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Strategic Decision Making

Suppose we want to assign monetary values to the strategic
decision to:

> create a new firm;

» invest in a new project;

> start a real estate development;

» finance R&D:;

» abandon a non-profitable project;
[

temporarily suspend operations under adverse conditions and
reactive them when conditions improve.



Valuation Elements

In all of the previous problems, we can identify the following
common elements:

intrinsic value;

uncertainty about the future;

>
>
» some degree of irreversibility;
> timing flexibility;

>

managerial flexibility.



Net Present Value

» Net Present Values takes into account the intrinsic advantages
of a given investment when compared to capital markets.

» This are essentially due to market imperfections, such as entry
barriers, product differentiation, economy of scale, etc...

> For instance, denoting the expected present value of future
cash flows of a given project by V' and the corresponding sunk
cost by I, then its NPV is

NPV = V — |

» Therefore, the decision rule according to this NPV is to invest
whenever V > [.



The Real Options Approach

» If we view the project value V as an underlying asset, then an
investment opportunity with a sunk cost / is the formal
analogue of an American call option on V' with strike price /.

> The Real Options Approach then applies techniques used for
financial options to determined the value C for the option to
invest.

» Therefore, an investors possessing an opportunity with value
C will invest only when

V-1I>C.

» This then results in higher exercise thresholds, taking into
account the value of waiting.



Successes and Limitations

» According to a recent survey, 26% of CFOs in North America
“always or almost always” consider the value of real options in
projects.

» This is due to familiarity with the option valuation paradigm
in financial markets and its lessons.

» But most of the literature in Real Options is based on one or
both of the following assumptions: (1) infinite time horizon
and (2) perfectly correlated spanning asset .

» Though some problems have long time horizons (30 years or
more), most strategic decisions involve much shorter times.

» The vast majority of underlying projects are not perfectly
correlated to any asset traded in financial markets.



Alternatives

» The use of well-known numerical methods (e.g binomial trees
of finite differences) allowed many authors to successfully drop
the infinite time horizon hypothesis.

» As for the spanning asset assumption, the absence of perfect
correlation with a financial asset leads to an incomplete
market.

» Replication arguments can no longer be applied to value
managerial opportunities.

» Instead, one needs to rely on risk preferences.

» The most widespread way to do this in the strategic decision
making literature is to introduce an internal rate of return,
which replaces the risk—free rate, and use dynamic
programming.

» This approach lacks the intuitive understanding of
opportunities as options.



Utility-based methods

» We treat an investment opportunity as an option on a
non—traded asset and price it using the framework of
indifference pricing.

» For investments with a fixed exercise date (European option),
this problem was treated, for instance, in Hobson and
Henderson (2002).

» For early exercise investment (American option), the problem
was solved in Herderson (2005) for the case of infinite time
horizon..

» An different utility—based framework (not using indifference
pricing), was treated in Hugonnier and Morellec (2004), using
the effect of shareholders control on the wealth of a risk
averse manager.



A one—period investment model

» Consider the two—factor market where the discounted project
value V and the discounted a correlated traded asset S
following;:

uSo, hVp)  with probability p1,
uSp, V)  with probability ps,
dSo, hVp)  with probability ps,

(
(St,Vr) = E
(dSo,¢Vh)  with probability pa,

where 0 < d <1< wuand 0< ¥ <1< h, for positive initial
values Sp, Vp and historical probabilities p;, p2, p3, pa.

> Let the risk preferences be specified through an exponential
utility U(x) = —e™ 7.

» An investment opportunity is model as an option with
discounted payoff C; = (V —e "), for t =0, T.



European Indifference Price

» Without the opportunity to invest in the project V/, a rational
agent with initial wealth x will try to solve the optimization
problem

u®(x) = max E[U(X7)], (2)

where
X3 =&+ HSt =x+ H(ST — S0). (3)
is the wealth obtained by keeping & dollars in a risk—free cash
account and holding H units of the traded asset S.
» An agent with initial wealth x who pays a price 7 for the
opportunity to invest in the project will try to solve the
modified optimization problem

uC(x—m) = max E[U(X7™" + C7)] (4)

» The indifference price for the option to invest in the final
period as the amount 7€ that solves the equation

u0(x) = uC(x — 7). (5)



Explicit solution

Denoting the two possible pay-offs at the terminal time by C, and
Cy, the European indifference price defined in (5) is given by

€ =g(Ch C) (6)

where, for fixed parameters (u, d, p1, p2, p3, pa) the function
g R xR — R is given by

glx,x) = q|0g( S > (7)

gl pre” 71 + pre= 1
+1 9\og p3 + pa
gl p3e~ 1 + e )’
with
1—d
q =

u—d’



Early exercise

» When investment at time t = 0 is allowed, it is clear that
immediate exercise of this option will occur whenever its
exercise value (Vo — 1) is larger than its continuation value
given by 7€.

» That is, from the point of view of this agent, the value at

time zero for the opportunity to invest in the project either at
t=0ort=T is given by

Co=max{(Vo — )", g((hVo —e T N)", (tVo — e T 1))}



A multi—period model

» Consider now a continuous-time two—factor market of the form

dSt = (/J,l — r)Stdt + UlstdW
dVe = (o — r)Vedt + o2 Ve(pdW + /1 — p2)dZ.

» We want to approximate this market by a discrete—time
processes (Sp, V) following the one—period dynamics (1).

» This leads to the following choice of parameters:

u = e"lm, h = e"zm,
d = e VAt = e 2VAL
N B elmi—rAt _ 4 o elre—r)At _p
prtp = g Pt
poro2At = (u—d)(h—{)[p1ps — p2p3],

supplemented by the condition p; + po + p3 + ps = 1.



Grid Values

» Instead a triangular tree for project values, we consider a
(2M 4+ 1) x N rectangular grid whose repeated columns are
given by

v = pMH+I=iy, i=1,....,2M+1. (8)

This range from (hM V) to (¢MVp), respectively the highest
and lowest achievable discounted project values starting from
the middle point Vg with the multiplicative parameter
h=¢"1>1

» The parameter M should be chosen so that such highest and
lowest values are comfortably beyond the range of project
values that can be reached during the time interval [0, T] with
reasonable probabilities (say four standard deviations)

» Then each realization for the discrete-time process V,,
following the dynamics (1) can then be thought of as a path
over this grid.



Option pricing on the grid

» We determine the discounted value of the option to invest on
the project can is a function Cj, on this grid.

» We start by with the boundary conditions:

Cn = (VO —e Tt i=1,...,2M+1,
Cip = VO _ e mA n=0,...,N,
CGmiin = 0, n=0,...,N.

» Values in the interior of the grid are then obtained by
backward induction as follows:

Cin = max {(V(i) — e ™A g(Ciitntt, Ci—l,n+1)} . (9)

» For each time t,, the exercise threshold V is defined as the
project value for which the exercise value becomes higher than
its continuation value.



Numerical Experiments

» We now investigate how the exercise threshold varies with the
different model parameters.

» The fixed parameters are

| = 1, r=004, T=10
p = 0.115, ;=025 Sy=1
oy = 02, Vo=1

» Given these parameters, the CAPM equilibrium expected rate
of return on the project for a given correlation p is

_ —r
f2 = r—kp(“1 )0’2. (10)
o1
» The difference 6 = jip — 2 is the below—equilibrium
rate—of—return shortfall and plays the role of a dividend rate
paid by the project, which we fix at § = 0.04.



Known Thresholds

» In the limit p — +1 (complete market), the closed—form
expression for the investment threshold obtained in the case
T = oo gives V}, = 2.

» This should be contrasted with the NPV criterion (that is,
invest whenever the net present value for the project is
positive) which in this case gives V)., = 1.

» The limit v+ — 0 in our model corresponds to the McDonald
and Siegel (1986) threshold, obtained by assuming that
investors are averse to market risk but neutral towards
idiosyncratic risk.

» For our parameters, the adjustment to market risks is
accounted by CAPM and this threshold coincides with market
risk is threshold is Vj;, = 2



Dependence with Correlation and Risk Aversion
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Figure: Exercise threshold as a function of correlation and risk aversion.



Dependence with Correlation and Risk Aversion
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Figure: Exercise threshold as a function of volatility and dividend rate.



Dependence with Time to Maturity
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Figure: Exercise threshold as a function of time to maturity.



Values for the option to invest
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Figure: Option value as a function of underlying project value. The
threshold for p = 0 is 1.1972 and the one for p = 0.99 is 1.7507.



The abandonment option

» The previous framework ignores the possibility of negative
cash flows arising from the active project, for instance, when
operating costs exceed the revenue.

» Instead of the project value, we need to model two other
underlying variables: the (random) output cash flow rate P,
governed by

dP; = (2 — r)Pedt 4+ o2 Pi(pdW + /1 — p?)dZ

and the (fixed) operating cost rate C.

» The cash expected value at time t of future cash flows for the
project is then

P./5— C/r.

» We then have to consider the option to abandon the project
when such cash flows become too negative.



Suspension, Reactivation and Scrapping

» Instead of completely abandoning the project, we might have
the option to “mothball” it by paying a sunk cost Eyy and a
maintenance rate m < C.

» Once prices for the output become favorable again, we have
the option to reactive the project by paying a sunk cost R < /.

» Finally, if prices drop too much, we have the option to
completely abandon the project by paying a sunk cost S
(which could be negative, corresponding to a “scrap value”).

> As before, the decisions to invest, mothball, reactivate and
scrap are triggered by the price thresholds
Ps < Py < Pr < Py.



Project values and options

> Let us denote the value of an idle project by F°, an active
project by F! and a mothballed project by FM. as the value
of a mothballed project.

» Then
FO = option to invest at cost /
F' = cash flow -+ option to mothball at cost Ep
FM = cash flow + option to reactivate at cost Rp

+ option to scrap at cost S
» We obtain its value on the grid using the recursion formula

F¥(i,j) = max{continuation value, possible exercise values}.



Boundary values

» At the bottom of the grid we have, for all j =0,..., N:
F'@M+1,j) = 0

FeM+1,j) = —(S+Ewm)
FMeM +1,j) = -S
» Similarly, at the top of the grid we should have, for all

j=0...,N:
F°(1,j) = PQ)/6C/r—1
Fi(1,j)) = PQQ)/6—C/r
FMa,j) = P1)/6—C/r—R
» Finally, at the final time we have, for i =1,...2M 4 1:
FO(i,N) = max(0,P(i)/6 — C/r—1)
FY(i,N) = max(P(i)/§ — C/r,—m/r — Ep,—S — En)
FM(i, N) = max(—m/r,P(i)/d — C/r— R,=5)



Idle and Mothballed Phases
» For the idle phase we have

cont®(i,j) = g(F°(i—1,j+1),F°(i+1,j+1)
exert(i,j) = g(F'(i—1,j+1)—P(>i—1)/6+C/r,
Fli+1,j+1)=P(i+1)/6+C/r)
+ P()/§—C/r)—1

» We then move to the mothballed phase, for which

contM(i,j) = —m/r+ g(FM(i —1,j+1)+m/r,
FM(i+1,j+1)+m/r)
exer'(i,j) = P(i))§ —C/r—R+
g(FY(i—1,j+1)—P(i—1)/6+C/r),
FYi+1,j4+1)=P(i+1)/5+C/r)]
exer®(i,j) = —S+g(F°(i—1,j+1),F°(i+1,j+1))



Active phase

» For the active phase, we have the following:

contl(i,j) = P(i)/o—C/r)+
g(FYi—1,j+1)-P(i—-1)/6+C/r,
FYi+1,j+1)—P(i+1)/6+C/r)]

exer%(i,j) = g(F°(i—1,j+1),F°(i+1,j+1))—S—Epy

exer(i,j) = —m/r—Ey+g(FM(i—1,j+ 1)+ m/r,
FMGi4+1,j+1)+m/r)



