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Strategic Decision Making

Suppose we want to assign monetary values to the strategic
decision to:

I create a new firm;

I invest in a new project;

I start a real estate development;

I finance R&D;

I abandon a non-profitable project;

I temporarily suspend operations under adverse conditions and
reactive them when conditions improve.



Valuation Elements

In all of the previous problems, we can identify the following
common elements:

I uncertainty about the future;

I some degree of irreversibility;

I timing and managerial flexibility;

I interaction with other people’s decisions.

To account for these elements, we are going to base our decisions
on values obtained using the following theoretical tools:

I Net Present Value

I Real Options

I Game Theory



Net Present Value

I Net Present Value takes into account the intrinsic advantages
of a given investment when compared to capital markets.

I This are essentially due to market imperfections, such as entry
barriers, product differentiation, economy of scale, etc...

I Denoting the expected present value of future cash flows of a
given project by Ṽ and the corresponding sunk cost by I , then
its NPV is

NPV = Ṽ − I

I The decision rule according to NPV is to invest whenever
Ṽ > I .



The Real Options Approach

I If we view the project as an underlying asset, then an
investment opportunity with a sunk cost I is the formal
analogue of an American call option on Ṽ with strike price I .

I The Real Options Approach applies techniques used for
financial options to determined the value C̃ for the option to
invest.

I Therefore, an investors possessing an opportunity with value
C̃ will invest only when

Ṽ − I > C̃ .

I This results in higher exercise thresholds, taking into account
the value of waiting.



Successes and Limitations

I According to a recent survey, 26% of CFOs in North America
“always or almost always” consider the value of real options in
projects.

I This is due to familiarity with the option valuation paradigm
in financial markets and its lessons.

I But most of the literature in Real Options is based on one or
both of the following assumptions: (1) infinite time horizon
and (2) perfectly correlated spanning asset .

I Though some problems have long time horizons (30 years or
more), most strategic decisions involve much shorter times.

I The vast majority of underlying projects are not perfectly
correlated to any asset traded in financial markets.



Alternatives

I The use of well–known numerical methods (e.g finite
differences) allows for finite time horizons.

I As for the spanning asset assumption, the absence of perfect
correlation with a financial asset leads to an incomplete
market.

I Replication arguments can no longer be applied to value
managerial opportunities.

I Instead, one needs to rely on risk preferences.

I The most widespread way to do this in the strategic decision
making literature is to introduce an internal rate of return,
which replaces the risk–free rate, and use dynamic
programming.

I This approach lacks the intuitive understanding of
opportunities as options.

I We prefer to stick with the options paradigm and use
utility–based methods to calculate their values.



A one–period investment model

I Consider a two–factor market where the discounted prices for
the project V and a correlated traded asset S follow:

(ST ,VT ) =


(uS0, hV0) with probability p1,
(uS0, `V0) with probability p2,
(dS0, hV0) with probability p3,
(dS0, `V0) with probability p4,

(1)

where 0 < d < 1 < u and 0 < ` < 1 < h, for positive initial
values S0,V0 and historical probabilities p1, p2, p3, p4.

I Let the risk preferences be specified through an exponential
utility U(x) = −e−γx .

I An investment opportunity is model as an option with
discounted payoff Ct = (V − e−rt I )+, for t = 0,T .



European Indifference Price

I Without the opportunity to invest in the project V , a rational
agent with initial wealth x will try to solve the optimization
problem

u0(x) = max
H

E [U(X x
T )], (2)

where
X x

T = ξ + HST = x + H(ST − S0). (3)

is the wealth obtained by keeping ξ dollars in a risk–free cash
account and holding H units of the traded asset S .

I An agent with initial wealth x who pays a price π for the
opportunity to invest in the project will try to solve the
modified optimization problem

uC (x − π) = max
H

E [U(X x−π
T + CT )] (4)

I The indifference price for the option to invest in the final
period as the amount πC that solves the equation

u0(x) = uC (x − π). (5)



Explicit solution

Denoting the two possible pay-offs at the terminal time by Ch and
C`, the European indifference price defined in (5) is given by

πC = g(Ch,C`) (6)

where, for fixed parameters (u, d , p1, p2, p3, p4) the function
g : R× R → R is given by

g(x1, x2) =
q

γ
log

(
p1 + p2

p1e−γx1 + p2e−γx2

)
(7)

+
1− q

γ
log

(
p3 + p4

p3e−γx1 + p4e−γx2

)
,

with

q =
1− d

u − d
.



Early exercise

I When investment at time t = 0 is allowed, it is clear that
immediate exercise of this option will occur whenever its
exercise value (V0 − I )+ is larger than its continuation value
πC .

I That is, from the point of view of this agent, the value at
time zero for the opportunity to invest in the project either at
t = 0 or t = T is given by

C0 = max{(V0 − I )+, g((hV0 − e−rT I )+, (`V0 − e−rT I )+)}.



A multi–period model

I Consider now a continuous-time two–factor market of the form

dSt = (µ1 − r)Stdt + σ1StdW

dVt = (µ2 − r)Vtdt + σ2Vt(ρdW +
√

1− ρ2dZ ).

I We want to approximate this market by a discrete–time
processes (Sn,Vn) following the one–period dynamics (1).

I This leads to the following choice of parameters:

u = eσ1

√
∆t , h = eσ2

√
∆t ,

d = e−σ1

√
∆t , ` = e−σ2

√
∆t ,

p1 + p2 =
e(µ1−r)∆t − d

u − d
, p1 + p3 =

e(µ2−r)∆t − `

h − `
ρσ1σ2∆t = (u − d)(h − `)[p1p4 − p2p3],

supplemented by the condition p1 + p2 + p3 + p4 = 1.



Grid Values

I Instead a triangular tree for project values, we consider a
(2M + 1)× N rectangular grid whose repeated columns are
given by

V (i) = hM+1−iV0, i = 1, . . . , 2M + 1, (8)

ranging from (hMV0) to (`MV0).

I Then each realization for the discrete-time process Vn

following the dynamics (1) can then be thought of as a path
over this grid.



Option pricing on the grid

I We determine the discounted value of the option to invest on
the project as a function Cin on this grid.

I We start by with the boundary conditions:

CiN = (V (i) − e−rT I )+, i = 1, . . . , 2M + 1,

C1n = V (1) − e−rn∆t , n = 0, . . . ,N,

C2M+1,n = 0, n = 0, . . . ,N.

I Values in the interior of the grid are then obtained by
backward induction as follows:

Cin = max
{

(V (i) − e−rn∆t I )+, g(Ci+1,n+1,Ci−1,n+1)
}

. (9)

I For each time tn, the exercise threshold V ∗
n is defined as the

project value for which the exercise value becomes higher than
its continuation value.



Numerical Experiments - Act I

I We now investigate how the exercise threshold varies with the
different model parameters.

I The fixed parameters are

I = 1, r = 0.04, T = 10

µ1 = 0.115, σ1 = 0.25, S0 = 1

σ2 = 0.2, V0 = 1

I Given these parameters, the CAPM equilibrium expected rate
of return on the project for a given correlation ρ is

µ̄2 = r + ρ

(
µ1 − r

σ1

)
σ2. (10)

I The difference δ = µ̄2 − µ2 is the below–equilibrium
rate–of–return shortfall and plays the role of a dividend rate
paid by the project, which we fix at δ = 0.04.



Known Thresholds

I In the limit ρ → ±1 (complete market), the closed–form
expression for the investment threshold obtained in the case
T = ∞ gives V ∗

DP = 2.

I This should be contrasted with the NPV criterion (that is,
invest whenever the net present value for the project is
positive) which in this case gives V ∗

NPV = 1.

I The limit γ → 0 in our model corresponds to the McDonald
and Siegel (1986) threshold, obtained by assuming that
investors are averse to market risk but neutral towards
idiosyncratic risk.

I For our parameters, the adjustment to market risks is
accounted by CAPM and this threshold coincides with
V ∗

DP = 2



Dependence on Correlation and Risk Aversion
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Figure: Exercise threshold as a function of correlation and risk aversion.



Dependence on Volatility and Dividend Rate
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Figure: Exercise threshold as a function of volatility and dividend rate.



Dependence on Time to Maturity
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Figure: Exercise threshold as a function of time to maturity.



Values for the Option to Invest
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Figure: Option value as a function of underlying project value. The
threshold for ρ = 0 is 1.1972 and the one for ρ = 0.99 is 1.7507.



Suspension, Reactivation and Scrapping

I The previous framework ignores the possibility of negative
cash flows arising from the active project, for instance, when
operating costs exceed the revenue.

I We have to consider the option to abandon the project when
such cash flows become too negative.

I Instead of completely abandoning the project, we might have
the option to “mothball” it by paying a sunk cost EM and a
maintenance rate m < C .

I Once prices for the output become favorable again, we have
the option to reactive the project by paying a sunk cost R < I .

I Finally, if prices drop too much, we have the option to
completely abandon the project by paying a sunk cost ES

(which could be negative, corresponding to a “scrap value”).

I As before, the decisions to invest, mothball, reactivate and
scrap are triggered by the price thresholds
PS < PM < PR < PH .



Project values and options

I Let us denote the value of an idle project by F 0, an active
project by F 1 and a mothballed project by FM .

I Then

F 0 = option to invest at cost I

F 1 = cash flow + option to mothball at cost EM

FM = cash flow + option to reactivate at cost R

+ option to scrap at cost ES

I We obtain its value on the grid using the recursion formula

F k(i , j) = max{continuation value, possible exercise values}.



Numerical Experiments - Act II

I We calculate these thresholds by keeping track of three
simultaneous grids of option values.

I The fixed parameters now are

µ1 = 0.12, σ1 = 0.2, S0 = 1

σ2 = 0.2, V0 = 1

r = 0.05, δ = 0.05, T = 30

I = 2, R = 0.79, EM = ES = 0

C = 1, m = 0.01

ρ = 0.9, γ = 0.1



Dependence on Mothballing Sunk Cost
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Figure: Exercise thresholds as functions of mothballing sunk cost.



Dependence on Mothballing Running Cost
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Figure: Exercise thresholds as functions of mothballing running cost.



Dependence on Correlation
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Figure: Exercise thresholds as functions of correlation.



Dependence on Risk Aversion
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Figure: Exercise thresholds as functions of risk aversion.



Introducing Competition

I We use game theoretical tools to introduce the effect of
competition.

I The goal is to assign a strategic value G̃ to both conditional
and unconditional moves toward investment that can create a
competitive advantaged in the market.

I This is then added to the NPV of a project.

I Therefore, the decision rule is to invest whenever

(Ṽ − I ) + G̃ > C̃ .



Combining options and games

I For a systematic application of both real options and game
theory in strategic decisions, we consider the following rules:

1. Outcomes of a given game that involve a “wait–and–see”
strategy should be calculated by option value arguments.

2. Once the Nahs equilibrium (NE) for a given game is found on
a decision node, its value becomes the pay-off for an option at
that node.

I In this way, option valuation and game theoretical equilibrium
become dynamically related in a decision tree.

I In what follows, we denote the NE solution for a given game
in bold face within the matrix of outcomes (rounded to
nearest integer).



One Stage Strategic Investment

I As a first example, consider two symmetric firms
contemplating a total investment I = 80 on a project with
V0 = 100 and equal probabilities to move up to V u = 200
and down to V d = 50.

I We take u = 3/2, h = 2, p1 = p4 = 255/256,
p2 = p3 = 1/256, γ = 0.1, r = 0.

I Therefore, using expression (7) to calculate the option value
for the “wait–and–see” strategy, we have the following matrix
of outcomes for this game:

B
Invest Wait

A
Invest (10,10) (20,0)
Wait (0,20) (11,11)

I For comparison, the complete market gives an option value of
48 to be shared by the firms.



Two–stage competitive R&D

I Suppose now that firm A is the only firm facing an R&D
investment at cost I0 = 25 at time t0, whereas at time t1 the
firms can equally share the follow–on cost I1 = 80.

I We will assume that the technology resulting from the R&D
investment is proprietary, so that the market share of firm A
after the R&D phase is s = 3/5.

I Moreover, we assume that the market value continues to
evolve from time t1 to time t2 following the same dynamics,
that is, at time t2 the possible market values in these
two–period tree are

V uu = 400, V ud = 100, V dd = 25.



Analyzing the game

I If demand is high at time t1 (V u = 200), we have:
B (follower)

Invest Wait

A (leader)
Invest (80,40) (120,0)
Wait (0,120) (42,22)

I If demands is low at time t1 (V d = 60), we have:
B (follower)

Invest Wait

A (leader)
Invest (-10,-20) (-30,0)
Wait (0,-30) (8,0)

I Then CA = −I0 + g(80, 8) = −25 + 30 = 5 > 0,

I whereas CB = g(40, 0) = 15

I Therefore the R&D investment is recommended for A.

I For comparison, the complete market results are CA = 10 and
CB = 7.


