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1. Introduction

e Optimal hedging portfolio: the strategy followed by an
investor who, when faced with a financial liability B matur-
ing at a future time T, tries to solve the stochastic control

problem
u(z) = sup E[U (Xp — B)|Xg =], (1)
HeA
where X7 is the discounted terminal wealth obtained when
trading on assets with discounted prices S; = (S},...,Sﬁ)
according to an allocation process H; = (H{, ..., HY)

e Utility function: U : R — RU{—o0}, assumed to be concave,
strictly increasing and differentiable function.



e Domain of optimization: self—financing portfolios, that is,
wealth processes evolving according to the stochastic differ-
ential equation

dXt — thSt
{ Xo ==, (2)
or equivalently, wealth processes given by
t
X, =g +/O HyudSy, te[0,T], (3)

where S; is an R%valued semimartingale on the filtered prob-
ability space (L2, F, (ft)te[o,T]»P) and H; an R%valued pre-
dictable S—integrable. Further restrictions on the class A of
admissible portfolios appearing in the domain of optimization
are imposed by economic reasoning.



e Market Model: We consider two factor stochastic volatility
models of the form

dS; = Silu(t,Y)dt + o(t, Y;)dW]

dY; = a(t,Yp)dt + b(t, Yp) [pdWi + /1 — p?dW7]  (4)
with initial values Sp, Yy > 0, for deterministic functions u, a, b
and independent one dimensional P—Brownian motions W}

and W72 with constant correlation |p| < 1. We introduce a
riskless bank account S? initialized at 1 and governed by

dSP = riSYdt. (5)



The discounted price of the risky asset is S; = §t/S§). It follows
from Ito's formula that

dS; = Sy[(u(t,Yy) — ro)dt + o(t, Y)dWE]. (6)

Using the self—financing condition (2), we immediately obtain
that the wealth process satisfies

dXy = HySe[(u(t, Yi) — r)dt + o (t, Yr)dWE], (7)

where we have taken r, = r to be constant for simplicity.



2. Utility based pricing

For Markovian markets such as (4) and claims of the form
B = B(Sp,Yr) consider the larger class of optimization prob-
lems defined by

u(t, x,s,y) = hslgﬁ Ei s ylUX7 — B(ST,Yp)) | Xt =], (8)
t

fort € (0,7T), where x € R denotes some arbitrary level of wealth,
A; denotes admissible portfolios starting at time t and E; s 4[]
denotes expectation with respect to the joint probability law at
time t of the processes Sy, Y, satisfying

dSu = Sul(p(u,Yy) —r)du + o(u, Yu)dW,i], (9)
dYy = a(u,Yw)du + b(u, Yo)[pdW,E + /1 — p?dW?2],

for w > t, with initial condition S} = s and Y; = v.



Now suppose that (8) has an optimizer HZ, that is, assume that

u(t,z,s,y) = By s 4[U(x+ (HP - 8)] — B(St, Y1)].

Define the certainty equivalent c¢? = cB(t,x,s,y) for the claim B
at time t via the equation

Uz — c¢P)) = Ersy[Ux + (HP - $)I — B(Sp, Y)l. (10)

If we set B = 0, then we obtain Merton’'s optimal investment
problem and denote the certainty equivalent by c? = (¢, z, s, y).
Notice that

—c?ZO «— U(x) < U(w—c,?)
= By sylU(+ (H?- )]



Now consider an investor with utility U who at time ¢t € (0,7)
has wealth x and ponders the possibility of charging a premium
for issuing a liability B maturing at 1I' . The indifference price
for the claim B is defined to be the premium that makes the
investor indifferent between making the deal or not, that is, the
unique solution 2 = 7B(¢, z, s,vy) (if it exists) to the equation

sup Ei s y[U(z+(H-S){ 1= sup Eys,[U(c+nP+(H-8)] —B(St, Y7)l.
HeA; He Ay

From the definition of the certainty equivalent, we see that this
equation is equivalent to

U(z — ) =U(z + P = P), (11)
so that the indifference price is given by
w8 =Btz + 78, s5,y) — Lt z,5,9). (12)
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From now on, let us concentrate on exponential utilities of the
form

U(x) = —e 7%, (13)

where v > 0 is the risk—aversion parameter. We can factorize
the value function u(t,z,s,y) in (8) as

u(t7x737y) — 523 Et,z [_6_7($+(H'S)?—B(ZT))
t
= —e ™ inf Ey, [e_'y((H'S)?_B(ZT))
HeA; ’
=: U(z)v(t, s, y). (14)

It follows that the certainty equivalent is wealth independent and
given by

1
B(t,s,y) = = logw(t, s, y). (15)
¥
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Analogously, setting B = 0 gives the certainty equivalent for the
Merton problem with exponential utility as

1
Co(t787y) — —IOg ’Uo(t,S,y), (16)
Y
where v9(¢, s,v) is defined by

0] e —’7(H-S)1
t = Inf E e t|. 17
v ( ,S,Q) HeA, t,s,y [ ( )

It is now immediate that the indifference price process for the
claim B obtained from an exponential utility is given by

1 v(t, s,
Bt sy) = Pt s,y) — Ot s,y) = L log LL5Y)
v vO(t, s, y)

(18)



3. The PDE for the indifference price

By the dynamic programming principle, the value function u(¢, z, s, y)
satisfies the Hamilton—Jacobi—Belmann equation

ou
B 4+ s20%ugs + bQuyy + bpsouys + s(pu — r)us 4+ auy (19)
1
+ max {§h23202um + 4-bphsougy + hs?ougs + hs(pu — r)ua;} =0
with boundary condition w(T, z) = —e~"(z=B(s:%)) and the optimal

portfolio process is given by

HP = hB(t, Xy, 8, Y7) (20)

where hP is the optimizer of the expression above.
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Direct substitution of (14) into this HJB problem transforms
it into the search for a wealth independent function v(t,s,vy)
satisfying

Ov 1/2 2 2

a —I— 5 <S O 'U33+2bp80"vy5+b 'Uyy) +S(/,L—T)U3_|—a:vy

2
mhin {%hQSQJQ’U — vhs[bpovy + sovs + (u — 7“)’0]} =0

with the boundary condition v(T,s,y) = e 7B(:Y), where the
minimizer is of the form HP = hB(t,s,y).

The minimizer of this expression as a function is clearly given by

1lv bp v —7r
WB(t,s,y) = 200 4 PPty (i 2). (21)
Y v YSO v YSO
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T he partial differential equation satisfied by the optimal function
v(t, s,y) is then

Ov 1 bp(p — 1)
a -+ 5 (.92 2?)33 + 2bpsovys + b2vyy) -+ [a, — - ] Vy
. 2
1 ll(bpvy + sovs)? + (p 27“) v] = 0, (22)
2 v o

subject to the boundary condition v(T,s,y) = e¥B(:),

From (15), we find that the certainty equivalent process ¢ (¢, 2)
iS a solution to the partial differential equation

@ _bp(p—1)

51 —(52 2cB —|—280'pr + b2 B)—I— 05
o
) 7
S+ A A =0, (23)
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In terms of the certainty equivalent process, the optimal portfolio
IS expressed as

0‘ vso2 (24)

The partial differential equation satisfied by ¢9(t, z) is identical to
(23), but with the boundary condition ¢°(T,s,y) = 0, instead of
cB(T,s,y) = B(s,y). From (18), we obtain that the indifference
price w(t, z) for the claim B with respect to the exponential utility

IS a solution to the equation
OB 1 ~y
TS E(szazwg + 2s0bp 7'('5 + bzw?jfy) + 5()2(1 — pz)(wf)Q

~bp(p—)

o

+ b2 (1 — p2)cg 7'('5 = 0. (25)
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4. Volatility claims

The equations from the previous section simplify considerably in
the case when the claim is independent of the process S;. For
pure volatility claims of the form B = B(Y7), the equation for
the certainty equivalent ct = ¢B(t,y) is reduced to

30

%+ ~bp(p—)

o)

1 (n—1)2
cyB+§b2cyBy 507 + b2(1 p?)(c))? =0,

(26)
subject to the boundary condition ¢?(T,y) = B(y), whereas the
optimal hedging portfolio is given by

1
hB(ta S, y) — —
S

b
b5 —] (27)
o vo 2
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We can now use the transformation
)
CB(ta y) — ; IOg f(t7 y)a (28)

for a constant § still to be determined. Substitution into (26)
leads to

Of 1
a T3

+ 211~ 425~ 11(f)° =0 (29)

bp(u—r)] (1 —pz)(u—r)zf

2
b fyy‘l' [CL— fy_ 552
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Therefore, if we set
§=(1-p9)7 1 (30)

we obtain that f(¢,y) must solve the linear parabolic final value
problem

0 1
—f + Ebeyy + [a -

bp(p — fr)] P P =)

202
F(T,y) = 71=P*)BW)

o
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Under the appropriate growth and boundedness assumptions on
the coefficient functions u,o0,a and b, we can use the Feynman—
Kac formula to represent the solution to the problem above as

f(t,y) — Egy e ftTR(57Y5)d567(1_92)B(YT) , (31)

where we define
(1 —p?)(u(t,y) — )2
20(t,y)?
and Ef?y[-] denotes the expectation with respect to the probability
law at time s = ¢t of the solution to
b(u—1)p
a J—
o
Y; = y (33)
for a pair of independent one dimensional @Q—Brownian motions
WL, W2, for a probability measure Q on (R, F, (Ft)tero1])-
17

R(t,y) = (32)

dYs

] ds + b [pdﬁ?sl + /1 — deWS?] ,



Comparison with the original SDE (4) for the non-traded asset
leads to the identification

dW} AW} + A\ dt
dW7? = dWZ + M\dt,

where the “market price of risk” vector process A\; = (A}, A7) is
constrained by

1 — 22 pu(t,Y) — 1)
pA; + V1 —poAF = (LY (34)

If (A}, A7) further satisfies the Novikov condition, then it follows
from Girsanov's theorem that @) is equivalent to P with density
given by

dQ T 1 T
W oxp [ — AdW——/ Al2dt ) . 35
e =exo (- [ aawi= ] [T iRar) (35)

18



5. Reciprocal Affine Models

Take p and r to be constants and consider the case where
o(t,Y:) = /Y, so that (32) becomes

(1= p)(u—r)?

(36)

Affine models form a well-studied class of interest rate mod-
els, often leading to analytic expressions for quantities such as
bond prices. We can carry the results from these models to our
problem by hypothesizing that R; follows an affine process. We
illustrate the idea in the specific case of the CIR model

dR; = a(R — Ry)dt + BV R [pdﬁ?} +1/1 - ,02th2] , (37)

for constants «, 3, R > O.
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Pricing and Hedging Formulas

The indifference price and Davis price of a volatility claim under
the reciprocal affine models of the previous section both require
computation of expressions of the form

1= EQ e I Betsg(Ry) (38)

for functions g : Rt — R. Provided g is truncated in a careful
way we have

o(B) = o= [ emiFg(u)du (39)
where
gw = | O; ¢"By(R)dR. (40)
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Using Fubini’'s theorem, we have

[(Ry. t.T) = %/_o; Wt T 0)§(u)du (41)

where W can be computed following Duffie et al (2000):

W (u, R¢, t,T) = Efg [e_ ftTdese_iURT
= exp[A(t,T,u) + B(t, T, u)Ry]. (42)
Here
(bo + iu)by — (b1 + iu)byet=T)
B(t,T =
& T w) (by + iu) — (b + iu)eAt=T)
. —2aR bo + 1u _ B
A, T,u) = 7 log <b2 — B) + aRb1(t —T) (43)

with b> > by being the two roots of z2 — %—gm — % and A =

Va2 + 252,
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Setting g(Ry) = ¢"(1-P)B(Rr) | we obtain that the indifference
price of the volatility claim B = B(Rp) is simply

B __ 1 I(Ry, t,T)
= ia— [wo, Rt,t,T>] | (44)

Finally, the number of shares of stock to be held in order to
optimally hedge against the claim B is

B :1 bp Oyl (M—T)]
) S!’Y(l—pQ)\/? r |

whereas the number of shares held in the Merton portfolio is

1 [ bp oyWw ()  (n—r)

(45)

hO(t,y) = = + (46)

s |[7v(1 = p?)/y W(0) Yy
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