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The Hedging Problem

I Consider the following stochastic optimization problem:

UW
B (x) = sup

H∈HW

E

[
u

(
x +

∫ T

0
HdS − B

)]
(1)

I The utility u : R → R is strictly concave, increasing,
differentiable and satisfies the Inada conditions

lim
x→−∞

u′(x) = +∞ and lim
x→+∞

u′(x) = 0. (2)

I The initial constant endowment is x ∈ R and the fixed time
horizon is T ∈ (0,+∞].

I The underlying process S is an Rd−valued càdlàg
semimartingale on (Ω,F , (Ft)t∈[0,T ],P), which is not
assumed to be locally bounded.

I B is an FT–measurable liability satisfying appropriate
integrability conditions.



Admissible integrands, suitability and compatibility

I Given W ∈ L0
+, define the W –admissible strategies as

HW :=

{
H ∈ L(S) :

∫ t

0
HdS ≥ −cW , for some c > 0

}
.

I We say that W ≥ 1 is suitable for S if for each i = 1, . . . , d ,
there exists a process H i ∈ L(S i ) such that

P({ω | ∃t ≥ 0 such that H i
t(ω) = 0}) = 0 (3)

and ∣∣∣∣∫ t

0
H idS i

∣∣∣∣ ≤ W , ∀t ∈ [0,T ]. (4)

I We say that W ∈ L0
+ is compatible with the utility function u

if
E [u(−αW )] > −∞ for all α > 0 (5)

and that it is weakly compatible with u if

E [u(−αW )] > −∞ for some α > 0. (6)



Terminal values and duality

I Given a suitable and compatible random variable W , define

KW =

{∫ T

0
HdS : H ∈ HW

}
(7)

so that the primal problem (1) becomes:

sup
k∈KW

E [u(x + k − B)]. (8)

I We then want to define an appropriate cone CW , related to
KW , and invoke Fenchel’s duality theorem.

I For this, we need to choose a Banach spaces and its
topological dual in order to define the polar set (CW )0.

I Classically, the spaces (L∞, ba) were successfully used when
dealing with locally bounded traded assets. In order to
accommodate more general markets and inspired by the
compatibility conditions above, we argue instead for the use of
an appropriate Orlicz space and its dual.



Orlicz spaces

I Consider the Young function û : R → [0,+∞) associated with
the utility function u, defined as

û(x) = −u(−|x |) + u(0).

I Its corresponding Orlicz space is

Lbu(P) = {f ∈ L0(P) : E [û(αf )] < +∞ for some α > 0},

equipped with the Luxemburg norm

‖f ‖bu = inf

{
c > 0 : E

[
û

(
f

c

)]
≤ 1

}
.

I We then have L∞ ⊆ Lbu(P) ⊆ L1(P)

I Next we consider the closed subspace

Mbu(P) = {f ∈ Lbu(P) : E [û(αf )] < +∞ for all α > 0}.

I In general Mbu ⊂ Lbu (strict inclusion).



Compatibility revisited

I The Young function û carries information about the utility on
large losses, in the sense for α > 0 we have that

E [û(αf )] < +∞ ⇐⇒ E [u(−α|f |)] > −∞. (9)

I We can then see that a positive random variable W is
compatible (resp. weakly compatible) with the utility function
u if and only if W ∈ Mbu (resp. W ∈ Lbu).



Complementary spaces

I The convex conjugate of û, called the complementary Young
function in the theory Orlicz spaces, is

Φ̂(y) := sup
x
{x |y | − û(x)} = Φ(|y |+ β)− Φ(β),

where β = u′(0) > 0 and Φ is the concave conjugate of u.

I We consider the Orlicz space L
bΦ endowed with the Orlicz

norm

|||g |||bΦ = sup{|E [fg ]|, f ∈ Lbu,E [û(f )] ≤ 1}.

I It then follows that (Mbu)∗ = L
bΦ in the sense that if

z ∈ (Mbu)∗ is a continuous linear functional on Mbu, then there

exists a unique g ∈ L
bΦ such that

z(f ) =

∫
Ω

fgdP, f ∈ Mbu,
with ‖z‖(Mbu)∗ := sup

‖f ‖bu≤1
|z(f )| = |||g |||bΦ.



The dual of Lû

I It follows from the properties of the pair (û, Φ̂) that each
element z ∈ (Lbu)∗ can be uniquely expressed as

z = z r + zs ,

where the regular part z r is given by

z r (f ) =

∫
Ω

fgdP, f ∈ Lbu,
for a unique g ∈ L

bΦ, and the singular part zs satisfies

zs(f ) = 0, ∀f ∈ Mbu. (10)

I That is, (Lbu)∗ = (Mbu)∗ ⊕ (Mbu)⊥.



Positive singular functionals

I Consider the concave integral functional

Iu : Lbu → [−∞,∞)

f 7→ E [u(f )]

with effective domain

D(P) =
{

f ∈ Lbu(P) | E [u(f )] > −∞
}

. (11)

I One consequence of choosing the correct Orlicz spaces is that
the norm of a non negative singular element 0 ≤ z ∈ (Mbu)⊥
satisfies

‖z‖(Lbu(P))∗ := sup
‖f ‖bu≤1

|z(f )| = sup
f ∈D(P)

z(−f ),



Dual Variables

I Given a loss variable W ∈ S ∩ Lbu we define the cone

CW = (KW − L0
+) ∩ Lbu.

I Define the polar cone

(CW )0 :=
{

z ∈ (Lbu)∗ | z(f ) ≤ 0, ∀f ∈ CW
}

, (12)

which satisfies (CW )0 ⊆ (Lbu)∗+, since (−Lbu
+) ⊆ CW .

I The subset of normalized functionals in (CW )0 is defined by

MW := {Q ∈ (CW )0 | Q(1Ω) = 1}. (13)

I It was shown in Biagini-Frittelli (2006) that

MW ∩ L1(P) = Mσ ∩ L
bΦ. (14)



Conditions of the claim

I For the main duality result, we consider claims in the set Au

characterized by the conditions claims B ∈ FT satisfying

E [u(f − B)] < +∞, ∀f ∈ Lbu
E [u(−(1 + ε)B+)] > −∞, for some ε > 0

I Observe that these conditions do not capture the risk in B−,
which are gains for the seller.

I For the domain of the indifference price price, we consider the
set B := Au ∩ Lbu, that is, claims satisfying

E [u(−(1+ε)B+)] > −∞, E [u(−εB−)] > −∞, for some ε > 0.



Extended functionals

I Observe that B ∈ Au does not necessarily imply that B ∈ Lbu.
I Accordingly, for any Q ∈ (Lbu)∗+ we define

Q̂ : Lbu
neg → R ∪ {+∞} by

Q̂(g) := sup
{

Q(f ) | f ∈ Lbu and f ≤ g
}

, (15)

where
Lbu

neg :=
{

f ∈ L0 | f − ∈ Lbu} .

I Then Q̂ is a well–defined, positively homogeneous, additive,
monotone extension of Q.



Extended domains

I The dual objective function has a term E
[
Φ

(
λdQr

dP

)]
.

I This leads us to consider the set

LΦ :=

{
Q probab ,Q � P | E

[
Φ

(
λ

dQ

dP

)]
< ∞ for some λ > 0

}
I Note that LΦ = L

bΦ
+ whenever Φ(0) < ∞ (i.e u(∞) < ∞)

I For B ∈ Au, define

NW
B := {Q ∈MW | Qr ∈ LΦ, Q̂(−B) ∈ R}

KW
B := {f ∈ L0 | EQr [f ] ≤ Q̂s(−B) + ‖Qs‖,∀Q ∈ NW

B }

I If NW
B 6= 0, we have that KW ∈ KW

B



Main duality result

Theorem (BFG)

Suppose that B ∈ Au and that there exists W ∈ S ∩ Lbu satisfying

sup
H∈HW

E

[
u

(∫ T

0
HdS − B

)]
< u(∞). (16)

Then NW
B 6= 0 and

sup
H∈HW

E

[
u

(∫ T

0
HdS − B

)]
= min

λ>0, Q∈NW
B

{
λQ̂(−B) + E

[
Φ

(
λ

dQr

dP

)]
+ λ‖Qs‖

}
,

If B ∈ Mbu, then Qs(B) = 0. Moreover, if W ∈ Mbu and B ∈ Mbu
then NW

B can be replaced by Mσ ∩ L
bΦ and no singular term

appears.



The solution to the primal problem

I We say that u satisfies Assumption (A) if

LΦ =

{
Q probab ,Q � P | E

[
Φ

(
λ

dQ

dP

)]
< ∞ for all λ > 0

}
I In this case, we have that

UW
B = E [u(fB − B)], (17)

where the maximizer is

fB =

(
−Φ′(λB

dQr
B

dP
) + B

)
∈ KW

B (18)

and satisfies

EQr
B
[fB ] = Q̂s

B(−B) + ‖Qs
B‖. (19)



The indifference price and its domain

I Following Hodges and Neuberger (1989), we define the
indifference price π(B) for the seller of a claim B as the the
implicit solution of the equation

sup
H∈HW

E

[
u

(
x +

∫ T

0
HdS

)]
= (20)

sup
H∈HW

E [u(x + π(B) +

∫ T

0
HdS − B)].

I We compute indifference prices for claims in B := Au ∩ Lbu.
I We have that B = {B ∈ Lbu | (−B) ∈ int(Dom(Iu))} and has

the following properties

1. B is convex, open and contains Mbu
2. B1 ∈ B and B2 ≤ B1 implies B2 ∈ B
3. B ∈ B and C ∈ Mbu implies that B + C ∈ B



Properties of the indifference price

The indifference price π : B → R is well defined, convex,
monotone, translation invariant, norm continuous, and admits the
representation:

π(B) = max
Q∈MW

[Q(B)− α(Q)] , (21)

where the penalty term is given by:

α(Q) := x + ‖Qs‖+ inf
λ>0

E
[
Φ

(
λdQr

dP

)]
− UW

0 (x)

λ

 . (22)



Volume asymptotics

Denoting by QW
0 (x) the set of dual optimizers for the Merton

problem, then fo any B ∈ B we have

lim
b↓0

π(bB)

b
= max

Q∈QW
0 (x)

Q(B) (23)

If B is in Mbu,
lim

b→+∞

π(bB)

b
= sup

Q∈NW

Q(B) (24)

If W ∈ Mbu and B ∈ Mbu, the two volume asymptotics above
become

lim
b↓0

π(bB)

b
= EQ∗ [B], lim

b→+∞

π(bB)

b
= sup

Q∈Mσ∩PΦ

EQ [B]

where the probability Q∗ ∈ Mσ ∩ PΦ is the unique dual minimizer
in QW

0 (x).



Further work

I Levy market example

I Utilities on a half line

I Risk measures on Orlicz spaces


