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1. Introduction

• Optimal hedging portfolio: the strategy followed by an
investor who, when faced with a financial liability B matur-
ing at a future time T , tries to solve the stochastic control
problem

u(x) = sup
H∈A

E [U (XT −B) |X0 = x] , (1)

where XT is the discounted terminal wealth obtained when
trading on assets with discounted prices St = (S1

t , . . . , Sd
t )

according to an allocation process Ht = (H1
t , . . . , Hd

t )

• Utility function: U : IR → IR∪{−∞}, assumed to be concave,
strictly increasing and differentiable function.
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• Domain of optimization: self–financing portfolios, that is,

wealth processes evolving according to the stochastic differ-

ential equation {
dXt = HtdSt
X0 = x,

(2)

or equivalently, wealth processes given by

Xt = x +
∫ t

0
HudSu, t ∈ [0, T ], (3)

where St is an IRd–valued semimartingale on the filtered prob-

ability space (Ω,F , (Ft)t∈[0,T ], P ) and Ht an IRd–valued pre-

dictable S–integrable. Further restrictions on the class A of

admissible portfolios appearing in the domain of optimization

are imposed by economic reasoning.
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• Market Model: We consider two factor stochastic volatility

models of the form

dS̄t = S̄t[µ(t, Yt)dt + σ(t, Yt)dW1
t ]

dYt = a(t, Yt)dt + b(t, Yt)[ρdW1
t +

√
1− ρ2dW2

t ] (4)

with initial values S̄0, Y0 ≥ 0, for deterministic functions µ, a, b

and independent one dimensional P–Brownian motions W1
t

and W2
t with constant correlation |ρ| ≤ 1. We introduce a

riskless bank account S0
t initialized at 1 and governed by

dS0
t = rtS

0
t dt. (5)
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The discounted price of the risky asset is St = S̄t/S0
t . It follows

from Ito’s formula that

dSt = St[(µ(t, Yt)− rt)dt + σ(t, Yt)dW1
t ]. (6)

Using the self–financing condition (2), we immediately obtain

that the wealth process satisfies

dXt = HtSt[(µ(t, Yt)− r)dt + σ(t, Yt)dW1
t ], (7)

where we have taken rt = r to be constant for simplicity.
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2. Utility based pricing

For Markovian markets such as (4) and claims of the form

B = B(ST , YT ) consider the larger class of optimization prob-

lems defined by

u(t, x, s, y) = sup
H∈At

Et,s,y[U(XT −B(ST , YT ))|Xt = x], (8)

for t ∈ (0, T ), where x ∈ IR denotes some arbitrary level of wealth,

At denotes admissible portfolios starting at time t and Et,s,y[·]
denotes expectation with respect to the joint probability law at

time t of the processes Su, Yu satisfying

dSu = Su[(µ(u, Yu)− r)du + σ(u, Yu)dW1
u ], (9)

dYu = a(u, Yu)du + b(u, Yu)[ρdW1
u +

√
1− ρ2dW2

u ],

for u ≥ t, with initial condition St = s and Yt = y.
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Now suppose that (8) has an optimizer HB, that is, assume that

u(t, x, s, y) = Et,s,y[U(x + (HB · S)T
t −B(ST , YT ))].

Define the certainty equivalent cB
t = cB(t, x, s, y) for the claim B

at time t via the equation

U(x− cB
t )) = Et,s,y[U(x + (HB · S)T

t −B(ST , YT ))]. (10)

If we set B = 0, then we obtain Merton’s optimal investment

problem and denote the certainty equivalent by c0t = c0(t, x, s, y).

Notice that

−c0t ≥ 0 ⇐⇒ U(x) ≤ U(x− c0t )

= Et,s,y[U(x + (H0 · S)T
t )].
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Now consider an investor with utility U who at time t ∈ (0, T )

has wealth x and ponders the possibility of charging a premium

for issuing a liability B maturing at T . The indifference price

for the claim B is defined to be the premium that makes the

investor indifferent between making the deal or not, that is, the

unique solution πB = πB(t, x, s, y) (if it exists) to the equation

sup
H∈At

Et,s,y[U(x+(H·S)T
t ] = sup

H∈At

Et,s,y[U(x+πB+(H·S)T
t −B(ST , YT )].

From the definition of the certainty equivalent, we see that this

equation is equivalent to

U(x− c0t ) = U(x + πB − cB
t ), (11)

so that the indifference price is given by

πB = cB(t, x + πB, s, y)− c0(t, x, s, y). (12)
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From now on, let us concentrate on exponential utilities of the
form

U(x) = −e−γx, (13)

where γ > 0 is the risk–aversion parameter. We can factorize
the value function u(t, x, s, y) in (8) as

u(t, x, s, y) = sup
H∈At

Et,z

[
−e−γ

(
x+(H·S)T

t −B(ZT )
)]

= −e−γx inf
H∈At

Et,z

[
e−γ

(
(H·S)T

t −B(ZT )
)]

=: U(x)v(t, s, y). (14)

It follows that the certainty equivalent is wealth independent and
given by

cB(t, s, y) =
1

γ
log v(t, s, y). (15)
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Analogously, setting B = 0 gives the certainty equivalent for the

Merton problem with exponential utility as

c0(t, s, y) =
1

γ
log v0(t, s, y), (16)

where v0(t, s, y) is defined by

v0(t, s, y) := inf
H∈At

Et,s,y

[
e−γ(H·S)T

t

]
. (17)

It is now immediate that the indifference price process for the

claim B obtained from an exponential utility is given by

πB(t, s, y) = cB(t, s, y)− c0(t, s, y) =
1

γ
log

v(t, s, y)

v0(t, s, y)
. (18)
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3. The PDE for the indifference price

By the dynamic programming principle, the value function u(t, x, s, y)

satisfies the Hamilton–Jacobi–Belmann equation

∂u

∂t
+ s2σ2uss + b2uyy + bρsσuys + s(µ− r)us + auy (19)

+ max
h

{
1

2
h2s2σ2uxx + +bρhsσuxy + hs2σ2uxs + hs(µ− r)ux

}
= 0

with boundary condition u(T, z) = −e−γ(x−B(s,y)) and the optimal

portfolio process is given by

HB
t = hB(t, Xt, St, Yt) (20)

where hB is the optimizer of the expression above.
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Direct substitution of (14) into this HJB problem transforms

it into the search for a wealth independent function v(t, s, y)

satisfying

∂v

∂t
+

1

2

(
s2σ2vss + 2bρsσvys + b2vyy

)
+ s(µ− r)vs + avy

min
h

{
γ2

2
h2s2σ2v − γhs[bρσvy + sσ2vs + (µ− r)v]

}
= 0

with the boundary condition v(T, s, y) = e−γB(s,y), where the

minimizer is of the form HB
t = hB(t, s, y).

The minimizer of this expression as a function is clearly given by

hB(t, s, y) =
1

γ

vs

v
+

bρ

γsσ

vy

v
+

(µ− r)

γsσ2
. (21)
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The partial differential equation satisfied by the optimal function
v(t, s, y) is then

∂v

∂t
+

1

2

(
s2σ2vss + 2bρsσvys + b2vyy

)
+

[
a−

bρ(µ− r)

σ

]
vy

−
1

2

[
1

v
(bρvy + sσvs)

2 +
(µ− r)2

σ2
v

]
= 0, (22)

subject to the boundary condition v(T, s, y) = eγB(s,y).

From (15), we find that the certainty equivalent process cB(t, z)
is a solution to the partial differential equation

∂cB

∂t
+

1

2
(s2σ2cB

ss + 2sσbρ cB
sy + b2cB

yy) +

[
a−

bρ(µ− r)

σ

]
cB
y

−
(µ− r)2

2γσ2
+

γ

2
b2(1− ρ2)(cB

y )2 = 0, (23)
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In terms of the certainty equivalent process, the optimal portfolio

is expressed as

hB(t, s, y) = cB
s +

bρ

sσ
cB
y +

(µ− r)

γsσ2
. (24)

The partial differential equation satisfied by c0(t, z) is identical to

(23), but with the boundary condition c0(T, s, y) = 0, instead of

cB(T, s, y) = B(s, y). From (18), we obtain that the indifference

price π(t, z) for the claim B with respect to the exponential utility

is a solution to the equation

∂πB

∂t
+

1

2
(s2σ2πB

ss + 2sσbρ πB
sy + b2πB

yy) +
γ

2
b2(1− ρ2)(πB

y )2

+

[
a−

bρ(µ− r)

σ
+ γb2(1− ρ2)c0y

]
πB

y = 0. (25)
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4. Volatility claims

The equations from the previous section simplify considerably in

the case when the claim is independent of the process St. For

pure volatility claims of the form B = B(YT ), the equation for

the certainty equivalent cB
t = cB(t, y) is reduced to

∂cB

∂t
+

[
a−

bρ(µ− r)

σ

]
cB
y +

1

2
b2cB

yy−
(µ− r)2

2γσ2
+

γ

2
b2(1−ρ2)(cB

y )2 = 0,

(26)

subject to the boundary condition cB(T, y) = B(y), whereas the

optimal hedging portfolio is given by

hB(t, s, y) =
1

s

[
bρ

σ
cB
y +

µ

γσ2

]
. (27)
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We can now use the transformation

cB(t, y) =
δ

γ
log f(t, y), (28)

for a constant δ still to be determined. Substitution into (26)

leads to

∂f

∂t
+

1

2
b2fyy +

[
a−

bρ(µ− r)

σ

]
fy −

(1− ρ2)(µ− r)2

2σ2
f

+
1

2
b2[(1− ρ2)δ − 1](fy)

2 = 0. (29)
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Therefore, if we set

δ = (1− ρ2)−1, (30)

we obtain that f(t, y) must solve the linear parabolic final value

problem

∂f

∂t
+

1

2
b2fyy +

[
a−

bρ(µ− r)

σ

]
fy −

(1− ρ2)(µ− r)2

2σ2
f = 0

f(T, y) = eγ(1−ρ2)B(y) .
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Under the appropriate growth and boundedness assumptions on
the coefficient functions µ, σ, a and b, we can use the Feynman–
Kac formula to represent the solution to the problem above as

f(t, y) = E
Q
t,y

[
e−
∫ T
t R(s,Ys)dseγ(1−ρ2)B(YT )

]
, (31)

where we define

R(t, y) =
(1− ρ2)(µ(t, y)− r)2

2σ(t, y)2
(32)

and E
Q
t,y[·] denotes the expectation with respect to the probability

law at time s = t of the solution to

dYs =

[
a−

b(µ− r)ρ

σ

]
ds + b

[
ρdW̃1

s +
√

1− ρ2dW̃2
s

]
,

Yt = y (33)

for a pair of independent one dimensional Q–Brownian motions
W̃1

t , W̃2
t , for a probability measure Q on (Ω,F , (Ft)t∈[0,T ]).
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Comparison with the original SDE (4) for the non-traded asset

leads to the identification

dW̃1
t = dW1

t + λ1
t dt

dW̃2
t = dW2

t + λ2
t dt,

where the “market price of risk” vector process λt = (λ1
t , λ2

t ) is

constrained by

ρλ1
t +

√
1− ρ2λ2

t =
ρ(µ(t, Yt)− r)

σ(t, Yt)
. (34)

If (λ1
t , λ2

t ) further satisfies the Novikov condition, then it follows

from Girsanov’s theorem that Q is equivalent to P with density

given by

dQ

dP
= exp

(
−
∫ T

0
λtdWt −

1

2

∫ T

0
‖λt‖2dt

)
. (35)
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5. Reciprocal Affine Models

Take µ and r to be constants and consider the case where
σ(t, Yt) =

√
Yt, so that (32) becomes

Rt = R(t, Yt) =
(1− ρ2)(µ− r)2

2Yt
. (36)

Affine models form a well-studied class of interest rate mod-
els, often leading to analytic expressions for quantities such as
bond prices. We can carry the results from these models to our
problem by hypothesizing that Rt follows an affine process. We
illustrate the idea in the specific case of the CIR model

dRt = α(R̄−Rt)dt + β
√

Rt

[
ρdW̃1

t +
√

1− ρ2dW̃2
t

]
, (37)

for constants α, β, R̄ > 0.
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Pricing and Hedging Formulas

The indifference price and Davis price of a volatility claim under

the reciprocal affine models of the previous section both require

computation of expressions of the form

I := E
Q
t

[
e−
∫ T
t Rsdsg(RT )

]
(38)

for functions g : R+ → R. Provided g is truncated in a careful

way we have

g(R) =
1

2π

∫ ∞
−∞

e−iuRĝ(u)du, (39)

where

ĝ(u) =
∫ ∞
−∞

eiuRg(R)dR. (40)
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Using Fubini’s theorem, we have

I(Rt, t, T ) =
1

2π

∫ ∞
−∞

Ψ(t, T ;u)ĝ(u)du (41)

where Ψ can be computed following Duffie et al (2000):

Ψ(u, Rt, t, T ) := E
Q
t

[
e−
∫ T
t Rsdse−iuRT

]
= exp[A(t, T, u) + B(t, T, u)Rt]. (42)

Here

B(t, T, u) =
(b2 + iu)b1 − (b1 + iu)b2e∆(t−T )

(b2 + iu)− (b1 + iu)e∆(t−T )

A(t, T, u) =
−2αR̄

β2
log

(
b2 + iu

b2 −B

)
+ αR̄b1(t− T ) (43)

with b2 > b1 being the two roots of x2 − 2α
β2x − 2

β2 and ∆ =√
α2 + 2β2.
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Setting g(RT ) = eγ(1−ρ2)B(RT ), we obtain that the indifference

price of the volatility claim B = B(RT ) is simply

πB =
1

γ(1− ρ2)
log

[
I(Rt, t, T )

Ψ(0, Rt, t, T )

]
. (44)

Finally, the number of shares of stock to be held in order to

optimally hedge against the claim B is

hB(t, y) =
1

s

[
bρ

γ(1− ρ2)
√

y

∂yI

I
+

(µ− r)

γy

]
, (45)

whereas the number of shares held in the Merton portfolio is

h0(t, y) =
1

s

[
bρ

γ(1− ρ2)
√

y

∂yΨ(0)

Ψ(0)
+

(µ− r)

γy

]
. (46)
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