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Strategic Decision Making

Suppose we want to assign monetary values to the strategic
decision to:

I create a new firm;

I invest in a new project;

I start a real estate development;

I finance R&D;

I abandon a non-profitable project;

I temporarily suspend operations under adverse conditions and
reactive them when conditions improve.



Valuation Elements

In all of the previous problems, we can identify the following
common elements:

I intrinsic value;

I uncertainty about the future;

I some degree of irreversibility;

I timing flexibility;

I managerial flexibility.



Net Present Value

I Net Present Values takes into account the intrinsic advantages
of a given investment when compared to capital markets.

I This are essentially due to market imperfections, such as entry
barriers, product differentiation, economy of scale, etc...

I For instance, denoting the expected present value of future
cash flows of a given project by Ṽ and the corresponding sunk
cost by I , then its NPV is

NPV = Ṽ − I

I Therefore, the decision rule according to this NPV is to invest
whenever Ṽ > I .



The Real Options Approach

I If we view the project value V as an underlying asset, then an
investment opportunity with a sunk cost I is the formal
analogue of an American call option on Ṽ with strike price I .

I The Real Options Approach then applies techniques used for
financial options to determined the value C̃ for the option to
invest.

I Therefore, an investors possessing an opportunity with value
C will invest only when

Ṽ − I > C̃ .

I This then results in higher exercise thresholds, taking into
account the value of waiting.



Successes and Limitations

I According to a recent survey, 26% of CFOs in North America
“always or almost always” consider the value of real options in
projects.

I This is due to familiarity with the option valuation paradigm
in financial markets and its lessons.

I But most of the literature in Real Options is based on one or
both of the following assumptions: (1) infinite time horizon
and (2) perfectly correlated spanning asset .

I Though some problems have long time horizons (30 years or
more), most strategic decisions involve much shorter times.

I The vast majority of underlying projects are not perfectly
correlated to any asset traded in financial markets.



Alternatives

I The use of well–known numerical methods (e.g binomial trees
of finite differences) allowed many authors to successfully drop
the infinite time horizon hypothesis.

I As for the spanning asset assumption, the absence of perfect
correlation with a financial asset leads to an incomplete
market.

I Replication arguments can no longer be applied to value
managerial opportunities.

I Instead, one needs to rely on risk preferences.

I The most widespread way to do this in the strategic decision
making literature is to introduce an internal rate of return,
which replaces the risk–free rate, and use dynamic
programming.

I This approach lacks the intuitive understanding of
opportunities as options.



Utility-based methods

I We treat an investment opportunity as an option on a
non–traded asset and price it using the framework of
indifference pricing.

I For investments with a fixed exercise date (European option),
this problem was treated, for instance, in Hobson and
Henderson (2002).

I For early exercise investment (American option), the problem
was solved in Herderson (2005) for the case of infinite time
horizon..

I An different utility–based framework (not using indifference
pricing), was treated in Hugonnier and Morellec (2004), using
the effect of shareholders control on the wealth of a risk
averse manager.



A one–period investment model

I Consider the two–factor market where the discounted project
value V and the discounted a correlated traded asset S
following:

(ST ,VT ) =


(uS0, hV0) with probability p1,
(uS0, `V0) with probability p2,
(dS0, hV0) with probability p3,
(dS0, `V0) with probability p4,

(1)

where 0 < d < 1 < u and 0 < ` < 1 < h, for positive initial
values S0,V0 and historical probabilities p1, p2, p3, p4.

I Let the risk preferences be specified through an exponential
utility U(x) = −e−γx .

I An investment opportunity is model as an option with
discounted payoff Ct = (V − e−rt I )+, for t = 0,T .



European Indifference Price

I Without the opportunity to invest in the project V , a rational
agent with initial wealth x will try to solve the optimization
problem

u0(x) = max
H

E [U(X x
T )], (2)

where
X x

T = ξ + HST = x + H(ST − S0). (3)

is the wealth obtained by keeping ξ dollars in a risk–free cash
account and holding H units of the traded asset S .

I An agent with initial wealth x who pays a price π for the
opportunity to invest in the project will try to solve the
modified optimization problem

uC (x − π) = max
H

E [U(X x−π
T + CT )] (4)

I The indifference price for the option to invest in the final
period as the amount πC that solves the equation

u0(x) = uC (x − π). (5)



Explicit solution

Denoting the two possible pay-offs at the terminal time by Ch and
C`, the European indifference price defined in (5) is given by

πC = g(Ch,C`) (6)

where, for fixed parameters (u, d , p1, p2, p3, p4) the function
g : R× R → R is given by

g(x1, x2) =
q

γ
log

(
p1 + p2

p1e−γx1 + p2e−γx2

)
(7)

+
1− q

γ
log

(
p3 + p4

p3e−γx1 + p4e−γx2

)
,

with

q =
1− d

u − d
.



Early exercise

I When investment at time t = 0 is allowed, it is clear that
immediate exercise of this option will occur whenever its
exercise value (V0 − I )+ is larger than its continuation value
given by πC .

I That is, from the point of view of this agent, the value at
time zero for the opportunity to invest in the project either at
t = 0 or t = T is given by

C0 = max{(V0 − I )+, g((hV0 − e−rT I )+, (`V0 − e−rT I )+)}.



A multi–period model

I Consider now a continuous-time two–factor market of the form

dSt = (µ1 − r)Stdt + σ1StdW

dVt = (µ2 − r)Vtdt + σ2Vt(ρdW +
√

1− ρ2)dZ .

I We want to approximate this market by a discrete–time
processes (Sn,Vn) following the one–period dynamics (1).

I This leads to the following choice of parameters:

u = eσ1

√
∆t , h = eσ2

√
∆t ,

d = e−σ1

√
∆t , ` = e−σ2

√
∆t ,

p1 + p2 =
e(µ1−r)∆t − d

u − d
, p1 + p3 =

e(µ2−r)∆t − `

h − `
ρσ1σ2∆t = (u − d)(h − `)[p1p4 − p2p3],

supplemented by the condition p1 + p2 + p3 + p4 = 1.



Grid Values

I Instead a triangular tree for project values, we consider a
(2M + 1)× N rectangular grid whose repeated columns are
given by

V (i) = hM+1−iV0, i = 1, . . . , 2M + 1. (8)

This range from (hMV0) to (`MV0), respectively the highest
and lowest achievable discounted project values starting from
the middle point V0 with the multiplicative parameter
h = `−1 > 1.

I The parameter M should be chosen so that such highest and
lowest values are comfortably beyond the range of project
values that can be reached during the time interval [0,T ] with
reasonable probabilities (say four standard deviations)

I Then each realization for the discrete-time process Vn

following the dynamics (1) can then be thought of as a path
over this grid.



Option pricing on the grid

I We determine the discounted value of the option to invest on
the project can is a function Cin on this grid.

I We start by with the boundary conditions:

CiN = (V (i) − e−rT I )+, i = 1, . . . , 2M + 1,

C1n = V (1) − e−rn∆t , n = 0, . . . ,N,

C2M+1,n = 0, n = 0, . . . ,N.

I Values in the interior of the grid are then obtained by
backward induction as follows:

Cin = max
{

(V (i) − e−rn∆t I )+, g(Ci+1,n+1,Ci−1,n+1)
}

. (9)

I For each time tn, the exercise threshold V ∗
n is defined as the

project value for which the exercise value becomes higher than
its continuation value.



Numerical Experiments

I We now investigate how the exercise threshold varies with the
different model parameters.

I The fixed parameters are

I = 1, r = 0.04, T = 10

µ1 = 0.115, σ1 = 0.25, S0 = 1

σ2 = 0.2, V0 = 1

I Given these parameters, the CAPM equilibrium expected rate
of return on the project for a given correlation ρ is

µ̄2 = r + ρ

(
µ1 − r

σ1

)
σ2. (10)

I The difference δ = µ̄2 − µ2 is the below–equilibrium
rate–of–return shortfall and plays the role of a dividend rate
paid by the project, which we fix at δ = 0.04.



Known Thresholds

I In the limit ρ → ±1 (complete market), the closed–form
expression for the investment threshold obtained in the case
T = ∞ gives V ∗

DP = 2.

I This should be contrasted with the NPV criterion (that is,
invest whenever the net present value for the project is
positive) which in this case gives V ∗

NPV = 1.

I The limit γ → 0 in our model corresponds to the McDonald
and Siegel (1986) threshold, obtained by assuming that
investors are averse to market risk but neutral towards
idiosyncratic risk.

I For our parameters, the adjustment to market risks is
accounted by CAPM and this threshold coincides with market
risk is threshold is V ∗

DP = 2



Dependence with Correlation and Risk Aversion
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Figure: Exercise threshold as a function of correlation and risk aversion.



Dependence with Correlation and Risk Aversion
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Figure: Exercise threshold as a function of volatility and dividend rate.



Dependence with Time to Maturity
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Figure: Exercise threshold as a function of time to maturity.



Values for the option to invest
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Figure: Option value as a function of underlying project value. The
threshold for ρ = 0 is 1.1972 and the one for ρ = 0.99 is 1.7507.



The abandonment option

I The previous framework ignores the possibility of negative
cash flows arising from the active project, for instance, when
operating costs exceed the revenue.

I Instead of the project value, we need to model two other
underlying variables: the (random) output cash flow rate Pt ,
governed by

dPt = (µ2 − r)Ptdt + σ2Pt(ρdW +
√

1− ρ2)dZ

and the (fixed) operating cost rate C .

I The cash expected value at time t of future cash flows for the
project is then

Pt/δ − C/r .

I We then have to consider the option to abandon the project
when such cash flows become too negative.



Suspension, Reactivation and Scrapping

I Instead of completely abandoning the project, we might have
the option to “mothball” it by paying a sunk cost EM and a
maintenance rate m < C .

I Once prices for the output become favorable again, we have
the option to reactive the project by paying a sunk cost R < I .

I Finally, if prices drop too much, we have the option to
completely abandon the project by paying a sunk cost S
(which could be negative, corresponding to a “scrap value”).

I As before, the decisions to invest, mothball, reactivate and
scrap are triggered by the price thresholds
PS < PM < PR < PH .



Project values and options

I Let us denote the value of an idle project by F 0, an active
project by F 1 and a mothballed project by FM . as the value
of a mothballed project.

I Then

F 0 = option to invest at cost I

F 1 = cash flow + option to mothball at cost EM

FM = cash flow + option to reactivate at cost RA

+ option to scrap at cost S

I We obtain its value on the grid using the recursion formula

F k(i , j) = max{continuation value, possible exercise values}.



Boundary values

I At the bottom of the grid we have, for all j = 0, . . . ,N:

F 0(2M + 1, j) = 0

F 1(2M + 1, j) = −(S + EM)

FM(2M + 1, j) = −S

I Similarly, at the top of the grid we should have, for all
j = 0 . . . , N:

F 0(1, j) = P(1)/δC/r − I

F 1(1, j) = P(1)/δ − C/r

FM(1, j) = P(1)/δ − C/r − R

I Finally, at the final time we have, for i = 1, . . . 2M + 1:

F 0(i ,N) = max(0,P(i)/δ − C/r − I )

F 1(i ,N) = max(P(i)/δ − C/r ,−m/r − EM ,−S − EM)

FM(i ,N) = max(−m/r ,P(i)/δ − C/r − R,−S)



Idle and Mothballed Phases

I For the idle phase we have

cont0(i , j) = g(F 0(i − 1, j + 1),F 0(i + 1, j + 1)

exer1(i , j) = g(F 1(i − 1, j + 1)− P(i − 1)/δ + C/r ,

F 1(i + 1, j + 1)− P(i + 1)/δ + C/r)

+ P(i)/δ − C/r)− I

I We then move to the mothballed phase, for which

contM(i , j) = −m/r + g(FM(i − 1, j + 1) + m/r ,

FM(i + 1, j + 1) + m/r)

exer1(i , j) = P(i)/δ − C/r − R +

g(F 1(i − 1, j + 1)− P(i − 1)/δ + C/r),

F 1(i + 1, j + 1)− P(i + 1)/δ + C/r)]

exer0(i , j) = −S + g(F 0(i − 1, j + 1),F 0(i + 1, j + 1))



Active phase

I For the active phase, we have the following:

cont1(i , j) = P(i)/δ − C/r) +

g(F 1(i − 1, j + 1)− P(i − 1)/δ + C/r ,

F 1(i + 1, j + 1)− P(i + 1)/δ + C/r)]

exer0(i , j) = g(F 0(i − 1, j + 1),F 0(i + 1, j + 1))− S − EM

exerM(i , j) = −m/r − EM + g(FM(i − 1, j + 1) + m/r ,

FM(i + 1, j + 1) + m/r)


