Market solutions to transportation problems

Matheus R Grasselli Math and Stats – McMaster

Why market solutions ?

Environmental (and transportation) problems are examples of market failures

These occur when individuals or organizations benefit while forcing unwanted cost onto other people

They originate from violation of market principles

Market Principles

Consumer options (preferences)
 Efficient pricing (reflect marginal cost)
 Neutrality (comparable goods treated equally)

General Solutions to Environmental Problems Command and Control Moral Suasion Servironmental taxes and fees Subsidies Cap-and-trade

Command and Control

Traditional regulation: target well defined sources and penalizes failure to comply

Ex: US Clean Air Act (93% reduction in lead between 1980 and 2000)

Orawbacks: (i) economically burdensome, (ii) no incentive to innovate (actual disincentive to exceed the standard)

Best used to complement other solutions

Ex: congestion in Sao Paulo

Since 1997, vehicles are only allowed to circulate in Sao Paulo during certain days of the week, depending on their license plate.

- In principle, reduces traffic by 20%.
- The policy was not complemented by other improvement plans (bus, subway, etc).

In practice, the number of cars increased by 23% in the past 10 years (3 times the population growth).

Moral Suasion

voluntary, flexible, inexpensive
inherent free rider problem
effective for information building to complement other policies

Taxes and fees

bring prices in line with social costs
obeys the polluter-pay principle
can be revenue neutral
generally political hotbeds

Subsidies

- Intended to lessen the burden of emission reduction
- Tax shifting violating the polluter-pay principle
- Should only be consider when leading to behavior change

Ex: Federal transit tax break

I6% reduction in cost for monthly pass holders

Average \$153 annual savings

Not enough to persuade car users to switch to public transit

Costs \$2000/ton of reduction

Compare with \$16/ton for Aircanada – zerofootprint program (as of May 2008)

Cap-and-trade

aligns incentives with goals
financial benefits for successful participants
polluter-pay principle satisfied
no restrictions on technology

Requirements for C&T

restricted supply of permits large number of participants mandatory compliance monitoring mechanism o credible penalties creation of a market

Ex: US acid rain

From 1990 to 2005, achieved a 44% reduction in SO₂ and 31% reduction in NO_x compared to 1980 level.

IOO % compliance

reductions well bellow mandated level

\$0.8 billion/year operating cost (initially estimated at \$25 billion/year)

The Acid Rain Experience

Unprecedented Environmental Protection at Unmatched Cost Efficiency

Source: The Economist, July 6th, 2002

Ex: EU – ETS

Carbon dioxide

25 countries

First phase: 2005-2007

Second phase: 2008-2012

PER CENT OF ACTUAL EU EMISSIONS OVER ALLOCATED EMISSIONS FOR 2005

Source: European Commission

Cost x Price

- Costs can be fixed (registration fee, residential parking ...) or variable (fuel, road tolls)
- Costs can be internal (vehicle operating costs) or external (pollution emissions, general taxes...)
- When pricing travel, drivers consider perceived, internal, variable costs.

Efficient pricing

oprice (perceived internal variable cost) = marginal cost (total resources used)

The at minimum: expenditure in roadway and traffic

ideally: cost of land use, congestion, pollution, crash damage, parking costs

Inderpricing creates: higher general taxes, higher prices for commercial goods, increased injury and illness expenditure, lower residential property value, ...

Pricing mechanisms

Internalize externalities and turn fixed cost into variable costs

Fuel taxes
Distance based fees
Parking pricing
Road pricing

Fuel taxes

- Targets a visible operating cost
- Seasy to implement
- Fuel elasticity: -0.27 (short term) to -0.7 (long term)
- Mileage elasticity: -0.1 (short term) to -0.5 (long term)
- Increases should be predictable and gradual

Revenue used to improve transportation, rather than just highways

Distance based fees

- Pay-as-you-drive insurance: calculate premium based on risk factors and prorate according to mileage
- PAYD registration fee
 PAYD purchase tax
 PAYD lease fee
- Weight-distance fee

Parking pricing

charge motorist directly if subsidized, offer cash-out options successful use variable rates for time and location avoid cheap monthly rates set prices to equal or exceed public transit Induction unbundle parking from housing

Road pricing

Road tolls (fee-for-service)
Congestion pricing (responsive, change pattern)
Managed lanes (High Occupancy Toll as an alternative to High Occupancy Vehicle)

Congestion charges principles

reflect marginal social cost of each trip
vary smoothly over time
base on trip segment
no vehicle exceptions
take into account full trip impact

Cap-and-trade for roads ?

ration peak period vehicle-miles
use a credit-based system
most market-based solution of all
proposed (2004) and polled (2008) in Austin, TX
extremely cool !!!