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Part 1: Stochastics Volatility

» We consider two factor stochastic volatility models where the
financial asset satisfies:

dS; = pSidt +o(t, Y:)S:dW}
dY; = a(t,Y:)dt + b(t, Yy)[pdWE + /1 — p2dW?]

» Here pand —1 < p < 1 are constants, a(-,-), b(-,-) are
deterministic functions, and W} and W? are independent one
dimensional P—Brownian motions.

» In addition, we assume the existence of a risk-free bank
account paying a constant interest rate r = 0.



Optimal Hedging and Investment

» We assume that, after selling an insurance contract Bt
maturing at a future time T, the insurance company tries to
solve the stochastic control problem

uB(x,S,y, t) = sup EX:t [U(XT* = Br1)],
TeA

where XtH’X is value of a self-financing portfolio with initial
wealth x and m; dollars invested in the stock, with the
remaining value invested in the bank account.

» When B = 0, this reduces to the Merton problem:

”O(X,y, t) = sup EXYot [U (Xflr_,X)]
HeA



Utility based pricing

» The sellers indifference price for the claim B is the solution 7°
to the equation

uO(X7y7 t) = uB(X + P(X7 57.y7 t)757y7 t)

» From now on, we consider an exponential utility function of
the form:
Ux)=—e7, ~y>0.

» We can then write

WB(x,S,y,t) = —e *G(S,y,t) = —e Xed(S¥1)
UO(X7y7 t) = _e’YXF(y’ t) = _e_’YXeT/J(y,t)

» The indifference price is then given by

G(S,y,t)

Pl = lon (555

> - rly(gb(S,% t) — vy, 1))



Life insurance

» Consider now a claim of the form Br = 1,<7y}.

» Here 7 is the arrival time of the first jump of an
inhomogeneous Poisson process with intensity A(t), and is
assumed to be independent of (W1, W?2).

» In this case, we have

uB(x+P,S,y,t) = sup E [_e')/(x+P+f0T Hsts—BT)}
HeA
= e PE [eVBT} sup E [—eV(XﬂLfoT Hsdss)}
HeA

= e PE [e”BT} u’(x,S,y,t).

» Therefore, the excess hedge is zero and the indifference price
in this case is given by

1
P="logE [eVBT] .
vy



Equity—linked contracts

» Consider now an insurance contract that pays B(S;) at time 7
for some deterministic function B(-).

» In this case, the wealth process satisfies

dXs = msdSs = ms[(p — r)ds + o (s, Ys)dWs]
X =X —B(S,), 7<T
Xt =X

» To obtain the equation satisfied by u® in this case, consider
the interval [t, t 4+ h) and observe that,

uB(X7 5, t) > E[UB(Xt+h7 5t+h7 Yt+h7 t+ h)]p(h)
+E[W®(Xesn — B(Sen)s Yeun, t + h)lq(h)

where p(h) = P(7 > t+ h|7 > t) and g(h) =1 — p(h).



Dynamic Programming

» Using Ito's lemma, we obtain
t+h
WB(x,S,y.1) > (uB(x, Sy 0)+E [ / chS’YqusD p(h)
t

+ <u0(x — B(S),y,t)+ E MHhL:XquOdsD q(h),

where £ denotes the generator for the corresponding Markov
process.

» Subtracting uB(x, S, y, t)p(h) from both sides, dividing by h
and taking the limit h — 0 gives

A(t) [UO(X — B(S),y,t) = uP(x,S,y,t)|[+L5>YuB(x, S, y,t) <0,
(1)

with equality holding at the optimal wealth process.



The HJB equation

» Taking the maximum in (1) and using a function of the form
uB(x,S,y,t) = —e 7%e?(5¥:1) leads to

1 1 b
ot + 50252¢55 + p0b5¢y5 + §b2¢yy + (a - ,UO-,0> ¢y
1 _ 1% )
+52(1 =)o) + (1) [T — 1] = o5
o(y,S, T)=0
(2)

where, as it is well-known,

22
Py, t) = L 5 log EVt [e I Gt ds]
) 1 _ p )

with E[] denoting an expectation with respect to the minimal
martingale measure for this market.



Optimal hedge

> In terms of ¢, the optimizer for (1) is a portfolio of the form
1] n b(y,t)p
B )
Ty = — + ¢sS + ¢
‘T [Uz(y) o(y)

» By comparison, the optimal Merton portfolio is

o_1 [ p o, bly,t)p

= 120) T o)

N
» Subtracting one from the other we obtain the excess hedge

b(y,t)p
o (y)

which has the form of a delta hedge plus a volatility
correction.

7TtB _ﬂ-tc') = PS(57y7 t)5t+

Py(57y7 t)7



Fast-mean reversion asymptotics

» Let us now take

dYt = a(m — Yt)dt + /B(det + v 1-— pdet)

and consider the regime é =e << 1, with 8 =+2v//c
where 12 is a fixed variance for the invariant distribution of Y;.

» We then look for expansion of the form

¢° = 0Oy, S, t) + VesD(y, S, t) + e6P(y, S, t) + ...



Operators

» The previous PDE can be rewritten in compact notation as

Yo+ Loivc ¢+NL¢—L2
6 0 \ﬁ 1 2 —20_2

2
where NL? = \(t) [e7B+¥=¢ — 1] + /L(l _ Pz)<l5}2,-
£

» Here 52 )
_ 209 N9
Lo=v 3,7 +(m y)ay
v Y20y05 ~ o(y) dy
Lr = g 1 2( )52872
27 5t T27 V)P 5s2

(3)



Main result

» The insurer's indifference price satisfy:
P(y,S,t) = PO(S, 1) = Py, S, 1) = O(e)  (4)
where
Py, S,t) = —(T = 1)(v3S* Py + 1,52P(Y)

» Here P(O) satisfies

PO + % o2P® | MO Tae-pO) _q] g

2
PO(S, T)=0

where 02 = (52).



Part 2: Stochastic Interest Rates

» Consider now the discounted price of a financial asset given by

dSs = (u — rs)Ssds + USdesl
St = 5

» We model the short rate as

{ drs = (ao(s)rs + bo(s))ds + \/c(s)rs + d(s)dZs

3
ry =r

where Z, = pW}! + /1 — p2dW2.
» It then follows that the price of a zero—coupon bond with
maturity T; is given by

—C(t,T:
For, = eA6T)-Ct TR,

for deterministic functions A(-,-) and C(-,-).



Portfolio choice

» In this context, the insurance company can invest 7; dollars in
the stock S; and n; dollars in the bond F;1,, with the
remaining of its wealth in a bank account paying the interest
rate ry.

» We assume the market for bonds of different maturities has a
market price of risk of the form

(30(s) —a(Nrs + (bo(5) = B(s)) g
c(s)rs + d(s)

q(rs,s) =

» Under this assumption, one can show that the dynamics of
the discounted bond price is

d(e=Jo mduF 1y

T —C(s, T1) [(Aa(s)rs + Ab(s))dt

c(s)rs + d(s)dZs}



Path—dependent claims

» We consider path—dependent claims of the form
Bt = B(St, re, Vt), where

t
Vt—/ (Ss, rs,s)ds.
0

» In this case, the wealth process satisfies
_ o ds, o d(e BB E)
dXs = ms = + USTWFSHI
dXs = [rs(p — r) —nsC(s, T1)(Aa(s)rs + Ab(s))]ds

+rsodW? —nsC(s, T1)\/c(s)rs + d(s)dZs

X = T—_B(STvrTa VT)7 T<T
Xt:X




The solution to Merton's Problem

» The Merton problem for the insurance company is now

WO(x,r,t) = sup EX"H[U(X7T)].
m,neA

» Using the same reasoning as before for the function
uO(x, r, t) = —e7%e¥("1) we arrive at the following PDE:

2
1 1fp—r— 2
et (ar+b),+ 5t {cr-+d) - (’”qu> +Z| =o.

2\ V/1-p20

subject to ¢(r, T) = 0.
» Using Feynmann-Kac we obtain that

T p-r—opq\ @
w r7 t = _/ Et7r Y —"_ A ?
(1) t 2y/1— p?c 2
where E[] denotes expectation with respect to the (unique)

martingale measure for bond prices defined by the market
price of risk g.



The value function with the claim

» Similarly, the hedging problem for the insurance company is
now

uB(x,S,r,v,t) = sup EX>THU(XT)]. (7)
m,neEA
» For a function of the form uB(x,S,y,t) = —e XSVt

we obtain that ¢ satisfies the PDE

1 1
e+ (ar + b)or + S (cr + d)or + pover +dSos + 50252%5
2
—r—0 2 _
+f(S,r,t)py — |3 (’ﬁf) + 4| - A(t) (1 - eBHY9) =
o(S,r, T)=0

(8)
subject to ¢(S,r,v, T) =0.



Optimal hedge

> In terms of ¢, the optimizers for (7) are

1 o
B H — qp
= — |/ S
Tt [(1 — rho?)o? 2 s ]
1 —r)—
B po(p—r) —qo® _JaTd }
= cr +
= e | o
» By comparison, the optimal Merton portfolio is
0 _ lip=r—gpo
t v (1 — rho?)o?

0o _ 1 pa(u—r)—q -
L 7Cﬁcr+d[ (e "’}

» Subtracting one from the other we obtain the excess hedge

870 = Ps(S,r,v,t)S
1

77tB_77? = —EP,(S,r,V,t)




The pricing equation

» Therefore, P satisfies the following nonlinear PDE:

1 1
Pt + (ar + b)Pr + =(cr + d)Pyy + pov/cr + dSPs, + 50252P55
At B—+P\ _
+(S,rt)P, — 2 (1 - eBP) =0
P(S,r,T)=0



