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What are reconstruction problems?

§ Given a family of mathematical objects, we can ask:
§ What kinds of invariants can we assign to these objects?
§ How do these invariants help us classify the objects?
§ Can we find a complete set of invariants (i.e. enough to

distinguish objects up to some kind of equivalence)
§ If a collection of invariants is not complete, how badly

does it fail to be complete?

§ For example:
§ Dimension is a complete invariant for vector spaces over

a fixed field.
§ The fundamental groupoid is not a complete invariant

for topological spaces up to isomorphism.
§ The theory of a structure M is a complete invariant for

the isomorphism class of some ultrapower MU : this is
the Keisler-Shelah isomorphism theorem.
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What are reconstruction problems?

More generally:
§ Let F be a functor

F : CÑ D.

§ We say that F creates equivalences if whenever there
exists an isomorphism F pcq » F pc 1q, then there was an
isomorphism c » c 1.

§ If this happens for a fixed c as above, we say that we
can reconstruct c from F .
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What are some reconstruction problems in model
theory?

That is, what sorts of invariants can we assign to a
first-order theory or structure?

§ Categories of models. We can assign a theory
T ÞÑModpT q, whose objects are the models of T and
the maps elementary embeddings.

§ Automorphism groups. We can assign a structure
M ÞÑ AutpMq the group of all automorphisms of M;
this can also be topologized via pointwise convergence.

§ Endomorphism monoids. We can assign a structure
M ÞÑ EndpMq, which can be similarly topologized.

§ Absolute Galois groups. We can assign a model M and
a parameter set A Ď M the Galois group

G pAq
df
“ AutpaclpAq{ dclpAqq.
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What are some reconstruction problems in model
theory?

We want to reconstruct theories or structures from these
invariants up to some sort of equivalence; the natural
candidate is bi-interpretability.

Definition
An interpretation I : T Ñ T 1 for T an L-theory and T 1 an
L1-theory assigns to each formula (over H) X of T a
definable set I pX q of T 1 such that the truth of sentences is
preserved if you replace all instances X of formulas from T
with I pX q.

Definition
An interpretation pf , f ˚q : M Ñ M 1 for M |ù T an
L-structure and M 1 |ù T 1 an L1-structure is a surjective
function f : U � M from some (0-)definable subset U Ď M 1

such that pulling back (0-)definable sets X ÞÑ f ˚X is an
interpretation T Ñ T 1.
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Convention

§ In this talk, we will assume any theory which appears
eliminates imaginaries.

§ We will also identify a theory T with its category
DefpT q of definable sets, so unless we talk about some
particular syntactic aspect of T you can assume we’re
working with the latter.

§ To sum up: we are assuming

T “ DefpT q “ DefpT eqq.
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The 2-category of first-order theories

To complete the picture, we need a category of first-order
theories.

§ A theory which eliminates imaginaries is a pretopos: has
all finite limits, finite coproducts and coequalizers of
equivalence relations, both stable under pullback
(SGA4, MR).

§ Morphisms between pretoposes are functors preserving
these properties. At a purely syntactic level, these are
interpretations between theories, and that is what we
call them.

§ We also have natural transformations which are
collections of definable functions (c.f. “homotopies”,
Ahlbrand/Ziegler.)

§ If two pretoposes are equivalent via interpretations in
either direction, we say they are bi-interpretable.

§ This is precisely the data of a 2-category, which goes
under various names: it is the first-order doctrine, in the
sense of Lawvere; it’s sometimes called Pretop.

§ We call it Th.
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The 2-category of first-order structures

What about structures?
§ We can repeat this construction for structures, but

replace theories with structures and interpretations
between theories with interpretations between
structures.

§ Natural transformations are just definable functions, so
we just take points of these inside the models.

§ We call this 2-category Struct.
§ To sum up:

Th
df
“

$

&

%

Objects: DefpT q, T a first-order theory
Morphisms: interpretations I : T Ñ T 1

2-morphisms: natural transformations.

Struct
df
“

$

’

&

’

%

Objects: first-order structures A
Morphisms: interpretations pf , f ˚q : AÑ B
2-morphisms: definable functions making

the diagrams commute.
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Just in case anyone forgot...

Convention

§ In this talk, we will assume any theory which appears
eliminates imaginaries.

§ We will also identify a theory T with its category
DefpT q of definable sets, so unless we talk about some
particular syntactic aspect of T you can assume we’re
working with the latter.

§ To sum up: we are assuming

T “ DefpT q “ DefpT eqq.
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Modp´q as a functor Thop
Ñ Cat

§ Set is a (or rather the) prototypical (pre)topos.
§ Interpretations T Ñ Set are precisely models.
§ Natural transformations between these interpretations

are precisely elementary embeddings.
§ Therefore, Modp´q is precisely HomThp´,Setq, i.e. a

contravariant 2 functor (which only reverses
1-morphisms) Thop Ñ Cat. If I is an interpretation,
ModpI q is precomposition-by-I , i.e. ”taking reducts
along “I”. If f : I Ñ I 1 is a natural transformation,
Modpf q becomes the natural transformation
ModpI q ÑModpI 1q where the components are the
elementary embeddings of the reducts induced by
taking the reduct of f .

Question
When can we reconstruct T from Modp´q?
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When can we reconstruct T from Modp´q?

Theorem (Makkai-Reyes, 1977)

Modp´q reflects equivalences: if T
I
Ñ T 1 is an

interpretation such that ModpT q
ModpI q
» ModpT 1q is an

equivalence, then I was (part of) a bi-interpretation.

§ This is called conceptual completeness.
§ However, ModpT q does not create equivalences.

§ An equivalence ModpT q »ModpT 1q of categories is
not necessarily induced by an interpretation T Ñ T 1.

§ This generalizes the fact that structures cannot
generally be reconstructed from their automorphism
groups, since every equivalence of categories restricts to
isomorphisms of automorphism groups.

§ We’ll see an example of this later.
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When can we reconstruct T from Modp´q?

Let’s try a different approach.

§ Every (eq)-definable set X P T induces an evaluation

functor (“taking points in models”) ModpT q
evX
Ñ Set.

§ This means T lives among all the functors
ModpT q Ñ Set.

§ However, these evaluation functors are hard to pick out.
The full subcategory generated by by them is not
isomorphic to T .

Question
What “extra structure” do we need to put on ModpT q so
that the evaluation functors are the only
“structure-preserving” maps ModpT q Ñ Set?

Answer (Makkai, 1987)

Ultraproducts (and some other ultra-stuff).
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Ultracategories

§ By the Los theorem, ModpT q is closed under
ultraproducts.

§ The ultraproduct construction is functorial on
elementary embeddings (e.g. the diagonal embedding
into an ultrapower).

§ Ultraproducts of models are computed “pointwise” in
Set, where they’re certain kinds of colimits; there are
universal comparison maps between these colimits.
Makkai calls these ultramorphisms.

Definition
An ultracategory K is a category together with ultraproduct
functors

rUs : KI Ñ K

for every ultrafilter U on every indexing set I such that the
obvious diagrams commute. Together with appropriate
notions of ultramorphism-preserving ultrafunctors and
ultratransformations, we can define the 2-category Ult of
ultracategories.
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Modp´q as a functor Thop
Ñ Ult

§ ModpT q inherits its ultracategory structure from Set;
we call the resulting ultracategory ModpT q.

Theorem. (Makkai, 1987)

Let K be an ultracategory. Then UltpK,Setq is a pretopos.
There is a contravariant 2-adjunction

Ultp´,Setq : Ultop Ô Th : Modp´q

whose counit ε at any theory T

T
εT
» UltpModpT q,Setq

is an equivalence of categories.
This is strong conceptual completeness. This means we can
reconstruct T from ModpT q: if ModpT q »ModpT 1q, then
strong conceptual completeness gives a bi-interpretation
T » T 1.
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Examples

§ In practice, strong conceptual completeness is used like
this: if you have a functor ModpT q Ñ Set (say
expansion by a sort) which commutes with enough
ultra-stuff, then the functor must have been isomorphic
to an evaluation functor.

§ For example, let G be a definable group in T and
expand each model M of T by an evGpMq-torsor. This
is easily seen to commute with ultra-stuff. More
generally, any internal cover.

§ Here’s a negative example: let T be the theory of
abelian groups, and let F : ModpT q Ñ Set be the
functor HomAbpQ,´q. This does not commute with
ultraproducts, e.g.

ś

p HomAb

`

Q,Z{pZ
˘

{U fi HomAb

´

Q,
ś

p Z{pZ {U
¯

(think about torsion). In general, even the
corepresentables HomModpT qpM,´q are not
ultrafunctors.
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Autp´q and Endp´q as 2-functors

Proposition

Let TopMon be the 2-category of topological monoids.
There is a contravariant 2-functor (which only reverses
1-morphisms)

Structop Endp´q
Ñ TopMon

given by
A ÞÑ EndpAq,

ˆ

A
pf ,f ˚q
Ñ B

˙

ÞÑ

ˆ

EndpBq
Endppf ,f ˚qq
Ñ EndpAq

˙

,

ˆ

pf , f ˚q
γ
Ñ pg , g˚q, where A

pf ,f ˚q

Ñ
pg ,g˚q

B

˙

ÞÑ

ˆ

Endppf , f ˚qq
Endpγq
Ñ Endppg , g˚qq

˙

.
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˙

,

ˆ
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γ
Ñ pg , g˚q, where A

pf ,f ˚q

Ñ
pg ,g˚q
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˙
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This restricts to the functor Autp´q:

Proposition
Furthermore, if we restrict to the underlying 2-groupoid
corepStructq of Struct, Endp´q becomes a contravariant
2-functor

core pStructqop Autp´q
Ñ TopGrp

to the 2-category of topological groups. In particular, on
2-morphisms γ : pf , f ˚q Ñ pg , g˚q we have
Autpgqpσq “ Autpγq ˝ Autpf q ˝ Autpγq´1 for all σ P AutpBq.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

Autp´q and Endp´q as 2-functors

This restricts to the functor Autp´q:

Proposition
Furthermore, if we restrict to the underlying 2-groupoid
corepStructq of Struct, Endp´q becomes a contravariant
2-functor

core pStructqop Autp´q
Ñ TopGrp

to the 2-category of topological groups. In particular, on
2-morphisms γ : pf , f ˚q Ñ pg , g˚q we have
Autpgqpσq “ Autpγq ˝ Autpf q ˝ Autpγq´1 for all σ P AutpBq.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

Autp´q and Endp´q as 2-functors

Of course, we can forget the topologies and form the
2-functors to Mon and Grp instead.

Observation

Endp´q reflects 2-isomorphisms: if f
γ
Ñ g becomes an

isomorphism after applying Endp´q, then Endpγq is
invertible, so γ must have been invertible.

§ Thus, Endp´q reflects equivalences.
§ However, Endp´q does not reflect 1-isomorphisms: if we

have mutual interpretations f : A Ô B : g with Endpf q
and Endpgq forming an isomorphism of topological
monoids Endpgq : EndpAq Ô EndpBq : Endpf q, it is not
generally true that f and g invert each other.
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Can we reconstruct M from Autp´q or Endp´q?

Question
When can we reconstruct a first-order structure M from
Autp´q or Endp´q?

Answer
In general, we can’t. (Take any two structures which are not
bi-interpretable, but which have trivial automorphism
groups.)

What if we instead restict our attention to ω-categorical
structures, which are “highly symmetric” and have a nice
structure theory determined by the action of their
automorphism group?
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Can we reconstruct ω-categorical M from
Autp´q or Endp´q?

Question
Can we reconstruct an ω-categorical first-order structure M
from Autp´q : Structop Ñ TopGrp?

Answer (Coquand-Ahlbrandt-Ziegler, 1986)

Yes. In fact, M is bi-interpretable with the canonical
structure Inv pAutpMq ñ Mq.

Question
Can we reconstruct an ω-categorical first-order structure M
from Autp´q : Structop Ñ Grp? From Endp´q into Mon?

Answer (Evans-Hewitt, 1991)

No.

Answer (Bodirsky, Evans, Kompatscher, Pinsker, 2015)

Nope.
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Implications of the BEKP counterexample

Theorem (BEKP, 2015)

There exists an ω-categorical structure M such that EndpMq
fails to determine M up to bi-interpretability. (Equivalently,
there is another ω-categorical structure M 1 such that
EndpM 1q » EndpMq as monoids, but not as topological
monoids.)

Observation (Lascar, ’80s)

An monoid isomorphism EndpMq » EndpM 1q for M |ù T ,
M 1 |ù T 1 ω-categorical induces (by taking directed colimits)
an equivalence of categories ModpT q »ModpT 1q.

§ Along with Makkai’s strong conceptual completeness,
we therefore conclude that some part of the
ultracategory structure on ModpT q is not preserved by
this induced equivalence, i.e. the equivalence is not an
ultraequivalence.

§ We can actually see this very concretely.
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§ Since EndpMq is not homeomorphic to EndpM 1q and
the topology on either is sequential, the isomorphism
EndpMq Ñ EndpM 1q must fail to preserve a convergent
sequence fn Ñ f of endomorphisms of M.

§ The ultraproduct
ś

U fn is the same as f U .

§ Either the equivalence F : ModpT q ÑModpT 1q
preserves f U (i.e. satisfies F pf U q “ pFf qU ) or it doesn’t.

§ In the case that it does, then since it extends the
isomorphism EndpMq Ñ EndpM 1q, F p

ś

U fnq is not
equal to p

ś

U Ffnq .
§ Either way, F fails to preserve an ultraproduct of

endomorphisms.

Remark
This gives an example of an equivalence of categories
ModpT q »ModpT 1q which was not induced by a
bi-interpretation T » T 1.
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Remark
This gives an example of an equivalence of categories
ModpT q »ModpT 1q which was not induced by a
bi-interpretation T » T 1.
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§ Let P
F
Ñ FinSet be an exact, isomorphism-reflecting

functor (a fiber functor) from a small Boolean pretopos
P to the category of finite sets.

§ Grothendieck’s formalism obtains a profinite group
π1pPq as the automorphism group of F , such P is
isomorphic to the category of finite continuous
π1pPq-sets.

§ Recall the Ryll-Nardzewski theorem: in an ω-categorical
structure, there are only finitely many types in any
given tuple of (sorted) variables.

§ We can use this to apply much of the formalism to the
countable model M : T Ñ Set of an ω-categorical
theory T .
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Preliminaries

Let M be an ω-categorical structure.
Let T be its category of H-definable sets, so that M is a
functor

T
M
Ñ Setω

from T to the category of sets of size less than or equal to
ω, by sending a definable function

`

f : X Ñ Y
˘

ÞÑ
`

Mpf q : MpX q Ñ MpY q
˘

to its points in M.

Remark
As a functor, M is left-exact and isomorphism reflecting: it
preserves all finite left limits (products, pullbacks, etc.) and
if f becomes a bijection after taking points in M, then f was
a definable bijection.
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Pro-representability by types

§ Call the irreducible definable sets of T (by
Ryll-Nardzewski, types) atoms.

§ The point of all this is to characterize T in terms of the
groups of definable automorphisms of its types.

§ In the usual formalism, the Galois category G F
Ñ FinSet

is equivalent to the category of continuous finite G-sets
where G is a projective limit of the automorphism
groups of normal objects.

§ Some of this goes through, though there are not enough
normal objects. The first step is the following theorem:

Theorem
M is pro-representable by types: there exists a projective
system of atoms pAiqiPI of T such that

M » lim
ÝÑI

HomT pAi ,´q .
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Proof of theorem

§ We form the indexing category I by taking the category
of points of M, restricted to the atoms of T .

§ I will be cofiltered.
§ For any pA, aq P I, there is a canonical natural

transformation HomT pA,´q Ñ M, induced by
evaluation: we send f : AÑ X to f paq P MpX q.

§ This induces (glues together into) a universal map θ:

θ : G
df
“ lim
ÝÑI

pHomT pAi ,´qq Ñ M.

§ θ is an epimorphism since every definable set splits into
finitely many types.

§ θ is a monomorphism: if two germs x , y in G pX q are
equalized by θX , then we can represent them by
x 1, y 1 : AÑ X for some pA, aq such that x 1paq “ y 1paq.
Two H-equivariant maps between transitive H-sets—for
any group H—are the same if and only if they agree on
at least one point, so x 1 “ y 1 ùñ x “ y .
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§ I will be cofiltered.
§ For any pA, aq P I, there is a canonical natural

transformation HomT pA,´q Ñ M, induced by
evaluation: we send f : AÑ X to f paq P MpX q.

§ This induces (glues together into) a universal map θ:

θ : G
df
“ lim
ÝÑI

pHomT pAi ,´qq Ñ M.

§ θ is an epimorphism since every definable set splits into
finitely many types.

§ θ is a monomorphism: if two germs x , y in G pX q are
equalized by θX , then we can represent them by
x 1, y 1 : AÑ X for some pA, aq such that x 1paq “ y 1paq.
Two H-equivariant maps between transitive H-sets—for
any group H—are the same if and only if they agree on
at least one point, so x 1 “ y 1 ùñ x “ y .
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The pro-finite group

§ The graph of a definable automorphism σ : AÑ A of
an atom is an atom Γpσq Ď Aˆ A.

§ Therefore, since there are only finitely many types in
each sort, AutT pAq is finite for each A.

§ If pA, aq
f
Ñ pB, bq is a map in I, then for each σ : AÑ A

there exists a unique ρ : B Ñ B such that the diagram

A B

A B

f

σ ρ

f

commutes (after taking points in M).
§ This defines a functor IÑ Grp, hence a projective

system of finite groups, whose projective limit is a
profinite group G.
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Normal objects

Definition
We say an object pA, aq of I is normal if the action
AutpAq ñ MpAq is transitive.

§ If we could find cofinally many normal objects in I, the
formalism would tell us:

DefpT q » CG
df
“ finite continuous G-sets.

§ This is because we need normal objects to construct a
factorization of M : DefpT q Ñ Set through CG.

§ Since AutpAq is finite, A can’t be normal if it’s infinite.
§ We can always obtain a canonical embedding
CC ãÑ DefpT q.
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The category CG

Theorem

Let T be an ω-categorical theory. Let G be the projective
limit of the groups of definable automorphisms of types of T
as previously described. Let CG be the elementary topos of
finite continuous G-sets. Then there exists a faithful functor

F : CG ãÑ DefpT q.
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The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A. Let
H Ď AutpAq be the image of H. The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A. Let
H Ď AutpAq be the image of H. The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A. Let
H Ď AutpAq be the image of H. The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A. Let
H Ď AutpAq be the image of H. The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A.

Let
H Ď AutpAq be the image of H. The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A. Let
H Ď AutpAq be the image of H.

The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A. Let
H Ď AutpAq be the image of H. The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A. Let
H Ď AutpAq be the image of H. The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

The category CG

Proof sketch

§ Suffices to define F on the irreducible finite G-sets and
then extend the definition by requiring F to preserve
coproducts.

§ Any transitive G-set has the form G{H, where H is an
open subgroup of G.

§ Since H is a neighborhood of the identity, it contains
the kernel of some projection G � AutpAq, some A. Let
H Ď AutpAq be the image of H. The quotient by orbits
A{{H is definable since H is finite.

§ Set F pG{Hq
df
“ A{{H.

§ Define F similarly on G-equivariant maps by doing the
above to their graphs.



Reconstruction
problems for

first-order theories

Jesse Han

Introduction

Reconstruction
problems in model
theory

Reconstructing T
from ModpTq

Reconstructing M
from AutpMq and
EndpMq

Grothendieck’s
formalism of Galois
categories

Prospects

§ G can still be constructed whether there are enough
normal (“Galois”) objects or not. Is it an interesting
invariant?

§ In the usual formalism we restrict to the normal objects
before constructing G. What’s the relationship between
G obtained this way and G obtained by just taking the
projective limit of all the atoms outright? What about
if we only look at algebraic types—when do we have
enough normal objects?

§ What’s the relationship of G with AutpMq and
{AutpMq? (the latter should be the profinite

fundamental group of the classifying topos of T ...)
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