s∫∫
0 0

β(s)dWudWs +

∞ s u∫∫∫
0 0 0

δ(s)dWvdWudWs

=

∫ ∞

0

[
α(s) + β(s)Ws +

1

2
δ(s)(W 2

s − s)

]
dWs

I Again, for fitting P0T this behaves like a first order chaos
model with φ(s) = α2(s) + β2(s)s + δ2(s)s2/2.

I Moreover, since

ZtT = a(T ) + b(T )Wt + c(T )W 2
t + d(T )W 3

t + e(T )W 4
t ,

general bond prices are expressed as the ratio of 4th–order
polynomials in Wt .

I Similarly, option prices can be found explicitly by integrating a
4th–order polynomial of a standard normal random variable.



Initial term structure for a generic chaos model

I In a general chaos model we that

Z0T =

∫ ∞

T
E

[(
φ1(s1) +

∫ s1

0
φ2(s1, s2)dWs2 + · · ·

)2
]

ds1

=

∫ ∞

T

(
φ2

1(s1) +

∫ s1

0
φ2

2(s1, s2)ds2 + · · ·
)

ds1.

I Therefore

P0T =
Z0T

Z0t
=

∫∞
T ψ(s)ds∫∞
t ψ(s)ds

,

where

ψ(s1) =


φ2

1(s1) first chaos

φ2
1(s1) +

∫ s1
0 φ2

2(s1, s2)ds2 second chaos

φ2
1(s1) +

∫ s1
0 φ2

2(s1, s2)ds2 +
∫ s1
0

∫ s2
0 φ2

3(s1, s2, s3)ds3ds2
...



Data

I For P0T we use clean prices of treasury coupon strips in the
Gilt Market using data from the UK Debt Management Office
(DMO).

I We consider bond prices at 146 dates (every other business
day) from Jan 1998 to Jan 1999 with 50 maturities for each
date.

I We also consider bond prices at 10 dates (every 3 months)
from Sep 2006 to March 2008 with 150 maturities for each
date.

I For interest rate options we consider (initially) ATM
caps/floors quotes from ICAP (via Bloomberg) on March 4th,
2009 with 10 maturities, as well as 148 bond prices for the
same date.



Parametric specification

I Motivated by the vast literature on forward rate curve fitting
(so-called descriptive–form interest rate models), we consider
the exponential–polynomial family (Bjork and Christensen 99):

φ(s) =
n∑

i=1

 µi∑
j=1

bijs
j

 e−ci s

I Special cases in this family are the Nelson–Sigel (87),
Svensson (94) and Cairns (98) models:

φNS(s) = b0 + (b1 + b2s)e
−c1s

φSv (s) = b0 + (b1 + b2s)e
−c1s + b3se

c2s

φC (s) =
4∑

i=1

b1e
ci s



Term structure calibration
For calibration to P0T we consider the following cases (N is
number of parameters):

1. 1st chaos (N = 3):

φ(s) = (b1 + b2s)e
−c1s

2. 1st chaos (N = 6):

φ2(s) = [(b1 + b2s)e
−c1s ]2 + [(b3 + b4s)e

−c2s ]2

3. One–variable 2nd chaos (N = 6):

α(s) = (b1 + b2s)e
−c1s , β(s) = (b3 + b4s)e

−c2

4. One–variable 2nd chaos (N = 6):

α(s) = b1e
−c1s , β(s) = b2e

−c2s + b3e
−c3s

5. One–variable 3rd chaos (N = 6):

α(s) = b1e
−c1s , β(s) = b2e

−c2s , δ(s) = b3e
−c3s



Calibration results: bonds from Jan/98 to Feb/99

Model N Speed -L RMSE

1st chaos 3 68 13.5930 0.0454

1st chaos 6 211 0.3801 0.0092

One–var 2nd chaos (a) 6 289 0.4008 0.0100

One–var 2nd chaos (b) 6 114 0.3806 0.0087

One–var 3rd chaos 6 129 0.3721 0.0088

Descriptive NS 4 150 3.5579 0.0228

Descriptive Sv 6 251 0.3499 0.0091



Stability of parameters

Figure: RMSE as a function of time.



Calibration results: bonds from Sept/06 to March/08

Model N Speed -L RMSE

1st chaos 3 65 110.8482 0.0393

1st chaos 6 185 2.6163 0.0098

One–var 2nd chaos (a) 6 206 2.7283 0.0080

One–var 2nd chaos (b) 6 396 2.6995 0.0089

One–var 3rd chaos 6 234 2.3534 0.0096

Descriptive NS 4 215 3.8481 0.0124

Descriptive Sv 6 417 2.3668 0.0078



Fitted curves on Feb 3rd, 2006
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Figure: Market data and calibrated curves on Feb 3rd, 2006



Fitted curves on June 7th, 2007
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Figure: Market data and calibrated curves on June 7th, 2007



Fitted curves on September 7th, 2007
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Figure: Market data and calibrated curves on September 7th, 2007



Term structure and option price calibration

For calibration to P0T and caps/floor prices we consider

1. (1st chaos, 3 par.)

φ(s) = (b1 + b2s)e
−c1s

2. (1st chaos, 5 par.)

φ(s) = (b1 + b2s)e
−c1s + b3se

−c2s

3. (one–variable 2nd chaos, 5 par.)

α(s) = (b1 + b2s)e
−c1s , β(s) = b3e

−c2s

4. (factorizable 2nd chaos, 6 par.)

α = (b1 + b2s)e
−c1s , β(s) = b3e

−c2s , γ(s) = e−c3s

5. (one–variable 2nd chaos, 7 par)

α(s) = (b1 + b2s)e
−c1s , β(s) = b3e

−c2s + b4e
−c3s

6. (one–variable 3rd chaos, 7 par)

α(s) = (b1 + b2s)e
−c1s , β(s) = b3e

−c2s , δ(s) = b3e
−c3s



Calibration results: bonds and options on March 6th, 2009

Model N Bond error Option error RMSE

1st chaos 3 0.0745 0.0044 0.2808

1st chaos 5 0.0354 0.0069 0.2056

One–var 2nd chaos 5 0.0037 0.0053 0.0944

Factorizable 2nd chaos 6 0.0033 0.0002 0.0586

One–var 2nd chaos 7 0.0034 0.0001 0.0590

One–var 3rd chaos 7 0.0030 0.0000 0.0553



Conclusions

1. We propose a systematic way to calibrate interest rate model
in the chaotic approach.

2. For term structure calibration, the performance of first order
chaos models is comparable to their deterministic descriptive
form analogues (Nelson–Sigel and Svensson models).

3. One–variable higher order chaos models slightly improve the
performance, but have the advantage of being fully stochastic
and automatically consistent with non-arbitrage and positivity
conditions.

4. Preliminary results on option calibration reinforce the need for
at least a second order chaos model.

5. Further work will compare (factorizable) second and
(2–variable) third order chaos models for option calibration.

6. Higher order chaos models are likely to be unnecessary (and
possibly made illegal anyway...)

7. THANK YOU !


