Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Model-theoretic Galois theory

Jesse Han

GSCL 2016

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

What is Galois theory?

- In the classical, algebraic sense: the classification of intermediate field extensions in a field-theoretic algebraic closure according to the structure of a profinite automorphism group.
- In the classical, model-theoretic sense: the classification of definably closed subsets of a model-theoretic algebraic closure according to the structure of a profinite automorphism group. (Poizat, 1983)
- In the modern, algebraic sense: the classification of locally constant sheaves on a site according to the structure of a category of finite *G*-sets, where *G* is some flavor of fundamental group. (Grothendieck, SGA)
- In the modern, model-theoretic sense: Lascar groups, (bounded) hyperimaginaries, generalized imaginaries and definable groupoids, internal covers?

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Elimination of imaginaries

Recall:

A first-order theory T (uniformly) *eliminates imaginaries* if every 0-definable equivalence relation E arises as the kernel relation $\models \ker(f)(a, b) \iff \models f(a) = f(b)$ of a 0-definable function f.

- *T* codes definable sets if for every $X = \varphi(\mathbb{M}, b)$, there exists a tuple *c* and a formula $\psi(x, c)$ such that $X = \psi(\mathbb{M}, c)$, with *c* unique. We usually suppress ψ and say that *c* codes *X*.
- El always implies coding; the converse holds with some mild conditions on T (satisfied by ACF).
- In the monster M, codes are characterized up to interdefinability by the following property: c codes X precisely when

 $\operatorname{Aut}(\mathbb{M})$ fixes X setwise \iff $\operatorname{Aut}(\mathbb{M})$ fixes c pointwise.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Recovering the Galois correspondence

Definition.

• Let T be a first-order theory, and $\mathbb{M} \models T$ a monster. If $A \subseteq \mathbb{M}$ is a small parameter set, $\operatorname{Aut}(\mathbb{M}/A)$ acts on $\operatorname{acl}(A)$. The image of the action

 $\operatorname{Aut}(\mathbb{M}/A) \to \operatorname{Sym}(\operatorname{acl}(A)/A)$

- is the absolute Galois group of A, and we denote it by G(acl(A)/A).
- Aut(\mathbb{M}/A) similarly induces a finite G(B/A) for any finite A-definable set B, and in fact we have (as one might hope) $G(\operatorname{acl}(A)/A) \simeq \varinjlim G(B/A)$, so $G(\operatorname{acl}(A)/A)$ is naturally a profinite group.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Recovering the Galois correspondence

Theorem. (Poizat) Let T code definable sets, $\mathbb{M} \models T$ be a monster, and $A \subseteq \mathbb{M}$ small. Then

$$\mathbf{Sub}_{\mathsf{pro-closed}}\left(G\left(\mathsf{acl}(A)/_{\mathcal{A}}\right)\underbrace{)}_{\mathsf{G}(\mathsf{acl}(\mathcal{A})/-)}^{\mathsf{Fix}(-)}\mathbf{Sub}_{\mathsf{dcl-closed}}\left(\mathsf{acl}(\mathcal{A})/_{\mathcal{A}}\right)$$

is an inclusion-reversing bijective correspondence between the subgroups of $G(\operatorname{acl}(A)/A)$ closed in the profinite topology and definably-closed intermediate extensions of A, where $\operatorname{Fix}(-)$ is given by

$$H \mapsto \{ b \in \operatorname{acl}(A) \, \big| \, \sigma(b) = b, \forall h \in H \}$$

and $G(\operatorname{acl}(A)/-)$ by

 $B \mapsto \{ \sigma \in G(\operatorname{acl}(A)/A) \, \big| \, h(b) = b, \forall b \in B \}.$

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Recovering the Galois correspondence

Proof sketch.

1. Use coding of definable sets and the fact that algebraic elements correspond to certain strong types to establish a bijection $G(SF(A)/A) \simeq G(\operatorname{acl}(A)/A)$, where SF(A) is the space of strong types over A.

- 2. Using the fact that $stp(a/A) = stp(b/A) \iff a \sim_E b$ for every A-definable finite equivalence relation E, establish that $G(SF(A)/A) \simeq$ inverse limit of G(E/A), where G(E/A) is the image of the action of $Aut(\mathbb{M}/A)$ on *E*-classes.
- 3. To every finite A-definable equivalence relation E with classes C_1, \ldots, C_n and every subgroup $\Gamma \subseteq G(E/A)$, associate a definable Γ -invariant relation $r_{\Gamma}(x_1, \ldots, x_n) \iff \bigvee_{\sigma \in \Gamma} \bigwedge_{i \leqslant n} x_i \in \sigma(C_i)$. Denote the subgroup of such $\sigma \in G(SF(A)/A)$ as $Stab(r_{\Gamma})$.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Recovering the Galois correspondence

- 4. Since cylinder sets (hence stabilizers) are clopen in the profinite topology, $G(\operatorname{acl}(A)/B)$ is closed. By homogeneity of the monster, $\operatorname{Fix}(H)$ is definably closed. So the maps are well-defined.
- 5. That Fix(-) is left-inverse to G(acl(A)/-) is also a direct consequence of homogeneity in the monster.
- 6. To see that $G(\operatorname{acl}(A)/-)$ is left-inverse to $\operatorname{Fix}(-)$, write a closed subgroup H as an intersection of open subgroups, each of the form $\operatorname{Stab}(r_{\Gamma_i})$. Since each r_{Γ_i} as a set has only finitely many A-conjugates, any of its codes c_i is A-algebraic. Let B be the set of all codes for all r_{Γ_i} . Since we're in a monster, this is definably closed, and we see that $G(\operatorname{acl}(A)/B) = H$. By (5), $\operatorname{Fix}(H) = B$, so $G(\operatorname{acl}(A)/-)$ left-inverts $\operatorname{Fix}(-)$. \checkmark

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Recovering the Galois correspondence

Fact. ACF eliminates imaginaries.

- ▶ **Corollary.** The same idea (with considerably less effort) works to recover the correspondence for finitely-generated definably-closed normal extensions, where "normal over A" means "closed under taking Aut(M/A)-orbits".
- **Corollary.** Classical Galois theory, at least in characteristic 0.
- In characteristic p, due to the definability of Frobenius, definable closures are perfect hulls, and model-theoretic algebraic closures are field-theoretic algebraic closures of perfect hulls. So while our absolute Galois groups coincide with classical absolute Galois groups, they require the ground field to be perfect.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Hyperimaginaries, ultraimaginaries

Definition.

- A subset $X \subseteq \mathbb{M}$ is *type-definable* if it is a possibly-infinite conjunction of definable sets.
- ► A hyperimaginary is an *E*-class (of possibly infinite tuples) where *E* is a type-definable equivalence relation.
- An *ultraimaginary* is an *E*-class (of possibly infinite tuples) where *E* is an Aut(\mathbb{M})-invariant equivalence relation.
- If α is a flavor of imaginary, α is said to be *bounded* if its orbit under Aut(M) is small (equivalently, if its parent equivalence relation E has only a small number of classes.) α is said to be (in)*finitary* if its parent equivalence relation E relates (in)*finite* tuples.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

What is the Lascar group?

- Rather than classifying dcl^{eq}-closed parameter sets in M^{eq}, the closed subgroups of the Lascar group will be in Galois correspondence with finitary bounded hyperimaginaries (so, certain small quotients of M^{eq} instead of certain small subsets.)
- But let's actually define this thing.

А

 First, we need to define: the group of Lascar strong automorphisms of M over a small parameter set A, which is the normal subgroup Autf(M/A) of Aut(M/A) generated by

$$\bigcup_{u\subseteq \mathcal{M}\prec \mathbb{M}}\mathsf{Aut}(\mathbb{M}/\mathcal{M}).$$

 This fixes bounded ultraimaginaries (in fact is the stabilizer of bounded ultraimaginaries).

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

```
Internal covers and
the Tannakian
formalism
```

Homology and cohomology

What is the Lascar group?

▶ Definition. The Lascar group of T = Th(M) over a small parameter set A is the quotient

$$\operatorname{Aut}(\mathbb{M}/A) / \operatorname{Autf}(\mathbb{M}/A),$$

denoted $\operatorname{Gal}_{L}(T/A)$.

- This acts faithfully on bounded ultraimaginaries.
- Topologize it as follows: for each *E* a parent equivalence relation of a bounded ultraimaginary, define a topology on the quotient (for some appropriate power of \mathbb{M}) \mathbb{M}/E by setting $X \subseteq \mathbb{M}/E$ closed \iff $\pi_E^{-1}(X)$ is an intersection of definable sets. $\operatorname{Gal}_L(T)$ acts on each \mathbb{M}/E , and we take its topology to be the coarsest one making all the actions continuous.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

How does $\operatorname{Gal}_L(T/A)$ relate to the absolute Galois group?

▶ When $\operatorname{acl}(A) < \mathbb{M}$, $\operatorname{Autf}(\mathbb{M}/A) = \operatorname{Aut}(\mathbb{M}/\operatorname{acl}(A))$, so that $\operatorname{Gal}_L(T/A) \simeq G(\operatorname{acl}(A)/A)$.

This holds, for example, in ACF.

• More generally, let $\operatorname{Gal}_{L}^{0}(T/A)$ be the connected component of the identity. This is isomorphic to $\operatorname{Aut}(\mathbb{M}/\operatorname{acl}^{\operatorname{eq}}(A))$ and we always have a short exact sequence

 $1 \to \operatorname{Gal}_L^0(T/A) \to \operatorname{Gal}_L(T/A) \to \operatorname{G}(\operatorname{acl}^{\operatorname{eq}}(A)/A) \to 1.$

and if T is stable, $\operatorname{Gal}_{L}^{0}(T/A) = 1$.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

A hyperimaginary Galois theory

Theorem. (Lascar, Pillay) Taking fixpoints and taking stabilizers yields a Galois correspondence between the closed subgroups of $Gal_L(T/A)$ and definably-closed sets of hyperimaginaries over A.

Proof sketch.

- ▶ Show that $G \subseteq \text{Gal}_L(\mathbb{M}/A)$ is closed if and only if G = Stab(e) for some bounded hyperimaginary e.
- Show that bounded hyperimaginaries are equivalent to sequences of finitary bounded hyperimaginaries.
- This last step requires some structure theory of compact Hausdorff topological groups, namely that we can realize such groups as the projective limit of compact Lie groups.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Grothendieck's Galois theory

 Definition. (Grothendieck, SGA IV) A Galois category is a small Boolean pretopos C with an exact isomorphism-reflecting functor (the fiber functor)

 $C \xrightarrow{F} FinSet.$

- The content of Grothendieck's Galois theory establishes an equivalence $\mathbf{C} \simeq G$ -**Set**, where G is the automorphism group of the fiber functor, and G-**Set** is the category of continuous G-sets. When \mathbf{C} is the category of finite etale coverings of a scheme X, G is the *etale fundamental group* $\pi_1(X)$. When $X = \operatorname{Spec}(K), \pi_1(X) \simeq \operatorname{Gal}(K^{\operatorname{sep}}/K)$.
- In fact, we can see that if T eliminates imaginaries, the category **FinDef**(T/A) of finite A-definable sets equipped with the forgetful functor to **FinSet** is a Galois category.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Some wild speculation

• **Fact.** Let X be an algebraic variety over a field K. Let $X_{K^{sep}}$ be the base change of X along $\operatorname{Spec}(K^{sep}) \to \operatorname{Spec}(K)$. If both X and $X_{K^{sep}}$ are connected, we have an exact sequence

$$1 \to \pi_1(X_{\mathcal{K}^{\text{sep}}}) \to \pi_1(X) \to \pi_1(K) \to 1.$$

- ▶ Question. Can we construe Gal_L(T/A) or Gal_L⁰(T/A) as "global" fundamental groups? What definable structures do they classify?
- Makkai observed that if *T* eliminates imaginaries,
 Def(*T*) is already equivalent to a Boolean pretopos.
 So, Question. If *T* has EI, what conditions are needed on small subpretoposes C → Def(*T*) and the process of taking codes to make C → FinSet a Galois category?

Jesse Han

- Introduction
- Poizat's imaginary Galois theory
- The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Interpretations and stable-embeddeness

- **Definition.** Let T_1 and T_2 be \mathcal{L}_1 and \mathcal{L}_2 -theories, both complete. A *definition* $\pi : T_1 \to T_2$ of T_1 in T_2 is an assignment:
 - of an \mathcal{L}_2 -formula $\pi(\mathcal{S})$ to each sort \mathcal{S} of \mathcal{L}_1 ,
 - of an \mathcal{L}_2 -formula $\pi(R)$, appropriately sorted, to each nonlogical symbol R of \mathcal{L}_1 , such that
 - ▶ for any $M \models T_2$, the \mathcal{L}_1 -structure $\pi^*(M)$ —interpreting each S a sort of \mathcal{L}_1 as $\pi(S)$ and each nonlogical symbol R of \mathcal{L}_1 as $\pi(R)$ —is a model of T_1 .
- ▶ **Definition.** An *interpretation* $T_1 \rightarrow T_2$ is a definition of T_1 in $(T_2)^{eq}$.
- **Definition.** An interpretation $\pi : T_1 \rightarrow T_2$ is *stably-embedded* if for any model $M \models T_2$, any definable subset of $\pi^*(M)$ which is *M*-definable with an \mathcal{L}_2 -formula is also $\pi^*(M)$ -definable with an \mathcal{L}_1 -formula.

Jesse Han

- Introduction
- Poizat's imaginary Galois theory
- The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Internal covers

- **Definition.** An *internal cover* of a theory T_0 is a stably-embedded intepretation $\pi : T \to T_0$ which admits a stably-embedded section $\iota : T_0 \to T$.
- **Definition.** The (set of) *internality parameters* of an internal cover $T \xrightarrow{\pi} T_0$ is a set of parameters A such that for any $M \models T_0$, $dcl(\pi^* \circ \iota^*(M) \cup A) = M$.
- ► To any internal cover of $T \xrightarrow{\pi} T_0$ we can associate a *definable* Galois theory: a pro-definable group **G** in T with a pro-definable action **G** \frown Q for every definable Q in T.
- Furthermore, given a set of internality parameters A (with $A_0 = \iota \circ \pi(A)$), there is a Galois correspondence

 $\{\text{pro-A-definable } H \underset{\text{closed}}{\subseteq} \mathbf{G}\} \leftrightarrows \{\text{dcl-closed } A_0 \subseteq B \subseteq A\}.$

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

The Tannakian formalism

- Tannaka duality generalizes Grothendieck's Galois theory, and centers around the *reconstruction* of algebraic symmetry objects from (a fiber functor on) a symmetric monoidal category C of representations of that object (which forgets the representation data).
- Canonical example: reconstruction of an absolute Galois group of a field k from (the geometric points functor Hom(-, k^{sep}/k) on) the category C of finite etale k-algebras with tensor product.
- **Definition.** A neutral Tannakian category over a field k is the data (\mathbf{C}, F) , where **C** is a rigid symmetric monoidal category (\mathbf{C}, \otimes) such that the endomorphism algebra of **C**'s terminal object is k, and F is an exact functor $\omega : \mathbf{C} \to \mathbf{Vec}_k$ which preserves tensor products.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

The Tannakian formalism

- Kamensky (2010) uses internal covers to give a slightly-weaker model-theoretic account of Tannaka duality for such categories when k has characteristic 0 by assigning to each C a theory T_C whose models are fiber functors.
- > This almost recovers an affine group scheme as the automorphism group of the fiber functor ω .
- The above method, however, is enough to recover Grothendieck's Galois theory in its full generality.

Jesse Han

Introduction

- Poizat's imaginary Galois theory
- The Lascar group
- Grothendieck's Galois theory
- Internal covers and the Tannakian formalism

Homology and cohomology

Homology and cohomology

- I'll wrap up by briefly mentioning recent work relating model theory and (co)homology.
- Goodrick, Kim, Kim, Kolesnikov and Lee have begun fleshing out the theory of homology groups of types in rosy theories.
- Maybe relevant to an earlier wild speculation: Lee has shown that in certain cases the first homology group of a strong type over an algebraically closed set A arises as the abelianization of the Lascar group over A, similar to a Hurewicz map.
- Recently, Sustretov has classified classes in the second cohomology group of a model-theoretic absolute Galois group in terms of Morita-equivalent definable groupoids.

Jesse Han

Introduction

Poizat's imaginary Galois theory

The Lascar group

Grothendieck's Galois theory

Internal covers and the Tannakian formalism

Homology and cohomology

Thank you!