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Abstract

In these notes we study some aspects of internal category theory in the syntactic
category Def (T) of a first-order theory T'; that is, of categories definable in 7.

Disclaimer

These are extremely rough notes, kept for the purpose of writing down definitions and new
and partial results from work-in-progress. As a result, notation is inconsistent and I have not
yet written references or cross-references. Often I resort to using elements and so much of the
material here has not been developed in the full generality it ought to be, though everything
works in Def(7) (implicitly taking points in a monster model), but we should be able to
formulate and prove the results wholly diagrammatically, maybe modulo a Grothendieck
topology.

Comments, questions, and notes on typos or more serious errors are welcome.

A note on notation: when C is an internal category, we write Cy and C for the object-of-
objects and the object-of-morphisms. We also sometimes write (C)y and (C); for the same
thing. Also, the internalization of small-completeness and small-continuity for categories
and functors is just internal completeness and continuity: all limits of diagrams internally
indexed by internal categories exist (resp. are preserved).

Introduction

Just as we can study groups definable in some first-order theory T, which are just group
objects in the category Def(T') of definable sets (and definable functions between them) in
T, we can study categories definable in T, i.e. category objects, or internal categories, in
Def(T).

Internal categories arise naturally elsewhere in mathematics (e.g. internal categories are
internal groupoids are crossed modules in Grp, and internal congruences (e.g. equivalence
relations in Set, ideals in CRing and normal subgroups in Grp ) can be identified as internal
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groupoids.) So it is natural to ask what internal categories in Def(T') have to say about
T. Conversely, it’s also natural to ask how T influences how much category theory we can
recover from just the categories definable in T'.

In particular, we look at definable adjoint pairs of definable functors, and recover the general
adjoint functor theorem internal to Def(T"), modulo a definable Skolem function. Motivated
by the desire to rid ourselves of this last requirement, we turn to the internalizations to
Def(T') of anafunctors instead, which were introduced by Makkai to generalize functors and
perform limit constructions in settings without choice, and we prove a general adjoint functor
theorem for definable anafunctors.

Along the way, we note that 7" having definable Skolem functions is precisely the external
axiom of choice for Def(7T") equipped with the regular coverage: that all definable surjections
admit a definable section. We then internalize to Def(7") the fact that the external axiom of
choice for Set is equivalent to being able to upgrade fully faithful essentially surjective func-
tors between small categories to full equivalences of categories. This gives a characterization
of having definable Skolem functions in terms of definable functors.

We also observe that saturated anaequivalences between definable categories provide a gener-
alization of Morita equivalence between definable groupoids; this has recently been applied
to characterize generalized imaginary sorts. We then show that two definable categories
are saturated anaequivalent if and only if there is a bibundle between them, and generalize
appropriate parts of the theory relating definable groupoids and internal covers.
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1 Categories as two-sorted first-order structures

Consider the language L, with two sorts {Ob, Mor}, function symbols dom and cod (some-
times written s and ¢ for source and target) from Mor to Ob, a binary partial composition
function o whose graph relation o(—, —, —) < Mor x Mor x Mor we include as a symbol in
the language.

Since a definable category C in an arbitrary first-order theory T is a (strict) interpretation of
a pure category (i.e. an Lg,e-structure satisfying the category axioms) in 7', we can see what
definable sets come for free with C in T by looking at what is definable in a pure category.

Definition 1.1. A category is an L..-structure satisfying the following axioms, which state
that composition is only defined on arrows with compatible domains and codomains, that
composition is associative, and that there are elements which are simultaneously left- and
right-identities for composition:

(i) ¥f g [cod(f) # dom(f) — Vh (= o (f,g,h))]
(i) Vf Vg Vh [ o (f,g.h) < [VI' (o(f,g,h') = h =H) A dom(h) = dom(g) A cod(h) =
cod(f)]]-

(iii) V.f Vg Vh o (f,o(g,h)) = o(o(f,9), h).

(iv) Va € Ob 3Je, € Mor (cod(e,) = dom(e,) = a A VS (dom(f) = a — o(f,eq f) A
cod(f) = a— (e, [, f)))-

As usual, we write o infix whenever it is defined as a function, and write X LY to denote
that f has domain X and codomain Y. When we need to write composition as a prefix

operator, we use “c” instead of “o”. Identity maps are necessarily unique, so the function

id : Ob — Mor taking objects to their identity maps is O-definable.

Definition 1.2. An object ¢ € C a definable category is definable up to isomorphism if some
subset of the isomorphism class of ¢ in C is definable.

The following examples are all definable up to isomorphism.

Example 1.3. Initial and terminal objects: consider
I df
islnitial(x) = Yy € Ob 3!f : & — y,

and dually for terminal objects. These are definable up to isomorphism.

Example 1.4. Slice and co-slice categories: fix a category C and a base b € Ob. For the
objects of the slice category, take the definable set

Ob(C/b) £ {f € Mor | cod(f) = b}.



For morphisms, take
Mor(C/b) l {f € Mor| f : dom(g) — dom(h) for g, h € Ob(C/b) such that ho f = g}.

Remark 1.5. Note that in the same way algebraic groups are group objects in the category
of algebraic varieties, this defines a category object, i.e. an internal category in Def(Th(C)).

Example 1.6. Limits and colimits of arbitrary finite diagrams: if D is a diagram with
finitely many objects dy, ..., d, with finitely many morphisms between them, a limit to D
is just a tuple (x,m,...,m,,) where x is an object and the 7; are maps x — d; such that:

(i) whenever f:d; - d;eD, fom =m; and

(ii) whenever we have another tuple (y,7,...,n,) satisfying the above conditions, there
exists a unique map y —> x such that 7} = 7; o u for each 1 < i < n.

(Alternately, we can just modify our realization of slice and co-slice categories as definable
categories in C to realize cone and co-cone categories as definable categories in C. Then
limits and colimits are just the terminal and initial objects in those definable categories,

hence definable.)

Example 1.7. Limits and colimits of arbitrary definable diagrams construed as definable
subcategories: in the same spirit as the above example, except instead of capturing the
entire diagram in a sentence, as is possible when D is finite, we only need check that certrain
subtriangles of our diagram commute, and as long as the legs of the triangles belong to
something we can safely quantify over, it doesn’t matter if there are infinitely many things
to check.

Definition 1.8. Let A, B be two definable categories in C. A definable functor F : A — B
comprises definable maps Fy : Ag — By and Fy : Ay — By which behave like the data of a
usual functor with respect to the internal composition, domain, and codomain maps of either
internal category. If F' and G are two definable functors, a definable natural transformation
n: F'— G is a definable function Aqg — Bj such that the following diagrams commute:

B1 (o) BO X BO Bl X s,Bo,t Bl - > Bl

n and (nOt,Fl) c
(Fo,Go)

AO Al > Bl X s,Bo.t Bl.

(Gl 7”08)

Example 1.9. Change-of-base functors between slice-categories: if pullbacks exist, this is
clear.

Example 1.10. Epimorphisms, monomorphisms, and subobject classifiers: to be a monomor-
phism f: X — Y means that the definable map (fo—) : Hom(—, X) - Hom(—,Y) = fo—:
cod 1 (X) — cod ' (Y) is injective. To be an epimorphism f: X — Y means that the defin-
able map — o f: Hom(—,Y) — Hom(—, X) is injective. To have a subobject classifier is to
say that there exists a terminal object 1 and a monomorphism true : 1 — €2 for some object



Q) such that for every object X and monomorphism S < X, there is a unique map X — (2
such that S < X is the pullback of true along the map X — €2, which is first-order.

Example 1.11. Power objects of a fixed object X: “there exists an object Q¥ and a
monomorphism €y X x QX such that for any other object Y and every monomorphism
S <> X x Y there is a unique classifying map X x Y — X x Q¥ such that S < X x Y is
the pullback of ex— X x QX along that classifying map.”

Exercise 1.12. (For the masochistic.) Write out the last four examples explicitly.

Remark 1.13. I don’t think arbitrary limits and colimits are definable. So, to-do: con-
struct two categories equivalent as L.i-structures, but which realize some limit or colimit
differently.

2 Definable adjunctions

In this section we study pairs of definable adjoint functors between definable categories.

Proposition 2.0.1. Let Dy and Dy be definable categories in T a first-order theory. Let
F : Dy — Dy be a definable functor which is left-adjoint to G. Suppose the family of hom-set
bijections

{¢xy: Homp,(FX,Y) — Homp, (X, GY)} xeD, veD,

1s definable as a function

| | Homp,(FX,Y)— || Homp,(X,GY).

XGDl,YEDQ XEDl,YEDQ

Then if D1 has enough projectives, G : Dy — Dy is definable also.

Proof. The definability of the hom-set bijection means that what G does on objects is already
definable. Consider the relation I' € Mor(Dy) x Mor(Dy) by (f, f) € I if and only if VX,

dx,v;

Homp, (FX,Y7) Homp, (X, GY))
fo— ?o—

Homp, (FX,Y;) ——— Homp, (X, GY5)

PX,vy

commutes. If 1, ?l are two gl/ements from fiber of I' at f, then they must both satisfy
fodxvi(g) =odxv(fog)=Ff oodxy(g) forallg: FX — Y.



Y, v
If we have a factorization \ / and choose from the fibers of f; and fo
1 f2
Y3

morphisms f, € I'(V; LIS Y3) and f, e T'(Y3 EEA Y,), then for all X € Dy,

Homp, (FX,Y;) —2"_, Homp, (X, GY})
fio— Fro—

e OxX,v e
Homp, (FX,Y3) Homp, (X, GY3)
foo— Fro—

] DX vy )

Homp, (FX,Y3) Homp, (X, GY3)

commutes, so that for each g : FX — Y7,

72 © 71 0 dxy(9) = 72 o dxy;(f109)
= ¢X,Y2(f2 o f1)
= dxy(fog)
= ? ° dxy:(9)-

Similarly, idy, o ¢x.v,(g) = ¢xy,(g). Hence, if for each Y; there is an X such that X admits
an epimorphism to Y;, then we can right-cancel ¢xy,(g) in the above equations, so that I'
defines a functor right-adjoint to F. O]

Corollary 2.0.1. If in the above situation G is definable instead and Dy has enough injec-
tives, F is definable also.

Proof. Immediate upon examination of the proof. n

Corollary 2.0.2. Let F': Dy <5 Dy : G be a pair of functors between two categories definable
in a theory T'. Then:

(i) If D1 has enough projectives, F is definable, the restriction of G to objects of Dy is
definable, and the counit € is definable, then G is definable also.

(ii) If Dy has enough injectives, G is definable, the restriction of F to objects of Dy is
definable, and the unit n is definable, then F is definable also.

Proof. ¢xy is always given by (F X5 Y) — (X o) GY) , and its inverse is given by
taking an X 1, GY and sending it to ey o F'(f) instead. O
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2.1 The general adjoint functor theorem

C D.
Definition 2.1. Consider the diagram of functors \ / The comma cat-
F G
E

egory (F | G) is given by:
Objects: (¢,d, ) where ce C,de D,a: F(c¢) — G(d) € E.
Morphisms: Homrq) ((c1,d1, o), (c2,da, arp)) is defined to be the set

Fer) 2P p(ey)

(81, B2) ’ﬁl 11— ¢y, P91 dy — dy, and all laz, commutes.

Gdy) £ G(dy)

Definition 2.2. If F': C — Set is a Set-valued functor on a locally small category C, the
category of elements of F' SCEC F(c) is given by:

Objects: {(c,z)|ce C,z e F(C)}.
Morphisms: Homgec ((e1, 1), (€, x2)) is defined to be the set

{f‘f ccp — g and F(f)(z1) = xg.}
Definition 2.3. Let C 5> D be a functor between locally small categories, and let U € D.
The category Pt(U, F) of U-points of F is given by:
Objects: {| | ..cHomp (U, F(c))}, each written (¢, z) where z : U — F(c).
Morphisms: Hompyu, ) ((¢1, 21), (2, %2)) is defined to be the set

{f|f:c1— coand F(f) oz = 2.}

Remark 2.4. Note that if ' lands in Set, the category of elements of F'is precisely Pt(1, F').
In particular, the category of elements of a G-set is its action groupoid.

Remark 2.5. Identifying an object d of a category D with the functor from the delooping
of the trivial group B1 — D pointing at d, note that for any functor F': C — D,

(d | F) = Pt(d, F).

Lemma 2.5.1. Let G: D — C be a functor. G admits a left adjoint F' if and only if for each
c € C there is an initial object i. of the comma category (¢ | G). i. is called the reflection of
¢ along G.



Proof. Suppose F'is left adjoint to G. Let n be the unit 1¢ — GF. Claim: (F(c),n(c) : ¢ > GF(c))
is the initial object of Pt(c, G). To see this, let (d, x : ¢ — G(d)) be another object in Pt(c, G).
Taking F-G transposes, as in

¢ 5 GF(e) Fe) 9, pe)
G(d) d

shows that any completion to the triangle on the left must be precisely G(Z), necessar-
ily unique. On the other hand, suppose that each Pt(c,G) has an initial object i, =
(deyne - ¢ = G(d.)). F will be defined by

(01 i CQ) —> (dcl i/) dcz) .

where ¢ is as in the unique completion to the square

C g > Co
Ne ‘/7762
F(de) i G(des)

witnessing that 7. is initial in Pt(¢, G). This is easily seen to be a functor. The hom-set
bijection

Hom(Fe¢,d) ~ Hom(c, Gd)
is given (from left to right) by

and from right to left by



witnessing that 7. is initial. To check naturality on the left, let f : ¢; — ¢o be a map in C.
Chasing a map ¢ : F'co — d through the diagram

Homp(Fey,d) —— Home(cy, Gd)
—oF'f —of
Homp (F'¢cz,d) —— Home(co, Gd)

yields the terms
Ggone, o f =GgoGFgon.,,

which can be seen to be equal by noting that the diagram

G(de,)
lGFf
" G(de,)
V ng
Cq 7 > Co Ggo7702> G(d)

commutes (the outer trapezoid on the left by definition of F’; the inner triangle on the right
by definition.) To see naturality on the right, let f : d; — ds be map in D. Chasing a map
g : Fc — d; through the diagram

Homp(F¢,d;) ——— Home(c, Gdy)
fo— Gfo—
Homp (F¢,dy) ——  Home (¢, Gds)

yields the terms
?

G(fog)on.=G(f)oG(g)one,
which can be seen to be equal simply by the functoriality of G. n

Definition 2.6. A functor F': C — D satisfies the solution set condition with respect to an
object d € D if there exists a set Sy of objects in C such that for allce C and Vf : d — F(c),
there isa ¢ € Sy, amap g: ¢ — ¢, and amap f' : d — F(c) such that F(g)o f' = f.

Theorem 2.7. (Freyd’s general adjoint functor theorem.) Let D be complete. G : D — C

admits a left adjoint F if and only if G is continuous and satisfies the solution set condition.

Proof. Suppose that F' exists. That G is continuous is a routine Yoneda-style argument. Let
c € C. The solution set S, for ¢ is just the singleton {d.} g {F(c)}.



On the other hand, suppose that G is continuous and satisfies the solution set condition.
Note that D being complete implies that Pt(c, G) is complete for each ¢ € C: if a diagram
D < D becomes a diagram under some c¢ after passing through G, then ¢ forms a cone to
G(D) and hence admits a unique map to G ({gl D). Now, the key property of each S. is that

they are each weakly initial families for each Pt(c,G): for each p € Pt(c,G), there exists
some p’ € S, and a map p’ — p (in Pt(c, G).) The product of a weakly initial family is a
weakly initial object, i.e. one which admits some map, not necessarily unique, to every other
object.

To complete the proof, we’ll need to use the completeness of Pt(c,G) to obtain an initial
object. Let x = [[S,, i.e. the product of the weakly initial family in Pt(c, G), which is a
weakly initial object in Pt(c, G). Let End(x) be the diagram of all maps x — x. Claim: the
equalizer e as in the limit diagram

e - End(z),

f .
is initial in Pt(c, G).To see this, let p € Pt(c, @), and let e = p be two maps. Let d % e be
9

their equalizer. There is a map x £ d since z is weakly initial. By how we’ve set things up,

the diagram
) iojok
e —— w3
id,
commutes. Since equalizer maps are mono, left-canceling ¢ yields jokoi = id.. Hence, since
e—sr—->dbe3p
g
commutes, f = g. Therefore, each Pt(c, G) has an initial object, and so a left adjoint F
exists. O

2.2 A definable general adjoint functor theorem

Definition 2.8. A definable functor G : D — C between definable categories satisfies the
definable solution set condition if there is a uniformly definable family of sets X, = (M, ¢)
where each X, is a weakly initial family in Pt(c, G).

Definition 2.9. A theory is said to have definable Skolem functions if for every definable set
¢(z,y) there exists a definable (partial) function on the sort of y that picks out an element
from the fiber ¢(M, b) for each b of the sort of y, if that fiber is nonempty. When additionally
those functions can be made to depend only on ¢(M, b), i.e. if two fibers over b and b’ coincide
as sets then the choice function takes on the same value at b and ¥’, the theory is said to
have definable choice functions.

Theorem 2.10. Let G : D — C be a definable functor between definable categories, with D
definably complete. Then G admits a definable left adjoint F' with the unit n: 1c — GF of
the adjunction also definable if and only if G is definably continuous, satisfies the definable
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solution set condition, and there exists a definable Skolem function for the family of definable
sets {I.}eec, where 1. is the set of initial objects of Pt(c, ).

Proof. Suppose first that F' 4 G with F' and the unit 1 definable. Then G is definably
continuous. Assign to each ¢ € C the object (F c,c 5 GF c) of Pt(c, G) which corresponds
to the component of n at c.

On the other hand, suppose that G is definably continuous and satisfies the definable solution
set condition. Since D is definably complete, and G is definably continuous, Pt(c, G) is

definably complete for each ¢ € C. The definable solution set condition ensures that each
Pt(c, G) has an initial object. Write n(c¢) = (d., z. : ¢ — G(d,)) for the value of our definable

: : fo. . : :
choice function c. If ¢; = ¢ is a map in C, there is a diagram

G(d,,)
Fe1 ()
\lf
C1 > C2 » G(d,)

whose indicated completion uniquely witnesses that 7(c;) is complete, and we define F/(f) =
f', which is clearly functorial. And the choice function 7 can be taken verbatim to be the
unit 7 : 1¢ — GF'. That F is actually left adjoint to G is purely formal, and so the argument
from the general case may be repeated. O]

Remark 2.11. Note that the Pt(c,G) are c-definable and so form a uniformly definable
family over Ob(C). Hence, the sets of initial objects of each Pt(c, G) are a uniformly definable
subfamily.

Therefore,

Corollary 2.11.1. If T has definable Skolem functions, then whenever G : D — C is a
definable functor between definable categories with D small-complete which is right adjoint
as a pure functor, its left adjoint F' is definable also.

3 Internal anafunctors in Def(7T)

In the last few paragraphs it’s become clear that recovering internal adjoints depends on
choosing a transversal of isomorphism classes in some family of definable categories. So
naively studying internal adjoints in this way requires the ambient category to satisfy some
version of the axiom of choice. Anafunctors, introduced by Makkai, generalize functors to
contexts where there might not be a good notion of choice. In his own words,

Anafunctors provide solutions without introducing non-canonical choices to ex-
istence problems when data are given by universal properties. The best example
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for this is the existence of an adjoint anafunctor when the “local existence crite-
rion”[l] is satisfied.

and indeed in this section we’ll find that we can prove a general adjoint functor theorem for
internal anafunctors that requires no choice in the ambient category. An extremely explicit
definition of anafunctors is given by Makkai in his seminal paper, but here we use a slicker
definition involving spans and the regular coverage given by Bartels (2006) and Roberts
(2013), which makes proving things easier. First, we introduce a notion of base change for
internal categories, relative to a cover of the object-of-objects.

Definition 3.1. Let C be an internal category in S finitely complete. Let U % Cj be a
map. The base change of C along p, denoted C[U], is given as follows:

Y

C[U]lZPSX Pt;

mcy,Crmey
where the latter pullback is given as in the diagram

ClUL

Ch

BNV
7N/

Ps Pt
U U
N e
C() C'0
where all three squares are pullbacks, with C[U]’s source and target maps to U the upper-left

and upper-right edges factoring through P, and P,.

Remark 3.2. In Set, P, and P; are isomorphic by switching sources and targets precisely
when the fibers of p are all isomorphic.

Remark 3.3. C[U] admits a canonical projection p back to C, with pg given by p: U — Cy
and p; given by the canonical map C[U]; — €} in the pullback diagram defining C[U]; over
Ch.

Definition 3.4. A regular epimorphism in S is a map f : X — Y such that f is the
coequalizer of some parallel pair of maps into X.

Lemma 3.4.1. In Def(T), a map is a reqular epimorphism if and only if it is a definable
surjection.

Suppose first f is a definable surjection. Then

ker(f) == X Ty

LAs we will see, this is the anafunctor analogue of the statement that the comma categories as in the
proof of the usual GAFT all have an initial object.
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is a coequalizer diagram. (By using s and ¢ we are implicitly identifying the definable
equivalence relation ker(f) on X with the groupoid whose connected components are the
codiscrete groupoids on ker(t)-classes.) On the other hand, suppose that f : X — Y is the

S
coequalizer of some parallel pair of maps R == X. Since we may form images we may as
t

well take R to be a relation R ®) X x X. That f is the coequalizer of this relation means
that it is constant on R’-classes, where R’ is the equivalence relation on X gotten by taking
the symmetric, reflexive, and transitive closures of R while identifying points elsewhere with
just themselves. This is ind-definable, and in Set we have a factorization

ker(f) == X — L vy

SN

and since we may always form images in Def(7'), f must be surjective.

X/R/

Definition 3.5. A reqular category S is one which is finitely complete, pullbacks of regular
epis are regular epis, and kernel pairs admit coequalizers.

Lemma 3.5.1. Def(T) is reqular.

Proof. Finite limits are constructive and are computed as in Set, where pullbacks of epis
are epis, hence surjective. So the pullback of a definable surjection is a definable surjection,
hence regular. Since images are definable, the kernel pair ker(f) of f is coequalized by the
map f’, which we define to be f with its codomain replaced by im(f). O

Definition 3.6. Let S be a regular category. The regular coverage (which coincides with the
canonical singleton Grothendieck pretopology on C) is the Grothendieck pretopology whose
covering families are singletons of the regular epimorphisms. The Grothendieck topology
generated by the regular coverage is called the regular topology on C.

Definition 3.7. Let (S, J) be a site such that internal categories admit base changes along
covers in J. An internal anafunctor between internal categories F' : C — D comprises the
following data:

(i) A singleton J-cover U — C.
(ii) An internal functor 77 : C[U]| — D.

Proposition 3.7.1. Suppose S has pullbacks. The canonical projection pr : C[U] — C is
fully faithful.
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Proof. Full faithfulness is equivalent to the square
(pr)1
ClU)y ————— (4
(s',t") (st)
UxU ———— Cy x ()
pxp

being a pullback. Let (@, (s”,t"): Q — U x U,r : Q — C}) form a cone to the above cospan.
This means that we have a commutative diagram

ClU}x
i\

t”
4 U
X‘ / t /
Co

Co

/

U

7\

so we get unique mediating maps of cones to the cospans of the bottom two pullbacks:
Q5 P, Q% P,. Since their compositions with e, from Py and P, must equal r, this makes
() into a cone to the cospan of the top pullback as well, which yields a unique mediating

map ) — C[U];. O
Corollary 3.7.1. When S = Def(T') and J is the reqular coverage, the canonical projection
pr s fully faithful and surjective on objects.

Proof. (pr)o is p, which is a regular epi, which is a definable surjection by the earlier lemma.
O

Another advantage to the approach of defining anafunctors with respect to a coverage instead
of plain spans is that we obtain a very concrete description of their composition (and in the
presence of canonical choices of pullbacks along covers, as in the definable setting, we get a
canonical choice of composition.)

Definition 3.8. Let F': C; — C,, G : Cy — C be anafunctors, given by

C\[U/] C,[Ucg]
C V \ C y X C;.
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Their composite anafunctor GF : C; — Cs3 will be given by

Cl Uf ,(C2) opG

Ci C,|Uc]
where the projection functors mp and mg are obtained as follows: on objects, (7r)o and

(7)o are just the canonical projections Up x(c,), Us = Up and Up x(c,), Us = Ug. On
morphisms, we induce (7r); and (7g); as in the diagrams

C1 C37

Pg?glx (©)Ua C, [UF] . Pt,UélX (€2)oUc
v v
PS[’ng \ / ngl
UFXCQ)O UgL UF (Cl)l UF LUF X(CQ)() UG
\ lpF / \ lpF /
s t
(Ci)o (Ci)o
and
CI[UF X (C2)o UG]l
/ i:f(WG)l\)
et Tl Pl
v v
ngQ \ / Ptng
UF X(CQ)() UG &) UG (Cg)l UG & UF X(Cz)o UG
ﬂUFl pcl / \ lpG' lﬂ'UG
UF T) (CQ)O (CQ)O (T UF

Remark 3.9. By Lemma 2.24 of (Roberts, 2013) GF' is actually a strict pullback in the 2-
category of internal categories of the ambient category S, so the composition of anafunctors
is the composition of underlying spans.
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Definition 3.10. The identity anafunctor 1c on a category C is given by taking the base

change C[Cy] of C along Cj < Cy, and setting 7iq., to be the identity functor on C. Similarly,
we identify plain functors F' as anafunctors by doing the same except we 7 from C[Cy] to
be F' instead.

F
Definition 3.11. (Roberts, 2013) Given two internal anafunctors C %’ D, an internal natu-

ral transformation n : F — G, or just a transformation, is an internal natural transformation
(which, abusing notation, we also call ) Tpomr ~> 75 0T between the two internal functors
which form the left and right sides of this diagram:

C[UF XCO Ug]

C[Ur] L, Cc+—2 C[U¢]

S

D

Y

where mp and mg are induced analogously to when they are induced when forming the
composition of anafunctors.

A transformation whose component maps are all isomorphisms will be called an isotransfor-
mation.

3.1 Definable adjoint anafunctors

In this section we resort to using points, and so specialize our ambient category S to one
which admits a faithful left-exact forgetful functor to Set (say, Def(7')). In this setting
we develop the basic theory of adjoint anafunctors, culminating in a general adjoint functor
theorem.

Notation 3.12. If s is an element in Up, we use subscripts and superscripts to denote the

images of s under pp and 7, €.g. S, (s), sTF(8), s;i:((?)

Definition 3.13. Let F' : C < D : G be a pair of anafunctors. F' is left adjoint to G
(written F' — G) if for any s. and vy in Ur and Ug, we have a bijection

Gsewy - Homp (7p(s.), d) — Home(c, 7¢(vq))

which is natural in s. and vg in the following way: for ¢ M ¢ in C, with lifts s.,ts in Up

16



and a vy in Ug, the square

d)scﬂ-’d

Homp (7#(s.), d) Homg(c, 7(va))

—orp(pp' (h)) —oh

Homp (77 (ty), d) ¢—> Homg(d, 76(vq))
t v

commutes (note that specifying lifts of ¢ and ¢ means that we may use the full faithfulness

of pr to uniquely lift A, as indicated by the notation), and for d A @ in D with lifts Vg, Wy
in Ug and a s, in Up, the square

bservy

Homp (77 (s.), d) Home (¢, 7¢:(vq))

ho~ (o (h))o-

Homp (77 (s.), d) ¢—> Home (¢, 7a(wa))
ScH,W gt

commutes. Given this data, F' and G are said to be hom-set adjoint.

Remark 3.14. Given this definition, it is natural to try to reformulate it in terms of unit
and counit transformations. While (as we will see) we can recover the unit and counit from

the hom-set bijections, formulating the triangle identities F " per & F = idg (resp.
GG) in terms of transformations of anafunctors does not go through as smoothly, because it
appears that there is no general way to define the precomposition of a natural transformation
of anafunctors by another anafunctor.

Definition 3.15. (Composing a transformation by an anafunctor) Let n : F© — G be
a transformation of anafunctors C — D. Let H : D — E be an anafunctor. Define
Hn : HF — HF as follows: form the composites HF, HF' and take their pullback over
C. Note that this pullback admits a mediating map (induced by a mediating map of the
pullback of covers) to C[Ur x¢, Ug], as indicated in the diagram

ClUnr xc, UHG] ClUs xp, Un|

N2

C[UF X o Ug] UF X Dy UH

m/\

17



We require 7 to induce a natural transformation (Ur x p, Uy) X ¢, (Ug X p, Ug) — E;. Recall

that D[Ug]; is defined as the pullback

(D1 %s5,00ps Unt) X7p,,D1,mp, (D1 xt,p9.prr Unt)-

At the level of objects, this gives us a diagram

Ubar xc, Ung

/ QUH

Uﬁ XQDUb Uﬁ’Xl}H
9| o
D, ————?;5———+ l)o)(l)o

so that taking projections to either side, as in

Unr xc, Una

k//////// \\\\iijinXUH
Un

Ur x¢c, Ug

| T
l)l 3 > l)o

Ubnr xc, Ung

k//////// \\\\\ziffoUH
Un

Ur %¢, Ug
(tgomg)
D, n > l)o

yields mediating maps us and wu, to either component of D[Ug];. That these maps are
fibered over D; follows from the fact the two cones above have the same map to Dy, and so
we may form their product (us xp, u;) : Unp xc, Ung — D[Ug]; over D;. We then set

and

df
Hn = ()10 (us Xp, ue),
which easily checked to be an internal natural transformation.

Remark 3.16. However, things do not go so smoothly when we take an I : B — C and
try to form nl : FI — GI a transformation of anafunctors B — D instead. Forming
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compositions and taking pullbacks as before yields the diagram

B[(Urr) x5, (Uar)]

/ \

B[U[ X Co UF UI X UG’]

W o

/ \ PF X
B C

where the only sensible thing to do, it would seem, is to find some mediating map from
(Ur ¢y Ur) xB, (Ur ¢y Ug) — Ur x¢, Ug.

This amounts to finding a mediating map Up; x g, Ugr — Upr X, Ugr, which generally does
not exist, since there’s no guarantee that the latter is also a weak pullback fibered over Cj.
Note that this obstruction disappears when the cover p; is mono, in particular if I is actually
a functor. As we will see, this obstruction will also disappear when we define the triangle
identities for the unit and counit of an adjunction of anafunctors.

Definition 3.17. Let F' : C < D : G be a pair of anafunctors. Let € : FG — 1p be a
transformation. Define ¢F' : FG o F' — F' via precomposition as follows:

(Ur xp, Urg) xc, U » Dy

|

Urc ~ Urc xp, Do,
which is easily checked to be a transformation via the naturality of e.

Definition 3.18. We compose transformations of anafunctors as we do plain functors. To
express this diagramatically, let ', G and H be anafunctors C — D, and let 7, : F' — G and
12 : G — H be transformations. The composite 1y o 77 is defined by pointwise composition,
le.

id x Axid
s (

Up x¢, Un Ur x¢y Ug) X py (Ua Xy Un) 22 Dy xp, Dy — Dy.

Definition 3.19. Let F': C <5 D : G be a pair of anafunctors. We say that F' and G are
unit-counit adjoint if there exist transformations

lc¢ > GF and FG 5 1p

such that the following equations hold:

F- poGF
loq :ldF
FGoF —£, F
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and
G GFoG
l‘” = idg,
GoFG -9 @

where oy and as are the canonical associator isotransformations, where, for example, the
map

aq ((UF XDo UG) XC’o UF) XCO (UF XDO (UG XC’o UF)) i Cl

is induced by projecting to Cy (along the fiber product in the middle) and composing by the
identity map Cy — C.

Theorem 3.20. Let F': C < D : G be a pair of anafunctors. Then F and G are hom-set

adjoint if and only if they are unit-counit adjoint.

Proof. (=) From the hom-set bijections, obtain 1 : Uy, x¢, (Ur xp, Ug) — C by

(¢, va) — ¢(d % d) L ¢ % 75(vy)

ande:(UG X Co UF) X Dy D0—>D1 by

(v, 5) == 67 e ™5 &) Lri(se) ™5 d.

For the triangle identity at F, let ¢ € Cy and d € Dy and take lifts (s, v4) and s’

. Then
7a(va)
applying F'n yields

_ T (patidg)
n(s¢, va) —— Tr (/?Fln(Sg;Ud)) — (TF(SZI) FLEITF(SITG(W)))-

Since vy and s/ (uy) AT€ also fibered over Cy, applying eF' yields

id
Ta(vq)
TF (8/ ) 4G d,

76 (vq)

and we can see that
TR (p}lidd) , ldTG(Ud) .
d — " 1p (STG(vd)) " d =idy

by forming the naturality square at s.,v® and v, (s,

Homg(c, ¢) > Homp (7r(S.), pa(v°)
idrp(se)0— TEPE e (500~
Home (¢, 76(vrp(s.)))) —— Homp(7r(sc), 77 (sc))
and chasing id..
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Similarly, taking lifts (v°, s.) and U’TF( ) and applying nF' yields

Sc

and applying Ge yields

and to see that o
TG(pE;l (ide)) o idrp(s,) = 1de,

Homg(c, Tg(v;p(sc))) ————— Homp (77 (sc), Tr(5c))

TG(pEIE)of id.o—

Homg(c, ¢) » Homp (75 (sc), Tr(Se)),

where chasing id,,s,) yields

¢ (TG(IOCEIE) © idTF(Sc)) = Ea

so that 7¢(pg'id.) 0 id,,(s,) = id,, as required.

(=) On the other hand, given 7 and ¢, define ¢ and ¢ as follows: we know that ¢~ would

have to satisfy, for any c¢; EA cp with lifts s, s, , and v,

Homg(c1, o) ——— Homp (7r(s,, ), d)

—of —otr(pp' (f))

Homg/(cg, ¢) ——— Homp (1rp5' (f),d)
so that in particular ¢~!(f) = id,, o Tr(pz'(f)). Similarly, for any g : d; — dy, with lifts
Vg, , Vy,, and sd

Homp(dy,d;) ——— Homg(c, 7¢(va,))

go— TaPG go—
Homp (dy, dy) ———— Home(c, 7¢(v),)),

so that in particular, ¢(g) = T¢pg'ids,. Now, ¢ o ¢~1(f) Z f becomes

_ ideyoTrp it f —_ 7
ropg) (TF<sc> 22 d) S
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which is precisely the triangle identity at F. Similarly, ¢! o ¢(g) = g becomes

- _1 Tapg' (g)oidg, , ?
1dTG(U&2) oTppp (¢ > Ta(Vy,) | = 9,

which is precisely the triangle identity at G. It is easy to verify that ¢ is natural, so we
conclude the proof. O

Definition 3.21. (Categories of points for anafunctors). Let G : D — C be an anafunctor.
Let ¢ be an object of C. The category of c-points Pt(c, G) of G is given by:

Objects: pairs (vq, ¢ 2> 76 (vq)).
Morphisms: Hom((vg, p), (v}, p")) consists of those maps d J, @ such that r(pg' (f))op=1p.

That the categories of points have initial objects is precisely what Makkai calls the “local
existence of a left adjoint.” The following is the natural analogue of our earlier lemma on
plain adjoint functors, and provides a converse to 2.1 of Makkai.

Theorem 3.22. Let G : D — C be an anafunctor. G admits left adjoint F if and only if
for all c € C, Pt(c,G) has an initial object.

Proof. (=) The unit of the adjunction at ¢

n(c)
(C, Se, UTF(SC)) — (C - TG(UTF(SC))>

is initial in Pt(c, G):

TG(UTF(SC)) 7r(5c)
n(e) ; idV
¢ = s
\ i
TG(Ud) d)_l(P) d

where the indicated completion is uniquely determined by taking tranposes across ¢.

(<) Construct the anafunctor F' as follows: let Up be the coproduct of the objects-of-initial
objects from each Pt(c,G). The projection pr : Up — Cj is gotten by just forgetting
everything but the ¢ from a c-point. On s, = ¢ %5 7¢(v/}), Tr(s.) is just d’. On a morphism

Se EA sty Tr(f) is just pg(g), where g uniquely completes the diagram

c 2oy T (vly)
S~ T6(9)

pr(f) \\>k
Yo
¢ — 16(v)
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witnessing that p. is initial.

Now we give the hom-set bijections. Fix s. = ¢ %5 74(v),) and vq. Let g : d — d be a map.
Define ¢(g) as the composite

ra(pg'(9))
Ta(vly) =2 0 (vg)

and similarly ¢~ (c & 7¢(vq)) as g, as in the composite

C L) Tg(’l)d)
A

e lrapg (9)
|
/

These maps are well-defined because s, is initial; for the same reason, they also invert each
other.

Now naturality: for f: ¢ — ¢, and lifts s., 5., v4, chasing g : 7p(s.,) — d around the square
Homp (77 (s.), d) ¢ Home (¢, 7¢(vq))
—otp(p71(f)) —of
Homp (7p(s,), d) ———— Homg(c', 76(va))

yields the tentative equality

_ _ ? _
1apg' (90 1rpE (f)) © pe = Taps'(g9) o pe o f,

which is seen to be true because they are an initial map from p,. in Pt(c, G). Similarly, taking
g:d—d lifts s.,vg, v}, and chasing an f : 7p(s.) — d through the square

Homp (75 (s.), d) ¢—_1> Home (¢, 7¢:(vq))
go— Tapg (9)o—
Homp (7x(s.),d") e Home (¢, 7¢(v)))
yields the tentative equality

2

Tapa (9o f) ope = (tapa'(9) © Tapg' (f)) o pe

which is again seen to be true because they are an initial map from p. in Pt(c, G). O
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Remark 3.23. When, as in Set and Def(T), we have a canonical choice of coproduct to
construct Ur (projecting with an existential in the latter; just taking a union in the former),
the left adjoint F' is canonical, and does not depend on choice.

Before stating and proving the general adjoint functor theorem, we have to define what it
means for an anafunctor to preserve limits.

Definition 3.24. Let G : D — C be an anafunctor. Let J : J — D be a diagram of shape
J in D. Suppose the limit lim J exists in D. G is said to preserve the limit lim J if for every

«— «—

lift L of J along pg, as in
D[U¢]

=
L// lPG
J /T> D,
the limit of 74 o L exists in C and for any vy, 5 € Ug lifting a limit to J in D,

T¢(Vim g) ~ lim7g o L.

G is said to be small-continuous (resp. for s in place of small for any infinite cardinal ) if
it preserves all limits of small (resp. k-sized) diagrams. If it preserves all limits of internal
functors from internal categories, it is said to be internally continuous.

Proposition 3.24.1. Suppose that F and G form an adjoint pair of anafunctors C < D.
Then G is internally continuous.

Proof. Let J :J — D, vy, s be as above; let L be a lift of J along pg, and let ¢ and s, be
any object in C and a lift of it in Up. Then:

Home (e, TGvLmJ) ~ Homp (7rs., l(iin J)
~ lim (Homp (7¢Sc, —) : J — S)
~ lim (Homeg(c,7¢ 0 L(—)) : J — 8S)
~ Homp (e, {iin(TG o L)),
and so by the Yoneda lemma,
TGVlim J = l(iin(TGoL).
O

Theorem 3.25. Let G : D — C be an anafunctor on D an internally complete category.
Then G admits a left adjoint F if and only if G is internally continuous and for each c € Cy,
Pt(c, G) has a weakly initial family of objects.

Proof. The proof proceeds as in the case of plain functors, and with all the ingredients we
have so far, we only need to show that with our assumptions, the internal continuity of G
ensures the internal completeness of the categories of points Pt(c, G).
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But a diagram J' : J — Pt(c, G) is just a diagram of c-points where the transition maps lie
in the image of the functor, i.e. consists of triangles of the form

/

C TG (Ujl' V5 )

T

The v;,’s and the transition maps between them form the data of a functor J = D[Ucs].
Composing by pg yields a diagram J = pgo L : J — D, so L lifts J, and continuity of G
gives

7a(vj;)

TG(Cjk)

TGVimJ = hl’IlTG olL.
— <«

Since the diagram J' in Pt(c, G) already makes ¢ into a cone to 7¢ o L, it admits a unique
mediating map to c 2 lim7g o L ~ Tauym y for any vy g lifting the limit of J in D along

pg- Since any other cone to J' in Pt(c, G) may be forgotten into a cone to 7 o L in C, J'
has limit p in Pt(c, G). O

Corollary 3.25.1. In particular, if a definable functor G satisfies the hypotheses of the
theorem, its canonical adjoint anafunctor is definable as well, regardless of the presence of
definable Skolem functions.

3.2 DMorita equivalences

In this section we continue assuming that the ambient category S is concrete in the sense
that it admits a faithful left-exact forgetful functor to Set.

Notation 3.26. If f : ¢ — ¢ is a map in C and we have an anafunctor /' : C — D, then
specifying lifts s., s/, of ¢ and ¢ lets us (by the full faithfulness of pr) uniquely lift f to a
map s, — s.,. Previously we’ve suppressed the extra data of s, and s/, and have denoted
the lift of f as pp'(f); now we write it as

<f / 3073/0/) L Se — SIC/.
Definition 3.27. An anafunctor F': C — D is a Morita equivalence if both pr and 77 are
full, faithful and surjective on objects.

Definition 3.28. An anafunctor F' : C — D is an anaequivalence if 7 is full, faithful, and
surjective on objects.

Remark 3.29. By considerations of Makkai in his paper, this notion of anaequivalence is
equivalent to having a pseudo-inverse anafunctor with isotransformations from the compos-
ites to the identity anafunctors.

25



Definition 3.30. An anafunctor F' : C — D is presaturated if for each ¢ € Cy and each
s. € Up lifting ¢ along pr and each isomorphism ¢ : 7x(s.) — d in D, there is some s’ f such
that

¢ =1y (id@ / sc,s’d> .

C

Definition 3.31. An anafunctor F': C — D is saturated if it is presaturated and addition-
ally the & f as in the previous definition is unique.

Definition 3.32. Let F : C — D be an anafunctor. The presaturation F# of F is gotten
by follows: we define

Ui dt |_| {(s!,¢)|p:d>d} ~ |_| |_| ( /core ))0 ~ UF X (rp)0,Yo,s core(D)y,

ceCo deDy SdETF d
and given an f : ¢; — ¢y and its lift
Frer= @ 2 (sl g1 dy — dy), (st 60 2 dy — ).
we define 74 : Cl[Upw| — D by

g do

d’_l Sc 7Sc [
(f/( Cl’(fbl'dl_)d/l)7(5g227¢2:d2_>d/2)>'_)(dll - >dl : 2d2 2 > dé)

This is functorial: in case the lift of f is the identity, ¢, and ¢, coincide; if we form the
composition with a lifted g between (s%2, ¢,) and (52, ¢3), then ¢y and ¢, I cancel in the
middle.

Lemma 3.32.1. The presaturation F# of F is presaturated.

Proof. Let ce Cy and (s, ¢ : d — d') lift ¢ in Upy. Let ¢/ : d — d” be an isomorphism. We
require some ( " g d”’ —d" ) such that

idc d d'”

N i S AN R AP [

We can take (s, ¢ o ¢:d— d"). O

Definition 3.33. To obtain the saturation F# from the presaturation F# ., we quotient
Ups by the relation

<1d s dl s/CdZ)

(s, 1) ~ (512, ¢py) = t(¢1) = t(¢2) = d3 and the diagram \ / commutes,

and we define the functor 7p4 : C|[Upx| — D the same as we did for the presaturation.

Lemma 3.33.1. If 75 is full and faithful, then so is Tpw, and if Tp is essentially surjective
then Tpw 1s surjective on objects.
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Proof. Presaturation clearly extends the image of a functor to include everything isomorphic
to anything already in its image, which is the second item. To see the first, just use that
either precomposing or composing by an isomorphism is an isomorphism between contra-
and covariant hom-functors, so in particular induces bijections on hom-sets. Doing both at
the same time amounts to composing one of these bijections after the other, which gives full
faithfulness. O]

Corollary 3.33.1. Two internal categories are Morita equivalent if and only if they are
anaequivalent if and only if they are presaturated anaequivalent.

Corollary 3.33.2. In addition, if we are working in Def(T'), then if T eliminates imagi-
naries the three conditions above are all also equivalent to being saturated anaequivalent.

4 Internal diagrams in Def(7)

When doing ordinary (small) category theory, i.e. category theory internal to Set, there are
useful functors from those small—internal—categories, to a large—external-—one, notably
hom-functors. For example, if we specialize to a group G internal to Set, the contravariant
hom-functor is precisely G’s right action ontiself; similarly, if G is a groupoid instead, its
right action on itself can be construed as a Set-valued functor on G.

An internal diagram generalizes this notion to S-valued functors on categories internal to S.

Definition 4.1. Let S be finitely complete, and let C be an internal category of S. An
internal diagram P : C — S comprises the following data:

(i) An object (abusing notation) P of S, equipped with a map (the anchor map) P %5 Cj
(interpretation: P is a Cy-indexed collection of objects, i.e. py gives the object part of
the functor C — S), and

(ii) an action map C) Xscyp, P 2> P (interpretation: this describes the morphism part of
the functor C — S),

subject to the following conditions:

(i) The diagram

p1
4 X 5,C0,p0 P » P
Po
Cl > CVO

t

commutes. (Interpretation: the image of a point p € P fibered over ¢ € Cy under a
map ¢ — ¢ will be fibered over ¢'.)
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(ii) The diagram
Ol XS,Co,po P

(iy K

P - > P

idp

commutes. (Interpretation: identities act as identities (so P the functor preserves
them.)

(iii) The diagram

(idcl ><p1)

(Cy X500t Ch) P

sm2,Co,po

(cXidp)l

Cl X 5,Co,po P

g

P

Ch Xs.copo P

commutes. (Interpretation: the functor P, i.e. the action map py, is compatible with
composition.)

As remarked by Johnstone in his section on internal category theory in Topos Theory, internal
diagrams naturally carry the data of their internal categories of points, so we abuse notation
and identify the internal diagram P with its category of points P equipped with an internal
forgetul functor P % C. (So, for example, the action groupoid of a definable group action
is always definable.) In particular, since every internal category has a canonical internal
diagram on itself induced by its action on itself, there is a canonical C-torsor for every
internal category C. In particular, this C-torsor is always definable. What is not always
certain, however (and this is where Barr-exactness, i.e. elimination of imaginaries comes in)
is whether or not there is an “object-of-isomorphism-classes”, i.e. if we can form the quotient

Co [~
[INOTE TO SELF: THIS SECTION NEEDS TO BE REWORKED.]

Definition 4.2. (Internal category of points of an internal diagram) Let F' be an internal
diagram C — S. We can naturally obtain an internal category F from F' as follows: the
object-of-objects is Fp, the object-of-morphisms is Fy x., ¢,.s C1, the source and target maps
for F' are the projection as in the above pullback and the action map from the data of the
internal diagram. Setting 7, a 7o, as in the above pullback makes (79,71) into a canonical
projection functor from F — C, and in case S = Set, F is seen to be the canonical category
of elements of F' and v the canonical projection functor.

Given an internal diagram on an internal category (think: group actions; for example G-
flows are precisely internal diagrams on internal groups in Top which factor through the
inclusion of ComHausTop) we get an analogue of the orbit-stabilizer theorem—in fact, a
direct generalization of it—in the same way that we can write ordinary presheaves as colimits
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of representables, so that the study of internal diagrams on C reduces to the study of the
irreducible internal diagrams on C. These will be the C-torsors.

Proposition 4.2.1. (Internal orbit-stabilizer) [see johnstone]

Proof. m

Definition 4.3. If we can form images in the ambient category S, we say that an internal
diagram P : C — S is transitive if the canonical map

['(p1) — im(7pxp)

is a cover, where I'(py) is the graph of the action map p; (gotten as the obvious pullback)
and wpy p is as in the following pullback square:

Cl XCOXCO PxP —m—— 01

TpPxP (s,t)

PxP po*po > OO X Co.
In more familiar language, this means “for every arrow f : C' — C’, for every p, p’ belonging
to py H(C), py (C"), there exists some f': C — C’ such that p; (f/,p) = p'.”

Proposition 4.3.1. Suppose S has images. Then P : C — S is irreducible if and only if it
18 transitive.

Proof. m

Remark 4.4. To translate this into the definable setting, replace “internal” with “definable”,
“diagram” with “action”, and “exact completion” with “7°9”.

4.1 Categories of definable diagrams and generalized imaginary
sorts

Now we specialize to S = Def(T).

Definition 4.5. Analogously to the notation G-Set for the category of G-sets, i.e. of
internal diagrams on a group G viewed as a groupoid internal to Set, we write C-Def(T)
for the category of definable diagrams on a definable category C.

Recall that a Morita morphism between categories is a fully faithful functor which is surjec-
tive on objects.

Definition 4.6. Let F': X — Y be a Morita morphism. Define the functor

(=) \\ F : X-Def(T) — Y-Def(T)
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(“extension along F”) by

(PLP)NFE@P L)),
where
(i) p~p = Fpop)) = F(po(p')) 4 y and there exists a o : po(p) — po(p’) such that
o= (idy /! po(p),Po(p’)> and p; (o, p) = p'; and

(ii) we define f/ ~ by identifying f with its graph, i.e. as the canonical pullback P X f pr 4,
P, which is naturally a definable diagram on X when equipped with the product action:

9.0, () = (9..9-1 (0) = J(9(p))).
Lemma 4.6.1. (=) \, F, as described, is actually a functor.

Proof. P/ ~ (resp. P’) is naturally equipped with the structure of a definable diagram on
Y with

anchor map po/ ~ ([p]) A Fpo(p) (where we have written [p] for the ~-class of p), and

d (for o : po/ ~ ([p]) = ')

[pl ((U/po(p)ﬂ) ’p)]N

where z is a lift of ¥’ along F'. To see that the choice of z does not matter, take another z’
which lifts ' and compute:

2 (77 m2) )| = [ (77 i) 2)]

= DN ((idy’ S x,x')© <‘7 /’po(p),x> ,P) =N <<‘7 /’pg(p),x’> ,P> 5
which follows from the functoriality of lifts. Since we've already identified f/ ~ with its
graph, this also shows that f/ ~ is a morphism of definable diagrams over Y.

action map p;/ ~ (o, [p])

Furthemore, it’s clear that idp 7 f is again the identity, and that F is compatible with
composition.

We verify that this data satisfies the definition of an internal diagram on Y:
(1)
(9: Fpo(p) = ', [p]) ——— [p1 (9 / po(p),x’ap>]

l

Fa

U r Y

/

commutes,
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(ii)

commutes, and

(iii)

((f:9 =" g: Fpolp) = ¥),[p]) > (f}[pl(g,/”poqn,xxp)])
(fog.lp])
|
[]91 (fog /" po(p), 2" [p])] [p1 (f S al x" D (9 /po(p),x’vp)ﬂ

commutes, where z” and x” are both arbitrary points in the preimage of 3" under Fj.
0
Definition 4.7. Let F': X — Y be a Morita morphism. Define the functor
(=) /' F : Y-Def(T) — X-Def(T)

(“lift along F”) by

f xy, X
(P —> P/> /V F d:f (P XP(LYO,FO Xo) i)o (P, Xpé),Yo,Fo )(0)7

where as before we have identified f with its graph.
Lemma 4.7.1. (=) /" F, as described, is actually a functor.

Proof. P Xy, v,.1 Xo is naturally equipped with the structure of a definable diagram on
X: the anchor map is just the projection mx, : P X, v,.5 X0 = Xo, and the action map
Xi X5, X0,mx, (P X po,Yo,Fo XO) - P X po,Yo,Fo Xo is given by

(9, (p,2)) = (p1(F1(9),p),t(9)),

and it is also easy to see that idp ~ p = idprOXO and that (—) /" F is compatible with
composition.

We verify that this data satisfies the definition of an internal diagram on X:
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(i)

commutes,

(ii)

(p, ) > (p, )
commutes, and
(iif)
((f:a =" g:x—2), (px)) » (f, (01(F(g),p),2"))
(fog (p,x)) > (p1(F(fog),p),2") == (m(F(f),p(F(9),p)),z")

commutes.
m
Proposition 4.7.1. Let X LY bea definable functor. If F' is a Morita morphism, then F
induces an equivalence of categories

(=) \\ F : X-Def(T) ~ Y-Def(T): (=) / .

Proof. Let P be a definable diagram on X. For each y € Y, extending P along F just

collapses the fibers (py'(2)), . ) (which are all isomorphic) to a single fiber; lifting back
0

along F' takes the product of this single fiber with (l‘)zeFJl(y). Let P’ name the definable

diagram on X that results from this process. The isomorphism np : P — P’ is defined by:

T (np) (v, (P],2)) <= [p] = [p'] and po(p) = 2.
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We check that (7p) pex-pef(r) is natural in P: to see

D > (LP], Po(P

TR ()
— I[f]XYOXo

7 p commutes, chase a p € P, viz. ([f (p)],po(p)) !

Py ——— P ’

f(p) ———= (F )], po(f (P)))

where the last equality is due to the equivariance of f (i.e. its naturality as a transformation
of functors P, — P,.)

On the other hand, if we start with P as a definable diagram on Y, lifting P along F
replaces each fiber py'(y) with Fj;'(y)-many copies of itself. If + — 2’ lifts idy, then
" ple - 2, (p,x)) = (p,2'), hence extending back along F' just collapses the fibers
again. Let P’ name the result of this process. Define the isomorphism e¢p : P — P as
follows:

[(ep)(p/,p) <= for all (¢, x) which project to p’, q = p.

We check that (€p) pey peg(ry 18 natural in P: to see

Pl ———— P, [(p, )] > p
r s commutes, chase a g € P/, viz. k
Py —— B [(f(p), 2)] ——— f(p).

Corollary 4.7.1. Let T interpret a saturated anaequivalence of categories between X and
Y. Then there is an equivalence of categories

ir : X-Def(T) ~ Y-Def(T) : jr.

Proof. Let the saturated anaequivalence be given by

X[UFr]
X Y.

By the previous proposition, we have equivalences

X-Def(T') ~ X[Ur]-Def (T') ~ Y-Def(T).
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Theorem 4.8. Suppose T interprets a saturated anaequivalence X «— X[Up|] — Y. Let
Tp and Tq be expansions of T' by an extra sort P and @), such that the expansion includes
function symbols (po, p1), (qo, 1) and sentences which give P and Q) the structures of definable
diagrams on X and Y, respectively. Then if there are interpretations Jpg and Jop

T e o
T

of Tp and Tty in each other over T such that Jpq (P, po, p1) = jr, (Q, 0, 1) and Jop (Q, o, q1)
ir, (P,po, 1), then in fact they form a bi-interpretation Jpg : Tp ~ T : Jop of Tp and Ty
over T'.

Proof.
P jTQ (Q) = (Q / TF) \ PF = (Q X 40.Yo.(Tr)o (X[UF])O) /N

— (iTP(P) X Xo XO) /pr :ij O?:TP (P>7

PF

where we have used that interpretations are logical functors, hence commute with finite
limits and taking images (in this case, under the quotient map (-) / ~ o ); the argument

that @ is definably isomorphic to Jpg o Jop(Q) is entirely analogous.

We induce the unit 9 : 1peg(r,) — Jor o Jpg by setting the component 1,—, of n at any sort
S of T to be the identity, and the component np of n at P to be P = jz, oir, (P); for a tuple
of sorts in T» we just take the corresponding tuple of (components of) 7. For a definable set
K € Def(Tp) of sorts 5, we induce nx by restricting NM,ee z=sz> 1.€. Dy precomposing this by
the canonical identification of K inside | [, =5 x, and then taking its image.

This is natural precisely when, for any K; EN K,
Vki, ks € K1, Ko, D(f) (k1. k2) <= (Jgp o JpQl(f)) (i, (K1), i, (K2))-

Since we have at least two constants and therefore definable characteristic maps for definable
sets, this is equivalent to:

Vo (K(z) <= (Joro JpeK) (nx(x))),

for all definable sets K € Def(Tp). Since 7 is the identity on anything from a sort of 7', this
is equivalent to:

vz e TVpe P (K(@,5) < (Jor o JpoK) (@ np(p) ). (1)

Since np is an isomorphism of definable diagrams on X, this already holds for the graphs of
po and pq, i.e.

( = po(p) = x < (Jrp ©irppo) (Mp(p)) = x), and
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( = p1(g,0) =P < (rp o irpp1) (9,1P(p)) = np(p’)>-

We can see, using an induction on the complexity of formulas, that this is enough: these
graphs (and equality in P, which is preserved by np) are the only new atomic relations, so
(1) holds whenever K is atomic; the class of formulas satisfying (1) is easily seen to be closed
under negation and conjunction, and to see that this class is closed under taking existentials,
let K(Z,p) satisfy (1), and consider

2

= (v2\e, vp\p) | 3w, p) K (7.5) = 3z np(p) (Jap © T K) (7. 06()) |

If (z,p) € 3(x,p)K(Z,p), then there must exist (z,p) such that (Zz,pp) € K(Z,p), which
means (T, np(P)np(p)) € (JoroJrqK) (T, 1p (D)), hence (T, € (3, Inp(p)) (Jor © JpoK) (T, P)-

As before, the argument that the counit € is also natural is entirely analogous, so we have a
bi-interpretation Jpg : Tp ~ Ty : Jop over T', as required. O

Corollary 4.8.1. Suppose that X and Y as above are groupoids. Let Tp and Ty be the
expansions of T' by the generalized imaginary sorts associated to X and Y, so that P and Q)
are groupotid torsors of X and Y, respectively. Then Tp and Ty are bi-interpretable over T'.

Proof. i, (P) is a torsor of Y and jz,(Q) is a torsor of X. We should like interpretations
JPQ : Tp - TQ over T and JQP . TQ - Tp via P — ]TQ(Q> and Q —> iTp(P)' We check that
these maps preserve sentences and are hence actually interpretations.

For any two models Mp and Mg of Tp and T, extending a model My of T', P(Mp) =~ jr,(Mg)
as internal diagrams over the internal category X(Mr) in Set. Let np name this isomorphism.
Extend np to a map n: Mp — Mg over My by making it the identity on M.

We argue as when we showed the naturality of the unit in the proof of the preceding theorem.
We want to say that Jpg and 7 satisfy

Mp = K(y) <= Mq = Jpe(K)(n(y))

for all formulas K in the language of Tr and tuples of points 7 from Mp; we can separate
variables according to whether their sort is P or from 7', and rewrite the above as

Mp = K(Z,p) <= Mq = Jpq(K)(T,nr(D))-

Since np is an isomorphism of internal diagrams on X(Mz), this is satisfied when we take
K to be equality in P or the graph relation of py or p;. Since these are the only new atomic
relations, the above holds whenever K is atomic. The class of formulas for which the above
holds is clearly closed under negation and conjunction. If the above holds for K(z,p) for T
and p tuples of points, then

MP ): Gl‘,p) [K<f7ﬁ]

(where x and p are appropriately-sorted variables and 7 and p are the appropriate truncations
of T and p)

<= there exist points (abusing notation) x, p such that Mp = K(Zx, pp)
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R MQ ’: JPQ(K> @%UP(@HP(P)) — MQ ): (EL’E,Q) [JPQ(K)(‘%v nP(ﬁ)]:

where ¢ is a variable of the same sort as np(p) (the point), i.e. is precisely Jpg(p) (the
variable.) In particular this works when T = x and p = p, so Jpg induces interpretations
of models Mp — M for every pair of models Mp and My extending a model My of T'. In
particular, Jpg preserves those sentences which are true in all models of Mp, and hence is
an interpretation Tp — Ty over T'; we can argue analogously that Jgp is an interpretation
Ty — Tp over T, and hence by the theorem, Tp and Ty are bi-interpretable over 7. O

5 The axiom of choice in Def(7') and equivalences of
internal categories

Definition 5.1. An equivalence of categories C ~ D is the data
(F:C—>D,G:D—>C,77:1C;GF,6:FG1>1D).

Given this data, ' and G are said to be pseudo-inverse to each other, and either is said to
form or be part of an equivalence of categories. n is called the unit and e the counit. The
equivalence is said to be definable if all the data are definable.

With the axiom of choice, a functor F' : C — D is part of an equivalence of categories if and
only if it is full, faithful, and essentially surjective. It turns out that the internalization of
this statement to Def(T') is true as well (when all epimorphisms are definable surjections,
otherwise with the regular coverage.)

Theorem 5.2. Fvery definable surjection in'l" admits a definable section if and only if every
definable functor F' : C — D between definable categories C,D in T which is full, faithful,
and essentially surjective admits a definable pseudoinverse G : D — C which forms with F
a definable equivalence of categories C ~ D.

Proof. (<). Let X, EN Yy be a definable surjection. Consider the following categories:

Xy = X
ar | X1 = Xo Xry,.5 Xo

X =
s = my,t = my (for the above pullback)

c((1,72), (22, 23)) = (71, 73)
and
Yo=Y
v o Yi=Y
S = idyo,t = idyo

C = idyo
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and the functor
Fo=f:Xo—Y

F-X->Y4
Fy = fos.

Given a pseudoinverse GG : Y — X, we require that
Yo D X0 By = idy, .

We have a counit isomorphism € : F'G ~ 1y, so the diagram

c
Yi xy Vi Y
(FooGo,eot) c
Yi Yy, Vi
(eos,ldyl)

commutes. By definition, this diagram can be rewritten as

idy;
V) ——— Y

(EOt,FooGo) idyo

Yo ——— Y,
0 (idyo,eos,) 0

and since s and ¢ are the identity morphisms, identifying components gives that idy, = FyoGy,
as required.
(=). If C is a definable category, then its core

core(C) ar ) core(C)g = Cy,
| core(C), = {f e O, | f an isomorphism}

is definable also, with the source and target maps core(s) and core(t) just the restrictions
of s and ¢ from C. A fully faithful essentially surjective definable functor F' : C — D must
satisfy:

(i) For each ¢, ¢y € Cy, the induced definable map
Homc (¢1, ¢2) — Homp (F(c1), F(c2))
is a bijection, and

(ii) F preserves and reflects isomorphisms, and so restricts to a fully faithful functor be-
tween cores.
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(iii) The map core(t) o Teore(p), as in the following diagram involving the pullback square

P Teore®h core(D); core(t) core(D)g
Tcore(C)g core(s)
core(C)g — core(D),

is a definable surjection.
To construct G, proceed as follows:

Step 1. Take a definable section s; to core(t) o Teore(n), . This yields, for each object d € Dy,

a ¢qg € Cy and an isomorphism F(cy) 74 d.

Step 2. Define G as follows:

F-1 Uﬁlofoa i
G(dli(b)d:f(cdl (d2 d> )Cd2>.

To check functoriality, note that G preserves identities, and let d; EA dy 2 ds. Let ¢y name
s10m~(d), and let o4 name s5(d). Taking isomorphisms to the F'(cy,), we get the diagram

d1 ! > dg g ” d3

O’le O‘dgT O’d3T

F(Cdl) F(Cd2) F(Cds)

and so we see that by the functoriality of F~! (whence full faithfulness) that G is functorial.
From full faithfulness we also get that F' reflects isomorphisms, so that there is always an

isomorphism ¢ ~ GFe, in fact F~! <0;(1€)>. This gives a definable function Cy — C. To see

this is natural transformation, let ¢; EA ¢ be a map in C; then form the square

o TE),

f GFf

Co —1> GF(CQ)
F_l(a;(%))

and note that
GFf (F710;261)) =r! (0;(162) ofo UF(C1)) oF! (0.;(101)> =F <O-I;(lc2) © f) ’
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so the diagram commutes. On the other hand, if d € D, then FFG(d) = F(c4), and we already
have a family of isomorphisms {o, : F/(cq) — d}, and so a definable function Dy — D;. To

see that this is a natural transformation, let d; ER ds be a map in D, and note that by
definition of G,

o=l
FGf = Flcg) ™ dy 5 dy 3 Flcgy),
so that the diagram

Fleg) —2— 4,
Ody
d
f\ f
s
a;;
F(cay) — do
evidently commutes. This completes the proof. O

Remark 5.3. A pseudoinverse GG constructed in this way is also always right adjoint to F.

Remark 5.4. The first part of the above proof actually works for any finitely complete
category C. Carrying out the second part in this generality is much harder. While we can
characterize full faithfulness as a pullback, our characterization of “essentially surjective”
doesn’t translate over as easily: we need an internal notion of core, which may not exist
(though it always does in the definable setting.) If C has “elimination of imaginaries” i.e. is
Barr-exact, then I think this obstruction disappears.

Proposition 5.4.1. When epimorphisms in Def(T') are precisely the definable surjections,
T has definable Skolem functions if and only if T satisfies the external axiom of choice.

Proof. That having definable Skolem functions implies the external axiom of choice is clear.
In the other direction, let ¢(z,y) be a definable set in T, so that there is a canonical map

¢(M,, M) = M,
which yields a (partial) section y > (f(y),y), so that
mx o5 : M, — M,
gives a definable Skolem function for ¢(z,y). O]

Corollary 5.4.1. By the above proof, T admits definable Skolem functions if and only if
every definable surjection admits a definable section.

Proposition 5.4.2. If a theory T defines two constants c¢; and co, then epimorphisms in
Def (T') are precisely the definable surjections.
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Proof. If f is not a surjection, consider the definable set Y’ dgf Y defined by

y’ i {y e Y‘ﬂx s.t. f(x) =y},

and the functions

y—c ifyeY’,
Y = {c1,c0t b
n ter, ez y{yHCQifer\Y’
and
g2 Y — {c1,02} by y — co.
Since ¢g; and g9 are definable, gy o f = go 0 f and g1 # g¢s. [

Definition 5.5. Let C be a category. A skeleton of C is a full subcategory C’ of C such
that C{ meets each ~-class of Cj exactly once.

Question 5.6. It’s known that the syntactic category of a first-order theory is a Heyting
category, and so base-change functors have right adjoints. When all these right adjoints pre-
serve epimorphisms, the ambient category satisfies the internal axiom of choice: all objects
are internally projective. What does this mean in model-theoretic terms?

6 A remark on notions of groupoid torsor

The notion of a category torsor we have used gives, when specialized to groupoids, a some-
what different notion of a groupoid torsor than the one used elsewhere. Here I explain the
relation between the two, and show that they coincide in the case that seems to be the only
one that shows up in practice.

Definition 6.1. A category is connected if for every two objects X, Y in the category, there
isa map X — Y.

Definition 6.2. Let G be a groupoid and let C be a category with terminal object 1. A
G-torsor in C is a faithful functor G — C such that for each connected component G of
G, Pt (1c, F | GY) is connected.

Definition 6.3. Let G be a small groupoid and let Y be a set. A G-torsor over Y comprises
the data

P

7r,(l2P—>G0,(—‘—):G1 ><s,Go,aP—)P

Y

where P is a set over Y, a is called the anchor map, and (— - —) is called the action map
with (¢ - —) : P — P an automorphism of P over Y for each g € G;. Furthermore, we must
have that:
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For all p1, ps € P such that 7(p;) = 7(p2), there exists a unique g € Gy such that g-p; = ps.

When G is small, there is a natural way to turn G-torsors F' in Set/Y into G-torsors over
Y: take

pl F(x) = {(p, z) with  naming which F(z) p comes from}, 7 : P — Y the disjoint union of the pr

ZEGO

a((p,x)) <
and

F(g)(p) if x = dom(g
g-(p,:v)if{.()(.) . )
identity otherwise.

Remark 6.4. However, neither of these notions of G-torsor subsumes the other.

Example 6.5. Let G be a groupoid with more than one connected component. Consider
the G-set P — Gy where P is the disjoint union of all automorphism groups of G and the
action between fibers are just equivariant bijections of H-sets, where H is the automorphism
group of the relevant connected component. This is a G-torsor in Set/1. However, any two
points in different connected components will still be fibered over the same element, so this
does not give a G-torsor over 1.

Example 6.6. Let G = BZ (i.e. the groupoid with one object which carries Z as its
automorphism group), and consider the action Z —~ Z u Z, i.e. the coproduct of the action
of Z on itself with itself in Z-Set. This is a BZ-torsor over 2, but not a BZ-torsor in Set/2:
pick any two sections 2 — Z 1 Z such that the two points of one section are a different
distance apart than the two points of the other.

Proposition 6.6.1. Let Go/ ~ denote the connected components of G, and suppose G is
small. Then a G-torsor in Set is equivalent to a G-torsor over G/ ~ with m canonical.

Proof. Let F' be a G-torsor in Set. Take

pl F(z) = {(p, #) with  naming the F(z) where p comes from}, 7 : P — G/ ~ by 7((p,z)) £ [x].

zEGo

df
a((p,z)) = =,
and
g (o) & F(g)(p) if z = dom(g),
’ identity otherwise.

To satisfy the last requirement for being a G-torsor over Y, fix p; and ps belonging to F'(x1)
and F(zy) for some x1,x9 € G in the same connected component. Then there are sections
s1:Y — F(z1) and sy : Y — F(z3) where everything points at p; and py, so by definition
there is some g : £ — x5 such that F'(g) o s; = s, hence F(g)(p1) = pe. Since F is faithful,

the restriction of F' to the subcategory on x; is a transitive group action, so for any EA X,
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F(f) is either fixed-point-free or the identity. Hence, for any ¢’ : 1 — w5, ¢’ and g must
either disagree at all points or coincide everywhere. Hence, our ¢ is unique.

On the other hand, given the data of a G-torsor over GGy/ ~ with the canonical projection
m, build F' as follows: if 1 and x5 both lie in the same connected component ¢, then define

)

~xg) > a
\ y / :

which is easily checked to be functorial. To see that F' is transitive, note that if F(g;) =
F(g2), then they must agree at some point, and hence g; = g by the uniqueness clause
of the second notion of G-torsors. Now let s; and sy be sections 1 ~ {c} %> F(x;) and
1~ {c} B3 F(x), for z; and x5 both in some connected component c. Then there exists (a
unique) g : 1 — xo with F(g) o 51 = so. O

a
F(ZL‘l il‘g

N——
[}=

7 Ends and coends
7.1 Dinatural and extranatural transformations

8 Nerve and realization

df

Definition 8.1. The simplex category A has objects finite ordinals [n] = {0,...,n}, 0 <

n € w, and morphisms order-preserving maps between them.

Definition 8.2. A simplicial object X, of a category S is a functor X : A°® — S. We
write X,, for X([n]) and X : X,, — X, for the map X(f) gotten by applying X to a map
f:[m] — [n] in A.

A category C internal to S is a truncated simplicial object of S. There is a universal simplicial
object of S whose truncation to n = 0 and n = 1 is again C. This is the nerve.

Definition 8.3. The nerve of an internal category C of S is the simplicial object Nerve(C)
of S, given by
Nerve(C), £ Cy x¢, xcy ... (n times) x¢, Ch,
(so composable n-tuples of morphisms in C), and for f : [m] — [n] in A,
Po 2 %o Yo

(Nerve(C); : Nerve(C),, — Nerve(C),,) £

: — : = C : = :
¢n—1 @m—l Em—l wm—l
where 3, is the n-tuple of maps (padded with identity maps as necessary) ¢r(+1)-1 - - - f(i),
and ¢ is (repeated) composition applied to each of the rows.
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Hence, if S = Set, Nerve(C); would be given by
Pn—1 Ym—1
(X% "5 X ) o (X0 5 X))

(the definition above works in any finitely complete category S.)

Remark 8.4. In particular, the nerve of a definable category is a simplicial definable set.
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