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ABSTRACT A stock loan is a contract whereby a stockholder uses shares as collateral to borrow
money from a bank or financial institution. In Xia and Zhou (2007, Stock loans, Mathematical
Finance, 17(2), pp. 307–317), this contract is modelled as a perpetual American option with a
time-varying strike and analysed in detail within a risk-neutral framework. In this paper, we extend
the valuation of such loans to an incomplete market setting, which takes into account the nat-
ural trading restrictions faced by the client. When the maturity of the loan is infinite, we use a
time-homogeneous utility maximization problem to obtain an exact formula for the value of the
loan fee to be charged by the bank. For loans of finite maturity, we characterize the fee using vari-
ational inequality techniques. In both cases, we show analytically how the fee varies with the model
parameters and illustrate the results numerically.

KEY WORDS: Stock loans, indifference pricing, illiquid assets, incomplete markets

1. Introduction

A stock loan is a contract between two parties: the lender, usually a bank or other
financial institution providing a loan, and the borrower, represented by a client who
owns one share of a stock used as collateral for the loan. Several reasons might moti-
vate the client to get into such a deal. For example, he might not want to sell his stock
or even face selling restrictions, while at the same time being in need of available funds
to attend to another financial operation.

Our main task consists of determining the fair values of the parameters of the loan,
particularly the value of the fee that the bank charges for the service along with the
interest rate to be charged over the amount borrowed, taking into account the stock
price at the moment of taking the loan. In addition, we take into account the fact
that the bank typically collects any dividends paid by the stock for the duration of the
loan. Finally, whereas the client can recover the stock at any time by paying the loan
principal plus interest, he is not obliged to do so, even if the stock price falls down,
and this optionality also needs to be accounted in the valuation of the loan.

In Xia and Zhou (2007), a stock loan is modelled as a perpetual American option
with a time-varying strike and analysed in detail using probabilistic methods within
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Stock Loans in Incomplete Markets 119

the Black–Scholes framework. Assuming that the risk-neutral dynamics of the stock
follows a geometric Brownian motion, they obtained explicit formulas for the bank’s
fee in terms of the amount lent and the stock price at the moment of signing the loan.
Implicit in their use of the risk-neutral paradigm is the assumption that the option can
be replicated by trading in the underlying stock and the money market. Whereas this
is certainly plausible from the bank’s point of view, we argue that neither type of trade
is readily available for the client, who presumably does not have unrestricted access to
the money market (hence the need to post collateral in the form of a stock) nor can
freely trade in the stock (otherwise he would simply sell the stock instead of take the
loan). Moreover, while risk-neutral valuation yields the fair price at which the option
itself can be traded in the market without introducing arbitrage opportunities, a stock
loan typically cannot be sold or bought in a secondary market once it is initiated. In
other words, the client does not operate in the frictionless market that is assumed by
the Black–Scholes framework.

Accordingly, we treat a stock loan as an option in an incomplete market. We assume
that the client cannot trade directly in the underlying stock, but is allowed to trade in
a portfolio of assets that is imperfectly correlated to the stock. In this way, since the
client cannot perfectly hedge the embedded optionality, he faces some non-diversifiable
risk for the duration of the loan. We assume that the client is a risk averse economic
agent and model his preferences by an exponential utility function. We then use utility
indifference arguments to value the stock loan from the point of view of the client
both for infinite maturity, where semi-explicit formulas are still available, and for finite
maturity, where numerical computations are needed. Finally, we assume that the bank
is well diversified and relate the fee charged by the bank with the hedging cost for a
barrier-type option reflecting the exercise behaviour of the client.

Although we present the analysis using a financial asset as the collateral, it is clear
that the same results can be applied to loans against other types of assets, such as real
estate or inventories, provided their value is observable and follows a dynamics that
can be modelled according to (1).

2. Model Set-Up

We consider a market consisting of two correlated assets S and V with ‘discounted’
prices given by

dSt = (µ1 − r)Stdt + σ1StdW 1
t

dVt = (µ2 − r)Vtdt + σ2Vt

(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
,

(1)

for t0 ≤ t ≤ T ≤ ∞, where W = (W 1, W 2) is a standard two-dimensional Brownian
motion. We suppose further that the client can trade dynamically by holding Ht units
of the asset St and investing the remaining of his wealth in a bank account with nor-
malized value Bt = er(t−t0) for a constant interest rate r. It follows that the discounted
value of the corresponding self-financing portfolio satisfies

dXπ
t = πt(µ1 − r)dt + πtσ1dW 1

t , t0 ≤ t ≤ T , (2)

where πt = HtSt.
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120 M. R. Grasselli and C. Gómez

At a given time t0, the client borrows an amount L from a bank leaving the asset with
value Vt0 as a collateral. We assume that the bank collects the dividends paid by the
underlying asset V at a rate δ for the duration of the loan. In addition, the bank charges
the client a fee c and stipulates an interest rate α to be charged on the loan amount L,
so that the client can redeem the asset with value er(t−t0)Vt at time t0 ≤ t ≤ T by paying
an amount eα(t−t0)L. At the maturity time T , we assume that the client needs to decide
between repaying the loan or forfeiting the underlying asset indefinitely.

In other words, at the beginning of the loan, the client gives the bank an asset worth
Vt0 and receives a net amount (L − c) plus the option to buy back an asset with market
price er(t−t0)Vt for an amount eα(t−t0)L. Denoting the cost of this option for the bank
by Ct0 , the loan parameters are related by

c = L + Ct0 − Vt0 . (3)

3. Infinite Maturity

Let us first assume that T = ∞ and α = r. Given an exponential utility U(x) = −e−γ x,
we consider a client trying to maximize the expected utility of discounted wealth. We
assume that, upon repaying the loan at time τ , the borrower adds the discounted payoff
(Vτ − L) to his discounted wealth Xπ

τ and continues to invest optimally. Accordingly,
having taken the loan at time t0, the borrower needs to solve the following optimization
problem:

G(x, v) = sup
(τ ,π)∈A

E
[

−e
(µ1−r)2

2σ2
1

τ
e−γ (Xπ

τ +(Vτ −L)+)|Xπ
t0

= x, Vt0 = v

]

. (4)

Here, A is a set of admissible pairs (τ , π ), where τ ∈ [0, ∞] is a stopping time and π is

a portfolio process. Observe that the factor e
(µ1−r)2

2σ2
1

τ
leads to a horizon-unbiased opti-

mization problem (see appendix 1 of Henderson (2007) for details), while the choice
α = r removes the dependence on time from the factor e(α−r)(t−t0)L at the repayment
date. Combined with the infinite maturity assumption, this allows us to deduce that
the borrower should decide to pay back the loan at the first time that V reaches a
stationary threshold V∗, that is,

τ ∗ = inf{s ≥ t0 : Vs = V∗}. (5)

We follow Hodges and Neuberger (1989) and define the indifference value for the
option to pay back the loan as the amount p(v) satisfying

G(x, 0) = G(x − p(v), v). (6)

The following proposition summarizes the results in Henderson (2007) regarding
the value function G(x, v), the threshold V∗ and the indifference value p(v).
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Stock Loans in Incomplete Markets 121

Proposition 3.1. The function G(x, v) solves the following non-linear Hamilton–
Jacobi–Bellman (HJB) equation:

(µ1 − r)2

2σ 2
1

G + σ 2
2 v2

2
Gvv + (µ2 − r)vGv − (ρσ1σ2vGxv + (µ1 − r)Gx)2

σ 2
1 Gxx

= 0 (7)

subject to the following boundary, value matching and smooth pasting conditions:

G(x, 0) = −e−γ x

G(x, V∗) = −e−γ (x +V∗−L)

Gv(x, V∗) = γ e−γ (x +V∗−L).

Let β = 1 − 2
σ2

(
µ2−r
σ2

− ρ µ1−r
σ1

)
. If β ≥ 0, the threshold V∗ ≥ L is the unique solution

to

V∗ − L = 1
γ (1 − ρ2)

log
[

1 + γ (1 − ρ2)V∗

β

]
(8)

and the solution to (7) and associated conditions is given by

G(x, v) =
{
− e−γ xF(v)

1
1−ρ2 , if v < V∗

− eγ xe−γ (v−L), if v ≥ V∗,
(9)

where

F(v) = 1 − (1 − e−γ (V∗−L)(1−ρ2))
( v

V∗

)β

. (10)

In this case, the indifference value p(ρ,γ ) is given by

p(v) =
{− 1

γ (1−ρ2) log F(v), if v < V∗

(v − L), if v ≥ V∗.
(11)

Moreover, the optimal hedging strategy for the client before exercising the option to
repay is

π∗(v) = µ1 − r
γ σ 2

1

− ρσ2vpv(v)
σ1

. (12)

Alternatively, if β ≤ 0, then the smooth pasting fails and there is no solution to (7) and
associated conditions. In this case, V∗ = ∞ and the option to repay the loan is never
exercised.

Let us assume from now on that S is the discounted price of the market portfolio, so
that the equilibrium rate of return µ2 on the asset V satisfies the capital asset pricing
model (CAPM) condition:
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122 M. R. Grasselli and C. Gómez

µ2 − r
σ2

= ρ
µ1 − r

σ1
. (13)

The dividend rate paid by V is then δ = µ2 − µ2, and we have that

β = 1 − 2
σ2

(
µ2 − r

σ2
− ρ

µ1 − r
σ1

)
= 1 + 2δ

σ 2
2

> 0. (14)

Because the bank is well-diversified and can hedge in the financial market by directly
trading the asset V , the cost Ct0 = C(Vt0 ) of granting the repayment option is given
by the complete market price of a perpetual barrier-type call option on er(t−t0)Vt,
with strike eα(t−t0)L exercised at the borrower’s optimal exercise boundary obtained
in Proposition 3.1. In other words, denoting by Q the unique risk-neutral measure for
the complete market consisting of S and V , we have the following result.

Proposition 3.2. Assuming that the borrower exercises the repayment option opti-
mally according to Proposition 3.1, the cost of this option for the bank is given
by

C(v) =
{

(V∗ − L)EQ
[
1{τ ∗<∞}

]
, if v < V∗

v − L, if v ≥ V∗ =
{

(V∗ − L)
( v

V∗
)β , if v < V∗

v − L, if v ≥ V∗.
(15)

Proof. Observe that the risk-neutral dynamics for V is

dVt = −δVtdt + σ2VtdW Q
t , (16)

where W Q is a Brownian motion. Therefore, EQ
[
1{τ ∗<∞}

]
corresponds to the risk-

neutral probability that the geometric Brownian motion Vt started at Vt0 = v will cross
the barrier V∗ in a finite time. The result then follows from standard Laplace transform
techniques.

We can now use (3) and (15) to establish that

c = L + Ct0 − Vt0 =
{

L + (V∗ − L)
(

Vt0
V∗

)β

− Vt0 , if Vt0 < V∗

0, if Vt0 ≥ V∗.
(17)

As shown in proposition 3.5 of Henderson (2007), one can find by direct differenti-
ation of expressions (8) and (11) that both the threshold V∗ and the indifference value
p(v) are increasing in ρ2. In other words, all things being equal, a higher degree of mar-
ket incompleteness, expressed as a smaller absolute value for the correlation between
the stock and the market portfolio, lead the client to exercise the option to repay the
loan earlier than in the complete market case, resulting in a smaller indifference value
for the option. Similarly, both V∗ and p(v) are decreasing in γ , meaning that a higher
degree of risk aversion has a similar effect in decreasing the value of the option to repay
the loan. These properties carry over to the loan fee obtained in expression (17), as we
establish in the next proposition.
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Stock Loans in Incomplete Markets 123

Proposition 3.3. The loan fee:

(1) decreases as the risk aversion γ increases,
(2) decreases as the dividend rate δ increases and
(3) increases as ρ2 increases.

Moreover, its limiting values as either ρ2 → 1 or γ → 0 coincide and are given by

c =
{

L + (Ṽ − L)
(

Vt0

Ṽ

)β

− Vt0 , if Vt0 < V∗

0, if Vt0 ≥ V∗.
(18)

where Ṽ = β
β−1 L =

(
1 + σ 2

2
2δ

)
L.

Proof. The first part of the proposition follows by explicit differentiation of
expressions (8), (14) and (17). For the second part, observe that it follows from
our equilibrium condition (13) that both limiting thresholds in proposition 3.5 of
Henderson (2007) are given by Ṽ = β

β−1 L. Substituting expression (14) for β then
completes the proof.

We conclude this section by observing that the limiting threshold Ṽ corresponds
to the complete market threshold a0 found in Xia and Zhou (2007) using risk-neutral
valuation arguments. Consequently, provided α = r, the complete market, risk-neutral
setting can be recovered as a special case of our results.

3.1 Suboptimal Exercise by the Client

We obtained the fee in (17) under the assumption that the borrower exercises the
repayment option optimally. Moreover, we implicitly assume that the bank knows
that the client has an exponential utility with risk-aversion parameter γ . It is there-
fore interesting to investigate the risks faced by the bank when these assumptions are
violated.

To address the first issue, suppose that the client exercises the repayment option
when the stock price crosses an arbitrary threshold B. The cost for the bank associated
with this exercise strategy is therefore given by

CB(v) =
{

(B − L)
( v

B

)β , if v < B
v − L, if v ≥ B.

(19)

The highest cost for the bank corresponds to a threshold B that maximizes this expres-
sion for each fixed v. Following the well-known approach described, for example, in
chapter 8 of Shreve (2004), we define

g(B) = B − L
Bβ

and seek for the value of B that maximizes this function over B ≥ 0. Since β ≥ 1, we
see that
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124 M. R. Grasselli and C. Gómez

lim
B→0

g(B) = −∞

lim
B→∞

g(B) = 0.

Moreover,

g′(B) = Bβ − (B − L)βBβ−1

B2β

and setting this equal to zero gives

B∗ = β

β − 1
L = Ṽ . (20)

This is shown in Figure 1. We see that the highest cost for the bank occurs when the
client exercises the repayment option using the threshold B∗ = Ṽ , which according
to Proposition 3.3 corresponds to either a complete market (ρ2 = 1) or a risk-neutral
client (γ = 0). We also see from Figure 1 that suboptimal exercise by the client can
have both a positive or a negative impact on a bank that uses Proposition 3.2 to
compute the cost associated with the loan. This is because exercise either before the
optimal threshold V∗ or after the threshold V2 (marked in the figure) leads to a lower
cost, whereas exercise between V∗ and V2 leads to a higher cost (with a maximum at
B∗ = Ṽ ) than previously estimated by the bank.

Regarding the choice of the parameter γ , the bank can either infer it indirectly from
the client’s investment decisions (using the methods described in the vast literature
started with the seminal work of Cohn et al. (1975)) or try to assess it directly by
surveying the client’s attitudes towards various specified lotteries (see, e.g., Kagel and
Roth, 1995). Whatever the method used by the bank will result in a range of estimates
of γ , which should then be used in conjunction with the statistical estimates for the
other model parameters and a sensitivity analysis of the type provided in Section 5.1
to help it determine the risks associated with the loan.

4. Finite Maturity

4.1 The Free Boundary Problem

Consider T = ∞ and define the value function (see Merton, 1969)

M(t, x) = sup
π∈A[t,T ]

E
[
−e−γ Xπ

T |Xπ
t = x

]
= −e−γ xe− (µ1−r)2

2σ2 (T−t), (21)

for t0 ≤ t ≤ T , where Xπ
t follows the dynamics (2) and A[t,T ] is the set of admissible

investment policies on the interval [t, T ], which we take to be progressively measurable
processes satisfying the integrability condition:

E
[∫ T

t
π2

s ds
]

< ∞.
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Stock Loans in Incomplete Markets 125

V VB B

Bg

Figure 1. Dependence of bank cost with respect to an arbitrary exercise threshold B.

As before, let the repayment time by a stopping time τ and assume that the borrower
will add the discounted payoff (Vτ − e(α−r)(τ−t0)L)+ to his discounted wealth Xπ

τ at time
τ and then invest optimally until time T . Accordingly, having taken the stock loan at
time t0, the borrower considers the following optimization problem:

u(t0, x, v) = sup
τ∈T [t0,T ]

sup
π∈A[t,τ ]

E
[

M
(

τ , Xπ
τ +

(
Vτ − e(α−r)(τ−t0)L

)+)
|Xπ

t0
= x, Vt0 = v

]
,

(22)

where T [t0, T ] denotes the set of stopping times in the interval [t0, T ]. The indifference
value for the repayment option is then given by the amount p satisfying

M(t0, x) = u(t0, x − p, v). (23)

It follows from the dynamic programming principle that the value function u solves
the free boundary problem:






∂u
∂t + sup

π
Lπu ≤ 0,

u(t, x, v) ≥ *(t, x, v),(
∂u
∂t + sup

π
Lπu

)
· (u − *) = 0,

(24)

for (t, x, v) ∈ [t0, T) × R × (0, ∞), where
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126 M. R. Grasselli and C. Gómez

Lπ = (µ2 − r)v
∂

∂v
+ σ 2

2 v2

2
∂2

∂v2 + π (µ1 − r)
∂

∂x
+ ρπσ1σ2v

∂2

∂x∂v
+ π2σ 2

1

2
∂2

∂x2

is the infinitesimal generator of (Xπ , V ) and

*(t, x, v) = M(t, x + (v − e(α−r) (t−t0)L)+)

is the utility obtained from exercising the repayment option at time t. The boundary
conditions for Problem (24) are

u(T , x, v) = −e−γ [x+(v−e(α−r) (T−t0)L)+]

u(t, x, 0) = −e−γ xe
− (µ1−r)2

2σ2
1

(T−t)
.

(25)

Using the factorization

u(t, x, v) = −e−γ xF(t, v)
1

1−ρ2 , (26)

we find that the corresponding free boundary problem for F becomes






∂F
∂t + L0F ≥ 0,

F(t, v) ≤ κ(t, v),
(

∂F
∂t + L0F

)
· (F − κ) = 0,

(27)

for (t, v) ∈ [t0, T) × (0, ∞), where

L0 =
[
µ2 − r − ρ

µ1 − r
σ1

σ2

]
v

∂

∂v
+ σ 2

2 v2

2
∂2

∂v2 (28)

and

κ(t, v) = e−γ (1−ρ2)(v−e(α−r)(t−t0)L)+ . (29)

The boundary conditions for Problem (27) are

F(T , v) = e−γ (1−ρ2)(v−e(α−r)(T−t0)L)+

F(t, 0) = 1.
(30)

Since Problem (27) is independent of X and S, we define the borrower’s optimal
exercise boundary as the function

V∗(t) = inf {v ≥ 0 : F(t, v) = κ(t, v)} (31)

and the optimal repayment time as
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Stock Loans in Incomplete Markets 127

τ ∗ = inf
{
t0 ≤ t ≤ T : Vt = V ,(t)

}
. (32)

It follows from the definition (23) and the factorization (26) that the indifference
value for the repayment option is given by p = p(t0, Vt0 ) where

p(t, v) = − 1
γ (1 − ρ2)

log F(t, v). (33)

Therefore, the original free boundary problem can be rewritten in terms of the
indifference value as






∂p
∂t + L0p − 1

2γ (1 − ρ2)σ 2
2 v2

(
∂p
∂v

)2
≤ 0,

p(t, v) ≥
(
v − e(α−r)(t−t0)L

)+ ,
[

∂p
∂t + L0p − 1

2γ (1 − ρ2)σ 2
2 v2

(
∂p
∂v

)2
]

· (p − (v − e(α−r)(t−t0)L)+) = 0,

(34)

Similarly, the optimal exercise time τ ∗ can be expressed in terms of p as follows:

τ ∗ = inf
{

t0 ≤ t ≤ T : p(t, Vt) = (Vt − e(α−r)(t−t0)L)+
}

(35)

Finally, the optimal trading strategy for client before exercising the option is

π∗(t, v) = µ1 − r
γ σ 2

1

− ρσ2v
σ1

∂p
∂v

. (36)

Observe that the first term above corresponds to the classical Merton allocation in the
absence of the option to repay the loan, whereas the second term is the excess hedge
allocation, which can be seen as a generalized delta-hedge in an incomplete market
setting.

Once we find the optimal exercise boundary V∗(t), say by solving problem (27)
numerically, we can calculate the bank’s cost of granting the repayment option as the
risk-neutral value of a barier-type call option on er(t−t0)Vt with strike eα(t−t0)L and
maturity T exercised at the barrier er(t−t0)V∗(t). In other words,
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128 M. R. Grasselli and C. Gómez

Ct0 = C(t0, v) = EQ
[

e−r(τ−t0)
(

er(τ−t0)V∗(t) − eα(τ−t0)L
)+

1{τ ∗<∞}

∣∣∣∣ Vt0 = v
]

(37)

= EQ
[

e−̂r(τ−t0)
(

e(r−α)(τ−t0)V∗(t) − L
)+

1{τ ∗<∞}

∣∣∣∣ Vt0 = v
]

(38)

= EQ
[

e−̂r(τ−t0) (V̂∗(t) − L
)+ 1{τ ∗<∞}

∣∣∣ Vt0 = v
]

(39)

where r̂ = r − α and V̂ (t) = êr(τ−t0)V∗(t). Denoting V̂t = e(r−α)(τ−t0)Vt, it is trivial to see
that τ ∗ defined in (32) can be written as

τ ∗ = inf
{
t0 ≤ t ≤ T : Vt = V ,(t)

}
= inf

{
t0 ≤ t ≤ T : V̂t = V̂ ,(t)

}
. (40)

Therefore, since the risk-neutral dynamics for the process V̂t is

dV̂t = (̂r − δ)Vtdt + σ2VtdW Q
t , (41)

we have that the function C(t, v) satisfies the Black–Scholes partial differential
equation (PDE)

∂C
∂t

+ (r − α − δ)v
∂C
∂v

+ σ 2
2 v2

2
∂2C
∂v2 = (r − α)C (42)

over the domain D = {(t, v) : t0 ≤ t ≤ T , 0 ≤ v ≤ V∗(t)}, subject to the boundary
conditions

C(t, 0) = 0, t0 ≤ t ≤ T ,
C(t, V̂∗(t)) = (V̂∗(t) − L)+, t0 ≤ t ≤ T ,
C(T , v) = (v − L)+, 0 ≤ v ≤ V̂∗(T).

(43)

As before, once we calculate the cost Ct0 , the fee to be charged for the loan is given
by (3). It is easy to see that the cost Ct0 , and consequently the fee c, increases if the
optimal exercise boundary V∗(t) is shifted upwards and decreases otherwise.

4.2 Properties of the Loan Fee

In this section, we investigate how the loan fee to be charged by the bank depends on
the underlying parameters. We will always assume that the interest rate r, the expected
return µ1 and the volatility σ1 for the market portfolio S, the loan interest rate α

and the loan amount L are fixed. On the other hand, we treat the risk aversion γ ,
the dividend rate δ, the correlation ρ and the underlying asset volatility σ2 as vari-
able parameters. We then perform comparative statics, that is, we change each of these
parameters while keeping the others constant and analyse the corresponding behaviour
of the loan fee.
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Stock Loans in Incomplete Markets 129

Observe that for each choice of values for δ, σ2 and ρ, the expected return µ2 is
automatically determined by the assumption that the asset prices are in equilibrium.
For simplicity, we continue to assume that S is the discounted price of the market
portfolio, so that the CAPM condition (13) holds and we have that

µ2 = ρ
µ1 − r

σ1
σ2 + r − δ. (44)

The behaviour of the loan fee with respect to the underlying parameters is estab-
lished in the next proposition, which we prove using the same technique as in Leung
and Sircar (2009), but adapted the problem at hand.

Proposition 4.1. The loan fee c:

(1) decreases as the risk aversion γ increases,
(2) decreases as the dividend rate δ increases and
(3) increases as ρ2 increases.

Proof. Observe first that for fixed values of L, α and r, it follows from (35) that
a smaller indifference value leads to a smaller optimal exercise time, which in turn
implies a lower optimal exercise boundary and consequently a smaller loan fee. To
establish how the indifference value changes with the underlying parameters, we use
the comparison principle for the variational inequality

min

{

−∂p
∂t

− L0p + 1
2
γ (1 − ρ2)σ 2

2 v2
(

∂p
∂v

)2

, p(t, v) −
(

v − e(α−r)(t−t0)L
)+

}

= 0,

(45)

which is known to be equivalent to (34).
For item (1), observe that the variational inequality (45) depends on γ only through

the nonlinear term

1
2
γ (1 − ρ2)σ 2

2 v2
(

∂p
∂v

)2

. (46)

Since this is increasing in γ , it follows that p is decreasing in γ .
For item (2), observe first that ∂p

∂v ≥ 0, because u(t0, x, v) defined in (22) (and conse-
quently p(t, v)) is an increasing function v. Next, recalling the definition of L0 in (28),
we see that the variational inequality (45) depends on δ through the term

−
[
µ2 − r − ρ

µ1 − r
σ1

σ2

]
∂p
∂v

= δ
∂p
∂v

,

on account of (44). Since this is increasing in δ, we have that p is decreasing in δ.
Similarly, for item (3), using (28) we see that the variational inequality (45) depends

on ρ through the term
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−
[
µ2 − r − ρ

µ1 − r
σ1

σ2

]
∂p
∂v

+ 1
2
γ (1 − ρ2)σ 2

2 v2
(

∂p
∂v

)2

.

By virtue of (44), we then see that the dependence on ρ reduces to the nonlinear term
(46). Therefore, the indifference price is a symmetric function of ρ and increases as ρ2

increases from 0 to 1.

Notice that the variational inequality (45) depends on σ2 through the term

−σ 2
2 v2

2
∂2p
∂v2 + 1

2
γ (1 − ρ2)σ 2

2 v2
(

∂p
∂v

)2

. (47)

Since this is not necessarily monotone in σ2, we cannot expect the indifference value,
and consequently the loan fee c, to be monotone function of the underlying stock
volatility.

Regarding the behaviour of the loan fee with respect to the maturity length of the
loan, one intuitively expects that a longer maturity increases the optionality of the
repayment and should contribute to higher fee. As establish in the next proposition,
this is indeed the case, provided we can ignore the effects of interest rates.

Proposition 4.2. If α = r, the loan fee is an increasing function of the maturity T .

Proof. The solution to problem (27) admits a probabilistic representation (see
Oberman and Zariphopoulou, 2003) of the form

F(t, v) = inf
τ∈T [t,T ]

E0[κ(τ , Vτ )|Vt = v],

where E0[·] denotes the expectation operator under the ‘minimal martingale measure’
Q0 defined by

dQ0

dP
= e

− µ1−r
σ1

WT − 1
2

(µ1−r)2

σ2
1

T
. (48)

When α = r, we can use the fact that Vt is a time-homogeneous diffusion to obtain
that

F(t, v) = inf
τ∈T [t,T ]

E0[e−γ (1−ρ2)(Vτ −L)+|Vt = v]

= inf
τ∈Tt0,T−t+t0

E0[e−γ (1−ρ2)(Vτ −L)+|Vt0 = v].

For any s ≤ t, we have that T [t0, T − t + t0] ⊂ T [t0, T − s + t0], so F(s, v) ≤ F(t, v).
Now, fix v ≥ 0 and suppose that it is optimal to exercise at (s, v), that is, F(s, v) = k(s, v).
Using the fact that F is increasing in time (as we just established), we have that
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Stock Loans in Incomplete Markets 131

e−γ (1−ρ2)(v−L)+ = k(s, v) = F(s, v) ≤ F(t, v) ≤ k(t, v) = e−γ (1−ρ2)(v−L)+ ,

so that F(t, v) = k(t, v), which implies that it is also optimal to exercise at (t, v). This
means that, for each fixed T , the optimal exercise boundary V∗(t) is a decreasing
function of time, and consequently an increasing function of the time-to-maturity
parameter (T − t). Therefore, as we modify the problem by increasing the maturity
T , the optimal exercise boundary shifts upwards, leading to a higher cost for the bank
and a higher loan fee.

5. Numerical Results

5.1 Infinite Maturity

The only numerical step involved in this case consists of finding the value of the thresh-
old V∗ by solving the non-linear Equation (8) for given parameter values. We can then
use expression (17) to find the loan fee c. For comparison, we calculate the correspond-
ing loan fee in a complete market scenario using the formulas found in Xia and Zhou
(2007). Observe that we always need to use r = α as explained in Section 3in order to
maintain time homogeneity.

We start by calculating the value of the loan fee c for a range of loan amounts L and
four different sets of model parameters. The results are summarized in Table 1 and
correspond to the following cases:

(1) Complete market with σ2 = 0.15, δ = 0, r = 0.05, α = 0.05 and Vt0 = 100. This
corresponds to case (a) of theorem 3.1 in Xia and Zhou (2007), that is, δ = 0 and
α − r = 0 < σ 2

2 /2. Because the stock pays no dividend and the excess interest rate
on the loan is small, it follows that the option to repay the loan has the same
value as the stock itself (i.e., Ct0 = Vt0 ), which leads to c = L. In other words, the
bank has no incentive to provide the loan and charges a fee exactly equal to the
loan amount. In effect, the client gives away the stock and receives a perpetual
American option with an infinite exercise threshold.

(2) Incomplete market with σ2 = 0.15, δ = 0, r = 0.05, α = 0.05, Vt0 = 100, ρ = 0.9
and γ = 0.01. This is the incomplete market analogue of the previous case. We
see that incompleteness and risk aversion lead to a finite exercise threshold V∗

even when the stock pays no dividend and the excess interest rate on the loan is

Table 1. Loan fee c as for different loan amounts L (infinite maturity).

L 50 60 70 80 90 100 110 120

Case 1 c 50 60 70 80 90 100 110 120
Case 2 c 31.0528 39.5086 48.1242 56.8653 65.7084 74.6363 83.6361 92.6978

V∗ 263.8914 292.8058 319.9876 345.8010 370.4988 394.2648 417.2377 439.5251
Case 3 c 0.0000 0.0000 0.0000 0.0000 1.9041 7.4530 14.8794 23.3145

a0 61.2500 73.5000 85.7500 98.0000 110.2500 122.5000 134.7500 147.0000
Case 4 c 0.0000 0.0000 0.0000 0.0000 1.9015 7.4510 14.8778 23.3132

V∗ 61.1055 73.2926 85.4688 97.6341 109.7885 121.9323 134.0656 146.1884
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132 M. R. Grasselli and C. Gómez

small. In other words, the option to repay the loan is exercised sooner, and con-
sequently has a smaller value for the client, than in the complete market case. As
a consequence, the bank has a smaller cost for providing the loan and can charge
a reduced fee c < L.

(3) Complete market with σ2 = 0.15, δ = 0.05, r = 0.05, α = 0.05 and Vt0 = 100.
This corresponds to case (b) of theorem 3.1 in Xia and Zhou (2007), since δ ≥ 0.
To calculate c, we first find the exercise threshold a0 as in page 314 of Xia and
Zhou (2007) for each value of L. If a0 ≤ Vt0 = 100 (which happens for low enough
L), then c = 0, meaning that the client receives L in exchange of Vt0 at no cost, and
then immediately exercises the option to repay. In other words, there is no incen-
tive for the client to seek the loan. On the other hand, if a0 ≥ Vt0 , we calculate the
fee c using the formula at the end of page 316 of Xia and Zhou (2007).

(4) Incomplete market with σ2 = 0.15, δ = 0.05, r = 0.05, α = 0.05, Vt0 = 100, ρ =
0.9 and γ = 0.01. This is the incomplete market analogue of the previous case. As
expected, we have that V∗ < a0, leading to a smaller fee c charged by the bank.

Next, in Figure 2, we illustrate the dependence of the loan fee upon the other model
parameters. In particular, each curve on the top left plot represents c as a function
of γ for a particular value of the correlation ρ. Similarly, each curve on the top right
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Figure 2. Dependence on model parameters for infinite maturity.
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Stock Loans in Incomplete Markets 133

plot represents the loan fee value c as a function of ρ for a particular value of the risk
aversion γ . Finally, the curve on the bottom plot represents the loan fee value c as a
function of the dividend rate δ. When not explicitly shown in the figure, the values of
the remaining parameters are σ2 = 0.15, δ = 0.05, r = α = 0.05, L = 90, V0 = 100,
ρ = 0.9 and γ = 0.01.

Observe that the figures confirm the dependences established in Proposition 3.3,
namely that the loan fee c is decreasing in γ and δ and increasing in ρ2. Moreover, the
limits as γ → 0 and ρ → ±1 coincide with the complete market, risk-neutral value for
the fee obtained in Case 3 of Table 1 for a loan amount L = 90, namely c = 1.9041.

Observe further that in the incomplete market case, the fee increases sharply as
δ → 0, but converges to the value c = 65.7048 < 90 as obtained in Case 2 of Table 1
for L = 90.

5.2 Finite Maturity

As mentioned in Section 4.1, the numerical procedures in this case are slightly more
involved. First, we use finite differences with projected successive over-relaxation
(PSOR) to solve the linear free boundary problem (27). This yields a threshold
function V∗(t), which we then use to solve Equation (42) subject to the boundary
conditions (43), again by finite differences.

To start with, Table 2 shows the loan fee c for different loan amounts L, with
the following parameter values: σ2 = 0.4, ρ = 0.4, γ = 0.01, δ = 0.05, r = 0.05, α =
0.07, Vt0 = 100 and T = 5 (in years). Observe that we do not need to restrict ourselves
to the case r = α as we did before, since the time-homogeneity property is not used in
the finite-maturity case.

Remark 5.1. We used ρ ≥ 0 throughout all examples, as most stocks are positively
correlated with the market index, although this is not necessary for the results to hold.
In view of (36), this implies a ‘negative’ excess hedge due to the presence of the option
to repay the loan. In other words, the client will partially hedge the option by shorting
the index and deposit the proceeds in a bank account with rate r. In this context, it is
justifiable to use r < α as in some of our examples. On the other hand, when ρ < 0, the
excess hedge due to the repayment option requires borrowing money from the bank
account at a market rate r. In this context, the client will seek to enter the stock loan
only when α < r. In fact, offering the stock as a collateral in order to obtain a loan at
below market rates can be viewed as one of the motivations for the whole transaction.

Next, in Figure 3, we illustrate in detail the dependence upon the model parame-
ters analysed in Propositions 4.1 and 4.2. We use T = 5, L = 80, σ2 = 0.4, r = 0.05
α = 0.07, δ = 0.05, and ρ = 0.4 unless otherwise specified. Each curve on the left side

Table 2. Loan fee c for different loan amounts L (finite maturity).

L 50 60 70 80 90 100 110 120

c 0.0000 0.0000 0.0000 1.0667 4.1073 9.3487 16.0344 23.8156
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Figure 3. Dependence on model parameters for finite maturity.
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Stock Loans in Incomplete Markets 135

represents an optimal exercise boundary V∗(t) for V0 = 100, whereas each curve on
the right side represents the loan fee c as a function of V0, for the particular set of
parameter values described below:

(1) For the first row, we use γ = 0.01, 0.05, 0.08 and find that both the optimal exer-
cise boundary and the loan fee decrease as risk aversion increases, in agreement
with item 1 of Proposition 4.1.

(2) For the second row, we use δ = 0.05, 0.1, 0.15 and find that both the optimal
exercise boundary and the loan fee decrease as the dividend rate increases, in
agreement with item 2 of Proposition 4.1.

(3) For the third row, we use ρ = 0.05, 0.4, 0.9 and find that both the optimal exercise
boundary and the loan fee increase as correlation increases, in agreement with
item 3 of Proposition 4.1.

(4) For the last row, we use α = r = 0.05 and find that the optimal exercise boundary
is strictly decreasing with respect to time to maturity (T − t), in agreement with
Proposition 4.2.

6. Concluding Remarks

In this paper, we have extended the analysis of Xia and Zhou (2007) for stock loans
in incomplete markets. This allows us to consider the realistic situation when the
borrower faces trading restrictions and cannot use replication arguments to find the
unique arbitrage-free value for the repayment option embedded in such loans. We
showed how an explicit expression for the loan fee can still be found in the infinite-
horizon case, provided the loan interest rate is set to be equal to the risk-free rate. In
the finite-horizon case, we characterize the loan fee in terms of a free-boundary prob-
lem and show how to calculate it numerically. In both cases, we analysed how the loan
fee depends on the underlying model parameters.

Based on the dependence on correlation and risk-aversion, we find that the
complete–market, risk-neutral valuation of a stock loan provides an upper bound for
the fee to be charged by the bank. This shows that by following our model a bank can
quantify the effects of the restrictions faced by the client, thereby charging a smaller
fee for the loan, presumably increasing its competitiveness.
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