Jesse Han

Strong conceptua completeness

Applications of strong conceptual completeness

A definability criterion for ℵ₀-categorica theories

Evotic functors

Strong conceptual completeness for Boolean coherent toposes

Jesse Han

McMaster University

McGill logic, category theory, and computation seminar 5 December 2017

lesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definabilit criterion for \aleph_0 -categoric theories

Exotic functor

What is strong conceptual completeness for first-order logic?

- A strong conceptual completeness statement for a logical doctrine is an assertion that a theory in this logical doctrine can be recovered from an appropriate structure formed by the models of the theory.
- Makkai proved such a theorem for first-order logic showing one could reconstruct a first-order theory T from Mod(T) equipped with structure induced by taking ultraproducts.
- Before we dive in, let's look at a well-known theorem from model theory, with the same flavor, which Makkai's result generalizes: the Beth definability theorem.

Jesse Han

Strong conceptual completeness

Applications of strong conceptua completeness

A definability criterion for \aleph_0 -categorical theories

Exotic functors

The Beth theorem

Theorem.

Let $L_0 \subseteq L_1$ be an inclusion of languages with no new sorts. Let T_1 be an L_1 -theory. Let $F: \mathbf{Mod}(T_1) \to \mathbf{Mod}(\emptyset_{L_0})$ be the reduct functor. Suppose you know any of the following:

1. There is a L_0 -theory T_0 and a factorization:

- 2. F is full and faithful.
- 3. F is injective on objects.
- 4. F is full and faithful on automorphism groups.
- 5. F is full and faithful on $\operatorname{Hom}_{L_1}(M, M^{\mathcal{U}})$ for all $M \in \operatorname{\mathbf{Mod}}(T_1)$ and all ultrafilters \mathcal{U} .
- 6. Every L_0 -elementary map is an L_1 -homomorphism of structures.

<u>Then:</u> (*) Every L_1 -formula is T_1 -provably equivalent to an L_0 -formula.

lesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for №0-categoric theories

Exotic functor

Useful consequence of Beth's theorem

Corollary.

Let T be an L-theory, let \overline{S} be a finite product of sorts. Let $X: \mathbf{Mod}(T) \to \mathbf{Set}$ be a subfunctor of $M \mapsto \overline{S}(M)$.

<u>Then</u>: if X commutes with ultraproducts on the nose ("satisfies a Łos' theorem"), then X was definable, i.e. X is an evaluation functor for some definable set $\varphi \in \mathbf{Def}(T)$.

Proof.

(Sketch): expand each model M of T by a new sort X(M). Use commutation with ultraproducts to verify this is an elementary class. Then we are in the situation of $1 \implies (*)$ from Beth's theorem.

lesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for \aleph_0 -categoric theories

Evotic functor

How does strong conceptual completeness enter this picture?

- Plain old conceptual completeness (this was one of the key results of Makkai-Reyes) says that if an interpretation *I*: *T*₁ → *T*₂ induces an equivalence of categories Mod(*T*₁) ^{/*} ≃ Mod(*T*₂), then *I* must have been a bi-interpretation.
 So, it proves 1 ⇒ (*), and therefore the corollary.
- Strong conceptual completeness is the following upgrade of the corollary.

lesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for ℵ₀-categorica theories

Exotic functor

Strong conceptual completeness, I

Theorem.

Let T be an L-theory. Let X be any functor $\mathbf{Mod}(T) \to \mathbf{Set}$. Suppose that you have:

- for every ultraproduct $\prod_{i \to \mathcal{U}} M_i$ a way to identify $X(\prod_{i \to \mathcal{U}} M_i) \overset{\Phi_{(M_i)}}{\simeq} \prod_{i \to \mathcal{U}} X(M_i)$ ("there exists a transition isomorphism"), such that
- (X, Φ) preserves ultraproducts of models/elementary embeddings ("is a pre-ultrafunctor"), and also
- preserves all canonical maps between ultraproducts ("preserves ultramorphisms").

<u>Then</u>: there exists a $\varphi(x) \in T^{eq}$ such that $X \simeq ev_{\varphi(x)}$ as functors $\mathbf{Mod}(T) \to \mathbf{Set}$. (We call such X an <u>ultrafunctor</u>.)

lesse Han

Strong conceptual completeness

Applications of strong conceptua completeness

A definability criterion for ℵ₀-categorica theories

Exotic functors

Strong conceptual completeness, I

That is, the specified transition isomorphisms $\Phi_{(M_i)}: X\left(\prod_{i \to \mathcal{U}} M_i\right) \to \prod_{i \to \mathcal{U}} X(M_i)$ make all diagrams of the form

$$X\left(\prod_{i\to\mathcal{U}}M_{i}\right)\xrightarrow{\Phi_{(M_{i})}}\prod_{i\to\mathcal{U}}X(M_{i})$$

$$X\left(\prod_{i\to\mathcal{U}}f_{i}\right)\downarrow \qquad \qquad \downarrow \prod_{i\to\mathcal{U}}X(f_{i})$$

$$X\left(\prod_{i\to\mathcal{U}}N_{i}\right)\xrightarrow{\Phi_{(N_{i})}}\prod_{i\to\mathcal{U}}X(N_{i})$$

commute ("transition isomorphism/pre-ultrafunctor condition").

lesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for №0-categoric theories

Exotic functor

Strong conceptual completeness, I

What are ultramorphisms?

An **ultragraph** Γ comprises:

- A directed graph whose vertices are partitioned into *free* nodes Γ^f and bound nodes Γ^b .
- For any bound node $\beta \in \Gamma^b$, we assign a triple $\langle I, \mathcal{U}, g \rangle \stackrel{\mathrm{df}}{=} \langle I_{\beta}, \mathcal{U}_{\beta}, g_{\beta} \rangle$ where \mathcal{U} is an ultrafilter on I and g is a function $g: I \to \Gamma^f$.
- An ultradiagram for Γ is a diagram of shape Γ which incorporates the extra data: bound nodes are the ultraproducts of the free nodes given by the functions g.
- A morphism of ultradiagrams (for fixed Γ) is just a natural transformation of functors which respects the extra data: the component of the transformation at a bound node is the ultraproduct of the components for the indexing free nodes.

Jesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for \aleph_0 -categorica theories

Exotic functor

Strong conceptual completeness, I

Okay, but what are ultramorphisms?

Definition.

Let $\mathsf{Hom}(\Gamma, \underline{\mathbf{S}})$ be the category of all ultradiagrams of type Γ inside $\underline{\mathbf{S}}$ with morphisms the ultradiagram morphisms defined above. Any two nodes $k, \ell \in \Gamma$ define evaluation functors $(k), (\ell) : \mathsf{Hom}(\Gamma, \underline{\mathbf{S}}) \rightrightarrows \mathbf{S}$, by

$$(k)\left(A\stackrel{\Phi}{\to}B\right)=A(k)\stackrel{\Phi_k}{\to}B(k)$$

(resp. ℓ).

An ultramorphism of type $\langle \Gamma, k, \ell \rangle$ in $\underline{\mathbf{S}}$ is a natural transformation $\delta : (k) \to (\ell)$.

It's sufficient to consider the ultramorphisms which come from universal properties of colimits of products in **Set**.

lesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for ℵ₀-categoric theories

Exotic functor

Strong conceptual completeness, II

Now, what's changed between this statement and that of the useful corollary to Beth's theorem?

- We dropped the *subfunctor* assumption! We don't have such a nice way of knowing exactly how X(M) is obtained from M. We only have the invariance under ultra-stuff. We've left the placental warmth of the ambient models and we're considering some kind of abstract permutation representation of $\mathbf{Mod}(T)$.
- Yet, if X respects enough of the structure induced by the ultra-stuff, then X must have been constructible from our models in some first-order way ("is definable").
- (With this new language, the corollary becomes: "strict sub-pre-ultrafunctors of definable functors are definable.")

Jesse Han

Strong conceptual completeness

Applications of strong conceptua completeness

A definability criterion for ℵ₀-categoricatheories

Exotic functor

Strong conceptual completeness, III

Actually, Makkai proved something more, by doing the following:

- Introduce the notions of ultracategory and ultrafunctors by requiring all this extra ultra-stuff to be preserved.
- Develop a general duality theory between pretoposes ("Def(T)") and ultracategories ("Mod(T)") via a contravariant 2-adjunction ("generalized Stone duality").
- In particular, from this adjunction we get $\mathbf{Pretop}(T_1, T_2) \simeq \mathbf{Ult}(\mathbf{Mod}(T_2), \mathbf{Mod}(T_1)).$

Therefore, SCC tells us how to recognize a reduct functor in the wild between two categories of models—i.e., if there is some uniformity underlying a functor $\mathbf{Mod}(T_2) \to \mathbf{Mod}(T_1)$ due to a purely syntactic assignment $T_1 \to T_2$. Just check if the ultra-structure is preserved!

Jesse Han

Strong conceptual completeness

Applications of strong conceptua completeness

A definability criterion for \aleph_0 -categorical theories

Exotic functor

Caveat. Of course, one has an infinite list of conditions to verify here.

- So the only way to actually do this is to recognize some kind of uniformity in the putative reduct functor which lets you take care of all the ultramorphisms at once.
- But it gives you another way to think about uniformities you need.
- It also gives you a way to check that something can never arise from any interpretation!

lesse Han

Strong conceptual completeness

Applications of strong conceptucompleteness

A definability criterion for ℵ₀-categorica theories

Exotic functor

Important examples of ultramorphisms

Examples.

- ► The diagonal embedding into an ultrapower.
- Generalized diagonal embeddings. More generally, let $f:I \to J$ be a function, let $\mathcal U$ be an ultrafilter on I and let $\mathcal V$ be the pushforward ultrafilter on J. Then for any I-indexed sequence of structures $(M_i)_{i\in I}$, there is a canonical map $\delta_f:\prod_{j\to\mathcal V}M_{f(i)}\to\prod_{i\to\mathcal U}M_i$ given by taking the diagonal embedding along each fiber of f.

lesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for ℵ₀-categorica theories

Exotic functor

Δ -functors induce continuous maps on automorphism groups

- Why should we expect ultramorphisms to help us identify evaluation functors in the wild?
- Here's an result which might indicate that knowing that they're preserved tells us something nontrivial.

Definition.

Say that $X : \mathbf{Mod}(T) \to \mathbf{Mod}(T')$ is a Δ -functor if it preserves ultraproducts and diagonal maps into ultrapowers. Equip automorphism groups with the topology of pointwise convergence.

Theorem.

If X is a Δ -functor from $\mathbf{Mod}(T)$ to $\mathbf{Mod}(T')$, then X restricts to a continuous map $\mathrm{Aut}(M) \to \mathrm{Aut}(X(M))$ for every $M \in \mathbf{Mod}(T)$.

lesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definabilit criterion for ℵ₀-categorion theories

Exotic functor

Proof.

- The topology of pointwise convergence is sequential, so to check continuity it suffices to check convergent sequences of automorphisms are preserved.
- If $f_i \to f$ in $\operatorname{Aut}(M)$, then since the cofinite filter is contained in any ultrafilter, $\prod_{i \to \mathcal{U}} f_i$ agrees with $\prod_{i \to \mathcal{U}} f$ over the diagonal copy of M in $M^{\mathcal{U}}$. That is, $(\prod_{i \to \mathcal{U}} f_i) \circ \Delta_M = (\prod_{i \to \mathcal{U}} f) \circ \Delta_M$.
- Applying X and using that X is a Δ -functor, conclude that $\prod_{i \to \mathcal{U}} X(f_i)$ agrees with $\prod_{i \to \mathcal{U}} X(f)$ over the diagonal copy of X(M) inside $X(M)^{\mathcal{U}}$.
- For any point $a \in X(M)$, the above says the sequence $(X(f_i)(a))_{i \in I} =_{\mathcal{U}} (X(f)(a))_{i \in I}$.
- Since \mathcal{U} was arbitrary and the cofinite filter on I is the intersection of all non-principal ultrafilters on I, we conclude that the above equation holds cofinitely. Hence, $X(f_i) \to X(f)$.

Jesse Han

Strong conceptual completeness

Applications of strong conceptu completeness

A definability criterion for ℵ₀-categorical theories

Exotic functor

\aleph_0 -categorical theories

- A first-order theory T is \aleph_0 -categorical if it has one countable model up to isomorphism.
- ightharpoonup
 igh
- A theorem of Coquand, Ahlbrandt and Ziegler says that, given two \aleph_0 -categorical theories T and T' with countable models M and M', a topological isomorphism $\operatorname{Aut}(M) \simeq \operatorname{Aut}(M')$ induces a bi-interpretation $M \simeq M'$.
- Since we know Δ-functors induce continuous maps on automorphism groups, they're a good candidate for definable functors.
- ▶ Boolean coherent toposes split into a finite coproduct of $\mathscr{E}(T_i)$, where each T_i is \aleph_0 -categorical.

lesse Han

Strong conceptual completeness

Applications of strong conceptu completeness

A definability criterion for \aleph_0 -categorical theories

Exotic functo

A definability criterion for \aleph_0 -categorical theories

Theorem.

Let $X : \mathbf{Mod}(T) \to \mathbf{Set}$. If T is \aleph_0 -categorical, the following are equivalent:

- 1. For some transition isomorphism, (X, Φ) is a Δ -functor (preserves ultraproducts and diagonal maps).
- 2. For some transition isomorphism, (X, Φ) is definable.

lesse Han

Strong conceptual completeness

Applications of strong conceptucompleteness

A definability criterion for ℵ₀-categorical theories

Exotic functor

A definability criterion for \aleph_0 -categorical theories

Proof.

(Sketch.)

- One direction is immediate by SCC: definable functors are ultrafunctors are at least Δ -functors.
- Let M be the countable model. Use the lemma about Δ -functors (X,Φ) inducing continuous maps on the automorphism groups (equivalently, (X,Φ) has the finite support property) to cover each $\operatorname{Aut}(M)$ -orbit of X(M) by a projection from an $\operatorname{Aut}(M)$ -orbit of M. By ω -categoricity, the kernel relation of this projection is definable, so we know that X(M) looks like an (a priori, possibly infinite) disjoint union of types.
- By $Aut(M)^{\mathcal{U}}$ orbit-counting, there are actually only finitely many types.
- Invoke the Keisler-Shelah theorem to transfer to all $N \models T$.

Jesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for \aleph_0 -categorical theories

Exotic functor

A definability criterion for \aleph_0 -categorical theories

Corollary.

Let T and T' be \aleph_0 -categorical. Let X be an equivalence of categories

$$\text{Mod}(\mathcal{T}_1) \overset{X}{\simeq} \text{Mod}(\mathcal{T}_2).$$

Then X was induced by a bi-interpretation $T_1 \simeq T_2$ if and only if X was a Δ -functor.

In particular, Bodirsky, Evans, Kompatscher and Pinkser gave an example of two \aleph_0 -categorical theories T,T' with abstractly isomorphic but not topologically isomorphic automorphism groups of the countable model. This abstract isomorphism induces an equivalence $\mathbf{Mod}(T) \simeq \mathbf{Mod}(T')$ and since it can't come from an interpretation, from the corollary we conclude that it fails to preserve an ultraproduct or a diagonal map was not preserved.

Jesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for \aleph_0 -categorica theories

Exotic functors

Exotic pre-ultrafunctors

In light of the previous result, a natural question to ask is:

Question.

Is being a Δ -functor enough for SCC? That is, do non-definable Δ -functors exist?

Theorem.

The previous definability criterion fails for general T. That is:

- ► There exists a theory T and a Δ -functor $(X, \Phi) : \mathbf{Mod}(T) \to \mathbf{Set}$ which is not definable.
- There exists a theory T and a pre-ultrafunctor (X, Φ) which is not a Δ -functor (hence, is also not definable.)

Jesse Han

Strong conceptu completeness

Applications of strong conceptual completeness

A definability criterion for ℵ₀-categorica theories

Exotic functors

Exotic pre-ultrafunctors

Proof.

(Sketch.)

- Complete types won't work, so take a complete type and cut it in half into two partial types, one of which refines the other. Define X(M) to be the realizations in M of the coarser one.
- Taking ultraproducts creates external realizations ("infinite/infinitesimal points") of either one.
- You can either try to construct a transition isomorphism which turns it into a pre-ultrafunctor (creating a non- Δ pre-ultrafunctor) or obtain one non-constructively (creating a non-definable Δ -functor).

Jesse Han

Strong conceptual completeness

Applications of strong conceptua completeness

A definability criterion for №0-categoric theories

Exotic functors

Future work

- Is the above X(M) isomorphic to ev_A for some $A \in \mathcal{E}(T)$?
- Which parts of Makkai's ultra-data ensure X : Mod(T) → Set is ev_A for A ∈ ℰ and which parts make sure that A is compact?
- How do ultramorphisms relate to the Awodey-Forssell duality?
- Conjecture: the pre-ultrafunctor part of the data ensures compactness after you get inside the classifying topos, i.e. if you start with $A \in \mathcal{E}$ and ev_A is an ultrafunctor, then A was compact.
- Update: this last conjecture is actually true!

Jesse Han

Strong conceptual completeness

Applications of strong conceptual completeness

A definability criterion for \aleph_0 -categorica theories

Exotic functors

Latest results:

Theorem.

Let $\mathscr{E}(T)$ be the classifying topos of a first-order theory. Let B be an object of $\mathscr{E}(T)$. The following are equivalent:

- 1. B is coherent.
- 2. $ev_B : \mathbf{Mod}(T) \to \mathbf{Set}$ is a pre-ultrafunctor.
- 3. The reduct functor $\mathbf{Mod}(T[B]) \xrightarrow{f^*} \mathbf{Mod}(T)$ is an equivalence, where T[B] is T with an additional sort for B and all the induced definable structure on B ("the graph of $\mathscr{E}(T)(\mathbf{y}(-),B)$ ") adjoined.
- 4. $\mathbf{Mod}(\mathscr{E}(T)/B)$ is an ultracategory such that the forgetful functor $F: \mathbf{Mod}(\mathscr{E}(T)/B) \to \mathbf{Mod}(T)$ is an ultrafunctor and the functor $(\langle M, b \rangle \mapsto \{b\}) : \mathbf{Mod}(\mathscr{E}(T)/B) \to \mathbf{Set}$ is a strict ultrafunctor.

Jesse Han

Strong conceptua completeness

Applications of strong conceptual completeness

A definability criterion for ℵ₀-categorical theories

Exotic functors

Thank you!