Indifference Price of Insurance Contracts: stochastic volatility, stochastic interest rates

M. R. Grasselli and E. Alexandru-Gajura

Mathematics and Statistics McMaster University

Fields Institute, February 05, 2008

Part 1: Stochastics Volatility

We consider two factor stochastic volatility models where the financial asset satisfies:

$$dS_{t} = \mu S_{t} dt + \sigma(t, Y_{t}) S_{t} dW_{t}^{1}$$

$$dY_{t} = a(t, Y_{t}) dt + b(t, Y_{t}) [\rho dW_{t}^{1} + \sqrt{1 - \rho^{2}} dW_{t}^{2}]$$

- ▶ Here μ and $-1 < \rho < 1$ are constants, $a(\cdot, \cdot)$, $b(\cdot, \cdot)$ are deterministic functions, and W_t^1 and W_t^2 are independent one dimensional P-Brownian motions.
- ▶ In addition, we assume the existence of a risk-free bank account paying a constant interest rate r = 0.

Optimal Hedging and Investment

▶ We assume that, after selling an insurance contract B_T maturing at a future time T, the insurance company tries to solve the stochastic control problem

$$u^{B}(x,S,y,t) = \sup_{\pi \in \mathcal{A}} E^{x,S,y,t} \left[U \left(X_{T}^{\pi,x} - B_{T} \right) \right],$$

where $X_t^{H,x}$ is value of a self–financing portfolio with initial wealth x and π_t dollars invested in the stock, with the remaining value invested in the bank account.

▶ When B = 0, this reduces to the Merton problem:

$$u^{0}(x, y, t) = \sup_{H \in \mathcal{A}} E^{x, y, t} \left[U\left(X_{T}^{\pi, x}\right) \right]$$

Utility based pricing

► The sellers indifference price for the claim B is the solution π^s to the equation

$$u^{0}(x, y, t) = u^{B}(x + P(x, S, y, t), S, y, t)$$

► From now on, we consider an exponential utility function of the form:

$$U(x) = -e^{-\gamma x}, \quad \gamma > 0.$$

We can then write

$$u^{B}(x, S, y, t) = -e^{-\gamma x}G(S, y, t) = -e^{-x}e^{\phi(S, y, t)}$$

 $u^{0}(x, y, t) = -e^{\gamma x}F(y, t) = -e^{-\gamma x}e^{\psi(y, t)}$

▶ The indifference price is then given by

$$P(S, y, t) = \frac{1}{\gamma} \log \left(\frac{G(S, y, t)}{F(y, t)} \right) = \frac{1}{\gamma} (\phi(S, y, t) - \psi(y, t)).$$

Life insurance

- ▶ Consider now a claim of the form $B_T = \mathbf{1}_{\{\tau \leq T\}}$.
- Here τ is the arrival time of the first jump of an inhomogeneous Poisson process with intensity $\lambda(t)$, and is assumed to be independent of (W^1, W^2) .
- In this case, we have

$$u^{B}(x+P,S,y,t) = \sup_{H \in \mathcal{A}} E\left[-e^{\gamma(x+P+\int_{0}^{T}H_{s}dS_{s}-B_{T})}\right]$$
$$= e^{-\gamma P}E\left[e^{\gamma B_{T}}\right] \sup_{H \in \mathcal{A}} E\left[-e^{\gamma(x+\int_{0}^{T}H_{s}dS_{s})}\right]$$
$$= e^{-\gamma P}E\left[e^{\gamma B_{T}}\right] u^{0}(x,S,y,t).$$

► Therefore, the *excess hedge* is zero and the indifference price in this case is given by

$$P = \frac{1}{\gamma} \log E \left[e^{\gamma B_T} \right].$$

Equity-linked contracts

- ▶ Consider now an insurance contract that pays $B(S_{\tau})$ at time τ for some deterministic function $B(\cdot)$.
- ▶ In this case, the wealth process satisfies

$$\begin{cases} dX_s = \pi_s dS_s = \pi_s [(\mu - r)ds + \sigma(s, Y_s)dW_s] \\ X_\tau = X_{\tau-} - B(S_\tau), \quad \tau < T \\ X_t = x \end{cases}$$

▶ To obtain the equation satisfied by u^s in this case, consider the interval [t, t+h) and observe that,

$$u^{B}(x, s, y, t) \ge E[u^{B}(X_{t+h}, S_{t+h}, Y_{t+h}, t+h)]p(h) + E[u^{0}(X_{t+h} - B(S_{t+h}), Y_{t+h}, t+h)]q(h)$$

where
$$p(h) = P(\tau > t + h|\tau > t)$$
 and $q(h) = 1 - p(h)$.

Dynamic Programming

▶ Using Ito's lemma, we obtain

$$u^{B}(x,S,y,t) \geq \left(u^{B}(x,S,y,t) + E\left[\int_{t}^{t+h} \mathcal{L}^{X,S,Y} u^{B} ds\right]\right) p(h) + \left(u^{0}(x - B(S),y,t) + E\left[\int_{t}^{t+h} \mathcal{L}^{X,Y} u^{0} ds\right]\right) q(h),$$

where \mathcal{L} denotes the generator for the corresponding Markov process.

▶ Subtracting $u^B(x, S, y, t)p(h)$ from both sides, dividing by h and taking the limit $h \to 0$ gives

$$\lambda(t) \left[u^{0}(x - B(S), y, t) - u^{B}(x, S, y, t) \right] + \mathcal{L}^{X, S, Y} u^{B}(x, S, y, t) \le 0,$$
(1)

with equality holding at the optimal wealth process.

The HJB equation

► Taking the maximum in (1) and using a function of the form $u^B(x, S, y, t) = -e^{-\gamma x}e^{\phi(S, y, t)}$ leads to

$$\begin{cases} \phi_{t} + \frac{1}{2}\sigma^{2}S^{2}\phi_{SS} + \rho\sigma bS\phi_{yS} + \frac{1}{2}b^{2}\phi_{yy} + \left(a - \frac{\mu b\rho}{\sigma}\right)\phi_{y} \\ + \frac{1}{2}b^{2}(1 - \rho^{2})\phi_{y}^{2} + \lambda(t)\left[e^{\gamma B + \psi - \phi} - 1\right] = \frac{\mu^{2}}{2\sigma^{2}} \\ \phi(y, S, T) = 0 \end{cases},$$
(2)

where, as it is well-known,

$$\psi(y,t) = \frac{1}{1-\rho^2} \log \widetilde{E}^{y,t} \left[e^{-\int_0^T \frac{(1-\rho^2)\mu^2}{2\sigma^2(Y_s)} ds} \right],$$

with $E[\cdot]$ denoting an expectation with respect to the *minimal* martingale measure for this market.

Optimal hedge

 \blacktriangleright In terms of ϕ , the optimizer for (1) is a portfolio of the form

$$\pi_t^B = \frac{1}{\gamma} \left[\frac{\mu}{\sigma^2(y)} + \phi_S S + \frac{b(y, t)\rho}{\sigma(y)} \phi_y \right]$$

By comparison, the optimal Merton portfolio is

$$\pi_t^0 = \frac{1}{\gamma} \left[\frac{\mu}{\sigma^2(y)} + \frac{b(y, t)\rho}{\sigma(y)} \psi_y \right]$$

Subtracting one from the other we obtain the excess hedge

$$\pi_t^B - \pi_t^0 = P_S(S, y, t)S_t + \frac{b(y, t)\rho}{\gamma\sigma(y)}P_y(S, y, t),$$

which has the form of a *delta* hedge plus a volatility correction.

Fast-mean reversion asymptotics

Let us now take

$$dY_t = \alpha(m - Y_t)dt + \beta(\rho dW_t + \sqrt{1 - \rho^2}dZ_t)$$

and consider the regime $\frac{1}{\alpha}=\varepsilon<<1$, with $\beta=\sqrt{2\nu}/\sqrt{\varepsilon}$ where ν^2 is a fixed variance for the invariant distribution of Y_t .

We then look for expansion of the form

$$\phi^{\varepsilon} = \phi^{(0)}(y, S, t) + \sqrt{\varepsilon}\phi^{(1)}(y, S, t) + \varepsilon\phi^{(2)}(y, S, t) + \dots$$

Operators

The previous PDE can be rewritten in compact notation as

$$\left(\frac{1}{\varepsilon}\mathcal{L}_{0}+\frac{1}{\sqrt{\varepsilon}}\mathcal{L}_{1}+\mathcal{L}_{2}\right)\phi+\textit{NL}^{\phi}=\frac{\mu^{2}}{2\sigma^{2}}\tag{3}$$

where
$$NL^{\phi}=\lambda(t)\left[e^{\gamma B+\psi-\phi}-1\right]+rac{\mu^2}{\varepsilon}(1-
ho^2)\phi_y^2.$$

Here

$$\mathcal{L}_{0} = \nu^{2} \frac{\partial^{2}}{\partial y^{2}} + (m - y) \frac{\partial}{\partial y}$$

$$\mathcal{L}_{1} = \sqrt{2} \rho \nu \left(\sigma(y) S \frac{\partial^{2}}{\partial y \partial S} - \frac{\mu}{\sigma(y)} \frac{\partial}{\partial y} \right)$$

$$\mathcal{L}_{2} = \frac{\partial}{\partial t} + \frac{1}{2} \sigma^{2}(y) S^{2} \frac{\partial^{2}}{\partial S^{2}}$$

Main result

The insurer's indifference price satisfy:

$$|P(y,S,t) - P^{(0)}(S,t) - \widetilde{P^{1}}(y,S,t)| = \mathcal{O}(\varepsilon)$$
 (4)

(5)

where

$$\widetilde{P}^{1}(y,S,t) = -(T-t)(V_{3}S^{3}P_{SSS}^{(0)} + V_{2}S^{2}P_{SS}^{(0)})$$

▶ Here P⁽⁰⁾ satisfies

$$\begin{cases} P_t^{(0)} + \frac{1}{2}\sigma_{\star}^2 P_{SS}^{(0)} + \frac{\lambda(t)}{\gamma} \left[e^{\gamma(g - P^{(0)})} - 1 \right] = 0 \\ P^{(0)}(S, T) = 0 \end{cases}$$

where $\sigma_{\star}^2 = \langle \sigma^2 \rangle$.

Part 2: Stochastic Interest Rates

► Consider now the *discounted* price of a financial asset given by

$$\begin{cases} dS_s = (\mu - r_s)S_s ds + \sigma S_s dW_s^1 \\ S_t = S \end{cases}$$

We model the short rate as

$$\begin{cases} dr_s = (a_0(s)r_s + b_0(s))ds + \sqrt{c(s)r_s + d(s)}dZ_s \\ r_t = r \end{cases},$$

where
$$Z_t = \rho W_t^1 + \sqrt{1-\rho^2} dW_t^2$$
.

▶ It then follows that the price of a zero-coupon bond with maturity T₁ is given by

$$F_{tT_1} = e^{A(t,T_1)-C(t,T_1)r_t},$$

for deterministic functions $A(\cdot, \cdot)$ and $C(\cdot, \cdot)$.

Portfolio choice

- In this context, the insurance company can invest π_t dollars in the stock S_t and η_t dollars in the bond F_{tT_1} , with the remaining of its wealth in a bank account paying the interest rate r_t .
- ► We assume the market for bonds of different maturities has a market price of risk of the form

$$q(r_s,s) = \frac{(a_0(s) - a(s))r_s + (b_0(s) - b(s))}{\sqrt{c(s)r_s + d(s)}}$$
(6)

 Under this assumption, one can show that the dynamics of the discounted bond price is

$$\frac{d(e^{-\int_0^s r_u du} F_{sT_1})}{e^{-\int_0^s r_u du} F_{sT_1}} = -C(s, T_1) \left[(\Delta a(s) r_s + \Delta b(s)) dt + \sqrt{c(s) r_s + d(s)} dZ_s \right]$$

Path-dependent claims

▶ We consider path-dependent claims of the form $B_t = B(S_t, r_t, v_t)$, where

$$V_t = \int_0^t f(S_s, r_s, s) ds.$$

▶ In this case, the wealth process satisfies

$$\begin{cases} dX_{s} = \pi_{s} \frac{dS_{s}}{S_{s}} + \eta_{s} \frac{d(e^{-\int_{0}^{s} r_{u} du} F_{sT_{1}})}{e^{-\int_{0}^{s} r_{u} du} F_{sT_{1}}} \\ dX_{s} = [\pi_{s}(\mu - r) - \eta_{s} C(s, T_{1})(\Delta a(s) r_{s} + \Delta b(s))] ds \\ + \pi_{s} \sigma dW^{1} - \eta_{s} C(s, T_{1}) \sqrt{c(s) r_{s} + d(s)} dZ_{s} \\ X_{\tau} = X_{\tau -} - B(S_{\tau}, r_{\tau}, V_{\tau}), \quad \tau < T \\ X_{t} = x \end{cases}$$

The solution to Merton's Problem

▶ The Merton problem for the insurance company is now

$$u^{0}(x, r, t) = \sup_{x, y \in A} E^{x, r, t} [U(X_{T})].$$

▶ Using the same reasoning as before for the function $u^0(x, r, t) = -e^{-\gamma x}e^{\psi(r, t)}$ we arrive at the following PDE:

$$\psi_t + (ar+b)\psi_r + \frac{1}{2}\psi_{rr}(cr+d) - \left[\frac{1}{2}\left(\frac{\mu - r - \sigma\rho q}{\sqrt{1 - \rho^2}\sigma}\right)^2 + \frac{q^2}{2}\right] = 0,$$

subject to $\psi(r, T) = 0$.

Using Feynmann-Kac we obtain that

$$\psi(r,t) = -\int_t^T \widehat{E}^{t,r} \left[\left(\frac{\mu - r - \sigma \rho q}{2\sqrt{1 - \rho^2} \sigma} \right)^2 + \frac{q^2}{2} \right],$$

where $\widehat{E}[\cdot]$ denotes expectation with respect to the (unique) martingale measure for bond prices defined by the market price of risk q.

The value function with the claim

 Similarly, the hedging problem for the insurance company is now

$$u^{B}(x,S,r,v,t) = \sup_{\pi,\eta\in\mathcal{A}} E^{x,S,r,v,t} \left[U(X_{T}) \right]. \tag{7}$$

► For a function of the form $u^B(x, S, y, t) = -e^{-\gamma x}e^{\phi(S, r, v, t)}$, we obtain that ϕ satisfies the PDE

$$\begin{cases} \phi_{t} + (ar+b)\phi_{r} + \frac{1}{2}(cr+d)\phi_{rr} + \rho\sigma\sqrt{cr+d}S\phi_{Sr} + \frac{1}{2}\sigma^{2}S^{2}\phi_{SS} \\ + f(S,r,t)\phi_{v} - \left[\frac{1}{2}\left(\frac{\mu-r-\sigma\rho q}{\sqrt{1-\rho^{2}\sigma}}\right)^{2} + \frac{q^{2}}{2}\right] - \lambda(t)\left(1 - e^{\gamma B + \psi - \phi}\right) = \\ \phi(S,r,T) = 0 \end{cases}$$
(8)

subject to $\phi(S, r, v, T) = 0$.

Optimal hedge

▶ In terms of ϕ , the optimizers for (7) are

$$\pi_t^B = \frac{1}{\gamma} \left[\frac{\mu - r - q\rho\sigma}{(1 - rho^2)\sigma^2} + \phi_S S \right]$$

$$\eta_t^B = \frac{1}{\gamma C \sqrt{cr + d}} \left[\frac{\rho\sigma(\mu - r) - q\sigma^2}{(1 - \rho^2)\sigma^2} - \sqrt{cr + d}\phi_r \right]$$

By comparison, the optimal Merton portfolio is

$$\pi_t^0 = \frac{1}{\gamma} \left[\frac{\mu - r - q\rho\sigma}{(1 - rho^2)\sigma^2} \right]
\eta_t^0 = \frac{1}{\gamma C \sqrt{cr + d}} \left[\frac{\rho\sigma(\mu - r) - q\sigma^2}{(1 - \rho^2)\sigma^2} - \sqrt{cr + d} \Psi_r \right]$$

Subtracting one from the other we obtain the excess hedge

$$\pi_t^B - \pi_t^0 = P_S(S, r, v, t)S_t$$
 $\eta_t^B - \eta_t^0 = -\frac{1}{C}P_r(S, r, v, t)$

The pricing equation

► Therefore, *P* satisfies the following nonlinear PDE:

$$\begin{cases} P_{t} + (ar+b)P_{r} + \frac{1}{2}(cr+d)P_{rr} + \rho\sigma\sqrt{cr+d}SP_{Sr} + \frac{1}{2}\sigma^{2}S^{2}P_{SS} \\ + f(S, r, t)P_{v} - \frac{\lambda(t)}{\gamma}\left(1 - e^{\gamma B - \gamma P}\right) = 0 \\ P(S, r, T) = 0 \end{cases}$$