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Abstract

We explicate the relationships between interpretations of first-order theories, interpretations
of first-order structures, and elementary functors between categories of definable sets and their
pretopos completions.
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Notation and conventions

• Unless explicitly stated otherwise, we are always working in multisorted classical first-order
logic; every sort S has its own equality symbol “S .

• Unless explicitly stated otherwise, definable means definable without parameters.

• Unadorned variables in formulas will generally stand for finite tuples of appropriately-sorted
variables.

• Similarly, when we say “sort” we mean a finite tuple of the basic sorts of the language. We
allow the empty finite tuple of sorts, and denote it by 1.

• If we have already mentioned a tuple of variables x, then we will write Sx for the sort
corresponding to x.

• Greek letters (except for σ and ρ, which will usually denote automorphisms) will usually
mean first-order formulas.
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• If L is a first-order language, we write SortspLq, FunctionspLq, RelationspLq, ConstantspLq, and
FormulaspLq to mean the collections of sorts, function symbols, relation symbols, constant
symbols, and first-order L-formulas, respectively.

1 Theories and abstract interpretations

Definition 1.1. Fix a first-order language L. An L-theory (when we wish to avoid emphasizing
the ambient language, we will just say theory) is a set of L-sentences.

Definition 1.2. If ϕ is an L-formula, we say that the sort, or ambient sort, of ϕ is the sort Sx
corresponding to the tuple x of free variables in ϕ. If ϕ is a sentence, i.e. an L-formula with no
free variables, we understand that in this case the ambient sort of ϕ is the empty sort.

Definition 1.3. Let T be an L-theory and let T 1 be an L1-theory. An abstract interpretation
I of T in T 1, written I : T Ñ T 1, consists of the following data:

1. For each sort S P SortspLq, we assign an L1-formula IpSq, with the convention that the empty
sort 1 of T is sent to the empty sort 1 of T 1.

We also require this assignment to preserve the operation of forming finite tuples of sorts: if
the basic sorts B1 and B2 are sent to the sorts S1 and S2, then the sort B1B2 is sent to the
sort S1S2 (where we write sorts right next to each other to indicate their concatenation as
tuples of basic sorts).

2. For each basic non-logical symbol c P ConstantspLq, R P RelationspLq, or f P FunctionspLq,
we assign an L1-formula Ipcq (resp. IpRq, Ipfq(, such that the assignment is compatible with
sorts: if a nonlogical symbol X belongs to the sort SX , then IpXq is a subset of the sort
IpSXq.

3. By an induction on complexity of formulas, the above assignments determine an assignment
of L-formulas to L1-formulas, in particular of L-sentences to L1-sentences. We finally require
that if ψ is an L-sentence such that T |ù ψ, then T 1 |ù Ipψq.

Definition 1.4. If an abstract interpretation I : T Ñ T 1 interprets all equalities x “ y as equiva-
lence relations with singleton equivalence classes, we say that I is a strict abstract interpretation.
This is sometimes called a definition of T in T 1.

2 Structures and concrete interpretations

Definition 2.1. Let T be an L-theory. A model M of T consists of the following data:

1. For each sort S P SortspLq, we assign a set MpSq, with the convention that the empty sort 1
of T is sent to the empty product 1 of Set.

We also require that this assignment preserves the operation of forming finite tuples of sorts:
if the basic sorts B1 and B2 are sent to the set MpB1q and MpB2q, then the sort B1B2 is
sent to the set MpB1B2q “MpB1q ˆMpB2q.
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2. For each basic non-logical symbol c P ConstantspLq, R P RelationspLq, or f P FunctionspLq, we
assign a set Mpcq (resp. MpRq, Mpfq), such that the assignment is compatible with sorts: if
a nonlogical symbol X belongs to the sort SX , then MpXq belongs to MpSXq.

3. By an induction on complexity of formulas, the above assignments determine an assignment
of L-formulas to sets. Since the assignments above respect sorts, any L-sentence, which lives
in the empty sort 1, will be sent to a subset of the terminal set 1, of which there are only
two possibilities, the entire terminal set 1, or H. We finally require that if ψ is an L-sentence
such that T |ù ψ, then Mpψq “ 1.

Definition 2.2. Let L be a language. An L-structure is a model M of the empty L-theory.

Definition 2.3. Let M be an L-structure. By Definition 2.1, M includes the data of an function
SentencespLq Ñ tH, 1u. The L-theory of M , written ThpMq, is the preimage of 1 along this
function:

ThpMq
df
“ tψ P SentencespLq

ˇ

ˇMpψq “ 1u.

Definition 2.4. Let M be an L-structure. A definable set U of M is some set U such that
U “Mpϕpxqq for some L-formula ϕpxq.

Definition 2.5. Let M be an L-theory, and let M 1 be an L1-theory. A concrete interpretation
pf, f˚q of M in M 1, written pf, f˚q : M ÑM 1, consists of the following data:

1. For each sort S of L, we assign a definable set US of M 1 and a surjective function fS : US �
MpSq.

We also require that this assignment preserves the operation of forming finite tuples of sorts:
if the basic sorts B1 and B2 are assigned the functions fB1 : UB1 � B1 and fB2 : UB2 � B2,
then the sort B1B2 is assigned UB1B2 “ UB1 ˆ UB2 and the function fB1B2 “ fB1 ˆ fB2 .

2. These surjective functions must satisfy the following property: for every sort S and for defin-
able subset V ĎMpSq, the preimage f˚V of V along f is definable in M 1.

Definition 2.6. If a concrete interpretation pf, f˚q additionally satisfies that f is injective, we say
that pf, f˚q is a strict concrete interpretation.

Remark 2.7. Since we have defined models so that models always interpret tuples of basic sorts
as products of basic sorts, this gives the correct definition of a model in the 1-sorted case, when
there is a unique basic sort.

An important consequence of the fact that models interpret tuples of basic sorts as products of
basic sorts is that the definable projection functions from tuples of sorts to their subtuples are
interpreted as literal projections in any model.

Example 2.8. Let M be an L-structure, and let σ : M Ñ M be an automorphism. Then
σS : MpSq Ñ MpSq is a strict concrete interpretation pσ, σ˚q : M Ñ M . Since definable sets are
invariant under automorphisms, σ˚ is the identity.

3 Categories of definable sets and elementary functors

The starting point for first-order categorical logic is the identification of a theory with its category
of definable sets.
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Definition 3.1. Let T be a first-order L-theory. The category of definable sets DefpT q com-
prises:

DefpT q
df
“

#

Objects: FormulaspLq {„ , where φpxq „ ψpxq ðñ T |ù φpxq Ø ψpxq,

Morphisms: tφ P FormulaspLq
ˇ

ˇT |ù φ is a function ϕpxq Ñ ψpyqu {„ .

Remark 3.2. Above, we are defining morphisms to be equivalence classes of graphs of definable
functions, where we are using the same equivalence relation as we did for objects. By the com-
pleteness theorem for first-order logic, the notion of equivalence of formulas proved in defining the
objects of DefpT q is the same as T -provable equivalence, i.e. ϕpxq „ ψpyq ðñ T $ϕpxq Ø ψpxq.
By the downward Löwenheim-Skolem theorem, it also suffices to check „-equivalence by checking
if two formulas have the same points on just those models whose sizes are less than or equal to the
size of the theory.

Remark 3.3. Every sort S has its own equality symbol “S , and the formula x “S x represents S
in DefpT q. Sorts are “maximal” objects in DefpT q; just as, syntactically, they provide the contexts
in which we reason about formulas, every definable set A P DefpT q belongs to, and thus embeds
into, a sort.

Notation 3.4. From now on, unless if we are explicitly working in a model, “definable set” will
mean an equivalence class of formulas in the above sense.

We now note some important features of the category DefpT q:

Proposition 3.5. DefpT q has all finite limits.

Proof. By the canonical product-equalizer decomposition for limits (see e.g. [2]), it suffices to see
that DefpT q has all equalizers and finite products.

Given a pair of morphisms in DefpT q, as in f, g : ϕpxq Ñ ψpyq, we can write a first-order formula
eqpf, gq with a canonical inclusion eqpf, gq ãÑ ϕpxq whose points in any model will be the equalizer

of the functions f and g: eqpf, gq
df
” fpxq “Sx gpxq. We will show that eqpf, gq has the expected

universal property. So suppose the universal property fails, and we have in DefpT q a commutative
diagram like this:

eqpf, gq X Y

E

f

g

h1 h2

such that h1 ‰ h2. Then by definition of the equivalence relation defining objects and morphisms in
DefpT q, this is witnessed by a modelM such that we can take two formulas φ1px1, x2q and φ2px1, x2q
representing the graphs of h1 and h2 and Mpφ1q ‰ Mpφ2q. This contradicts that Mpeqpf, gqq is
the equalizer of MpX Ñ Y q. We conclude that DefpT q has all equalizers.

Now we will show that DefpT q has all finite products. We note that the empty product (i.e. a
terminal object) is the equivalence class of the empty sort, which we think of as being the ambient
sort for the empty tuple of variables; we can view any finite tuple of variables as being padded by an
empty variable of the empty sort, and so any formula is vacuously a definable function from itself
to the empty sort, so the empty sort is a terminal object. Now, for n ě 1, let ϕ1px1q, . . . , ϕnpxnq
be a finite collection of L-formulas. Then, just as for the case of equalizers, we can write a first-
order formula pϕ1 ˆ ¨ ¨ ¨ ˆ ϕnqpx1, . . . , xnq whose points in any model will be the product of the
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sets ϕ1px1q, . . . , ϕnpxnq: replacing xi with distinct variables of the same sort as necessary, so that
x1, . . . , xn are all distinct (this respects T -provable equivalence), put

ϕ1 ˆ ¨ ¨ ¨ ˆ ϕnpx1, . . . , xnq
df
” ϕ1px1q ^ ¨ ¨ ¨ ^ ϕnpxnq.

(Note that in any model, this is a subset of MpSx1...xnq “MpSx1q ˆ ¨ ¨ ¨ ˆMpSxnq.)

Now we can repeat the argument we used for equalizers word-for-word, except replacing equalizer
diagrams with product diagrams throughout. We conclude that DefpT q has all finite products.

Definition 3.6. Let f : X Ñ Y be a morphism in some category. The image of f , if it exists, is
a subobject I ãÑ Y of Y such that there is a factorization of f through I, and if f factors through
any other subobject I 1 of Y , then there is a unique map of subobjects I

c
Ñ I 1 making the diagram

X Y

I 1

I

f

c

commute.

Proposition 3.7. Every morphism f : ϕpxq Ñ ψpyq has an image.

Proof. We claim that the image of a definable function f is described by the formula impfq
df
”

DxΓpfqpx, yq. This is equipped with the canonical projection to ψpyq. By how we defined models’
interpretations of formulas built with existential quantifiers, MpDxΓpfqpx, yqq is the literal projec-
tion of MpΓpfqpx, yq to Mpψpyqq, and is therefore the image of Mpfq. The same argument we used
for equalizers and limits then shows that impfq is the image of f in DefpT q.

Definition 3.8. Let S1, . . . , Sn be finitely many subobjects of X in some category. The finite
sup of S1, . . . , Sn, if it exists, is a subobject S1 _ ¨ ¨ ¨ _ Sn of X such that any other subobject S1

containing S1, . . . , Sn contains S1 _ ¨ ¨ ¨ _ Sn.

Proposition 3.9. DefpT q has all finite sups.

Proof. Note that since the empty set is a definable subset of every definable set, DefpT q always
has empty sups. It then suffices to obtain binary sups. Let ϕpxq and ψpxq be subobjects of θpxq
in DefpT q. Then T |ù ϕpxq Ñ θpxq&&ψpxq Ñ θpxq; therefore, T |ù ϕpxq _ ψpxq Ñ θpxq. In every
model M of T , Mpϕpxq _ ψpxqq is the sup of the subsets Mpϕpxqq,Mpψpxqq of Mpθpxq. Now we
argue as in the previous two propositions: if this were not true in DefpT q, this must be witnessed
in a model, an impossibility, so ϕpxq _ ψpxq is the sup of ϕpxq and ψpxq in DefpT q.

Definition 3.10. Let C be a category with pullbacks.

1. Let f : X Ñ Y be a morphism in C which has an image. We say that the image impfq
is stable if for every morphism g : Z Ñ Y , the two horizontal maps at the bottom of the
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diagram of pullback squares

X Y impfq

X ˆY Z Z impfq ˆY Z

y

g

have the same image (colloquially, “the pullback of the image is the image of the pullback”).

2. Let S1, . . . , Sn be subobjects of B in C which have a finite sup. We say that the finite sup
Ž

iďn Si is stable if for every morphism g : Z Ñ B, the pullback of
Ž

iďn Si along g, as in
the pullback diagram

Ž

iďn Si B

`
Ž

iďn Si
˘

ˆB Z Z

is the finite sup of the pullbacks of the Si (this makes sense because the pullback of a monomor-
phism is always a monomorphism).

We say that C has stable images and stable finite sups if C has all images and finite sups,
and they are all stable.

Proposition 3.11. DefpT q has stable images and stable finite sups.

Proof. Let f : X Ñ Y and g : Z Ñ Y be morphisms in DefpT q. The pullback of X and Z with
respect to f and g is the equalizer of the following pair of maps:

X ˆ Z
f˝πX
Ñ
g˝πZ

Y

and can therefore be represented by the formula pfpxq “ gpzqq, and the image of its canonical
projection to Z can be represented by Dx pfpxq “ gpzqq.

Similarly, the image of impfqˆY Z in Z is represented by the formula Dy py “ gpzqq. For any model
M , it is true that M

`

Dx pfpxq “ gpzqq
˘

“ M
`

Dy py “ gpzqq
˘

. By the completeness theorem for
first-order logic, T |ù Dx pfpxq “ gpzqq Ø Dy py “ gpzqq. Since f and g were arbitrary, we conclude
DefpT q has stable images.

Now, let S1, . . . , Sn be subobjects of B in DefpT q. It is easy to check, using the description of
pullbacks we used in the previous paragraph, that the pullback of any subobject of B along a map
g : Z Ñ B is just the (formula describing the) preimage of that subobject along g. Since models
interpret finite sups as unions, and in the category of sets, taking preimages commute with unions,
then we may argue as before using the completeness theorem that finite sups are stable. This
applies equally well to the empty sup; we conclude DefpT q has stable finite sups.

Definition 3.12. Let C be a category with pullbacks and finite sups.

We say that C is Boolean if for every subobject S of B in C, there exists another subobject  S
such that the pullback of S and  S over B is the empty sup in B, and the finite sup S _ S is all
of B.

Proposition 3.13. DefpT q is Boolean.
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Proof. If T |ù ϕpxq Ñ ψpxq, then

T |ù  
`

ϕpxq ^ p ϕpxqq ^B
˘

and
T |ù ϕpxq _ p ϕpxq ^Bq Ø B.

In [4], Makkai and Reyes showed that the properties we studied above actually characterize those
categories of the form DefpT q for some theory T . They call such categories (Boolean) logical
categories.

Definition 3.14. A category C is a logical category if it has finite limits, has stable images, and
has stable sups.

Proposition 3.15. Let T be a theory. Then DefpT q is a Boolean logical category.

Proof. We saw in Propositions 3.5, 3.7, 3.9, 3.11, and 3.13 that for every theory T , DefpT q has
finite limits, stable images, stable sups, and is Boolean.

By requiring the preservation of those categorical properties which define logical categories, we can
define what it means for a functor to be a morphism of logical categories. 1

Definition 3.16. Let C and C1 be logical categories. An elementary functor C Ñ C1 is a
functor which preserves finite limits, finite sups of subobjects, and images.

Elementary functors preserve complements whenever they exist:

Lemma 3.17. Let A be a subobject of C in a logical category C. Suppose that A has a complement
B inside C. Let I : C Ñ C1 be an elementary functor. Then IpAq and IpBq are complements
inside IpCq.

Proof. A and B satisfy that their pullback AXB over C is the empty sup H of C. Since I preserves
pullbacks and finite sups, IpAq X IpBq “ IpAX Bq “ IpHq “ H. Similarly, A_ B “ C and since
I preserves finite sups, IpCq “ IpA_Bq “ IpAq _ IpBq.

Up until now, we have seen how the categorical features of a Boolean logical category correspond
to the logical operations of a theory: finite limits correspond to meets and forming products of
sorts, images (of projections) correspond to existential quantification, finite sups correspond to
finite joins, and complementation corresponds to taking negations. So modulo an induction on
complexity of formulas, elementary functors should correspond to interpretations.

We will devote much of our energy in the rest of this section, and the following section, into making
this intuition precise.

Proposition 3.18. Let T and T 1 be L and L1-theories. Let F : DefpT q Ñ DefpT 1q be an elemen-
tary functor. Then F induces a strict interpretation IF : T Ñ T 1.

1In [4] these are called, aptly, logical functors, but we follow the terminology of [3], wherein logical functors between
pretoposes are called elementary.
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Proof. Let S be a basic sort in DefpT q. We choose a representative formula of the equivalence
class F pSq and make that IF pSq. After specifying the basic sorts, IF is determined on all sorts.
Since 1 is the limit of the empty diagram in DefpT q and elementary functors preserve finite limits,
the empty sort 1 of T gets sent to the empty sort 1 of T 1. This satisfies part 1 of the definition of
an abstract interpretation.

Let c be a constant symbol of sort S. Then in DefpT q, c is interpreted as a nullary function
1

c
Ñ S. Applying F , we get a nullary function 1 Ñ F pSq. We now abuse notation and identify the

formula IF pSq with the definable set in DefpT 1q it represents. Since F preserves finite products,
IF pSq » F pSq and we define IF pcq to be the definable nullary function 1 Ñ F pSq

„
Ñ IF pSq of T 1.

Let R be a relation symbol of sort S. Then F pRq ãÑ F pSq; composing by the isomorphism
F pSq » IF pSq, we have that F pRq ãÑ IF pSq. We define IF pRq to be the image of this embedding.

Let f be a function symbol whose graph relation Γpfq is of sort S1S2. Then we define IF pfq by
defining IF pΓpfqq just as we did for a relation symbol.

We have now defined IF up to part 2 of the definition of an abstract interpretation. By an induction
on complexity of formulas, IF determines a map of L-sentences to L1-sentences. We must now check
that whenever T |ù ψ, T 1 |ù IF pψq. We will show that at each step of the inductive definition of
IF : FormulaspLq Ñ FormulasL1, the truth of sentences is preserved.

IF preserves negations of formulas: given ψpxq and  ψpxq of sort S, we have that Ipψpxqq and
Ip ψpxqq have empty intersection (since elementary functors preserves pullbacks and finite sups)
and that Ipψpxqq_Ip ψpxqq “ IpSq (since elementary functors preserve finite sups), so Ip ψpxqq ”
 Ipψpxqq. Since F preserves finite sups and pullbacks, IF preserves disjunctions and conjunctions
of formulas.

By viewing sentences as subobjects of the empty sort 1, we see that IF preserves the truth of
negations, conjunctions, and disjunctions of sentences.

IF preserves existential quantification of formulas: generally, Dxϕpx, yq is the image of the projection

ϕpx, yq
πSy
Ñ Sy, and since F preserves finite limits, it preserves images and projection maps from

products, so

IF pDxϕpx, yqq » F pDxϕpx, yqq » im
´

Ipϕpx, yqq
πF pSY qq
Ñ IpSyq

¯

» DxF pϕpx, yqq » DxIF pϕpx, yqq.

Note that this applies equally well when y is an empty variable belonging to the empty sort 1, and
we are considering a sentence Dxϕpxq. If T |ù Dxϕpxq, then in DefpT q, Dxϕpxq “ 1. Since F is
elementary, it preserves terminal objects, so F pDxϕpxqq “ IF pDxϕpxqq “ 1.

Now, let ψ be an atomic L-sentence. Then ψ is of the form Rptq or t1 “S t2 for terms t, t1, t2. Since
ψ is atomic, these terms are definable constants of T , and so can be thought of as nullary definable

functions 1
t
Ñ Rptq or 1

t1
Ñ
t2
S. Applying F , we see that F ptq goes into F pRq and F pt1q “ F pt2q

(since F is at least a function), so IF ptq P IF pRq and IF pt1q “ IF pt2q. This provides the base of
the induction and completes the proof.

This has an obvious converse:

Proposition 3.19. Let I : T Ñ T 1 be a strict abstract interpretation. Let rψpxqs denote the
„-equivalence class of ψ (as in the definition of DefpT q).
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Let X
f
Ñ Y be a definable function in T . Then the assignment

X
f
Ñ Y ÞÑ rXs

rf s
Ñ rY s

determines an elementary functor FI : DefpT q Ñ DefpT 1q.

Proof. FI is well-defined on objects since I is an interpretation, and so preserves the sentences
which assert that any two given formulas are provably equivalent. FI is well-defined on morphisms
since I is a strict interpretation, so that for every definable function f of T , T 1 proves that Ipfq is
a function.

Now we check that FI preserves finite products. We saw in Proposition 3.5 that any finite collection
of formulas ϕ1px1q, . . . , ϕnpxnq has a canonical product ϕ1 ˆ ¨ ¨ ¨ ˆ ϕnpx1, . . . , xnq. Given any tuple
pai P ψipxqq, T proves that there is a unique a P ϕ1 ˆ ¨ ¨ ¨ ˆ ϕnpx1, . . . , xnq which projects to
each ai. Since I was an interpretation, T 1 proves the same thing about Ipϕ1 ˆ ϕnpx1, . . . , xnqq, so
Ipϕ1 ˆ ϕnpx1, . . . , xnqq satisfies the universal property of the product Ipϕ1px1qq ˆ ¨ ¨ ¨ ˆ Ipϕnpxnqq.

The same argument works for equalizers, so FI preserves finite limits.

We saw in Proposition 3.9 that finite sups in DefpT q are given by disjunctions of formulas. IT was
defined by induction to send ϕpxq _ ψpxq to Ipϕpxqq _ Ipψpxqq, so FI preserves finite sups.

Similarly, IT was defined by induction to send an existentially quantified formula Dxϕpx, yq to
DxIpϕpx, yqq. So FI preserves images of the canonical projections between tuples of sorts. We saw
in Proposition 3.7 that the image of a definable function f in DefpT q is given by binding the domain
variable of the graph relation Γpfqpx, yq, so that impfq “ DxΓpx, yq. Therefore, FI preserves the
images of definable functions.

We have seen how strict interpretations between theories induce elementary functors between the
categories of definable sets, and vice-versa. It is natural to ask if this implements a one-one
correspondence, and if such a correspondence is functorial. Indeed, we will finish this section by
showing that the constructions of Proposition 3.18 and Proposition 3.19 essentially implement a
equivalence of categories between theories and Boolean logical categories.

Definition 3.20. Let I, I 1 : T1 Ñ T2 be strict abstract interpretations. A transformation
η : I Ñ T 1 comprises the following data:

1. For every sort S of T1, a definable function ηS : IpSq Ñ I 1pSq in T2, such that

2. for every formula ϕpxq of sort S in T1, ηS : IpSq Ñ I 1pSq restricts to a definable function
ηϕpxq : Ipϕpxqq Ñ I 1pϕpxqq.

Definition 3.21. Let us say that two strict interpretations I, I 1 : T1 Ñ T2 are provably equiva-
lent if for every formula ϕ of T1,

T1$ Ipϕq Ø I 1pϕq.

Similarly, we say that two transformations I
η

Ñ
η1
I 1 are provably equivalent if for every sort S,

the graph of ηS is T2-provably equivalent to the graph of η1S .

Let rIs„ and rI 1s„ be two equivalence classes of interpretations mod provable equivalence. We
define a transformation rIs„ Ñ rI 1s„ to be an equivalence class of transformations I Ñ I 1 mod
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provable equivalence. It is easy to see that this does not depend on our choice of representatives
I, I 1 of the equivalence classes of interpretations.

Proposition 3.22. Let I, I 1 : T1 Ñ T2 be strict abstract interpretations, and let η : I Ñ I 1 be a
transformation. Then the construction I ÞÑ FI from Proposition 3.19 determines from η a natural
transformation of elementary functors rη : FI Ñ FI 1.

Proof. A natural transformation FI Ñ FI 1 assigns to each object A of DefpT1q a definable function
FIpAq Ñ FI 1pAq which is natural with respect to definable functions AÑ B.

Our definition of natural transformation already gives us a collection of definable functions rηA :
FIpAq Ñ FI 1pAq (by taking the mod-T2-provable equivalence classes of the definable functions ηA)
and so it remains to verify that for every definable function f : A Ñ B, the following diagram
commutes:

FIpAq FI 1pAq

FIpBq FI 1pBq

FIpfq

rηA

FI1 pfq

rηB

Definition 3.23. We define the 2-category of first-order theories, written Th, by

Th
df
“

$

’

&

’

%

Objects: first-order theories

1-morphisms: strict interpretations mod provable equivalence

2-morphisms: transformations.

Definition 3.24. We define the 2-category of Boolean logical categories, written BoolLogCat,
by

BoolLogCat
df
“

$

’

&

’

%

Objects: Boolean logical categories

1-morphisms: elementary functors

2-morphisms: natural transformations.

Our goal for the remainder of this section is to prove the following theorem.

Theorem 3.25. The assignment

T1

T2

I I 1
η ÞÑ

DefpT1q

DefpT2q

FI FI1
rη

determines an equivalence of 2-categories Defp´q : Th
„
Ñ BoolLogCat.

Lemma 3.26. If I, I 1 : T Ñ T 1 are different morphisms in Th, then FI ‰ F 1I as elementary
functors.

Similarly, if η1, η2 : I Ñ I 1 are different transformations, then rη1 ‰ rη2 as natural transformations
of elementary functors.
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Proof. By definition I and I 1 are different morphisms in Th if and only if they are not provably
equivalent. This means that there exists some formula ϕ of T such that Ipϕq are I 1pϕq do not
represent the same equivalence class in DefpT 1q, so FIpϕq ‰ FI 1pϕq.

Similarly, η1 ‰ η2 in Th if for some sort S, the definable functions η1 and η2 are not provably
equivalent. Then prη1qS ‰ prη2qS , so rη1 ‰ rη2.

Lemma 3.27. Let F : DefpT1q Ñ DefpT2q be an elementary functor. Let rF be the elementary
functor induced by the interpretation IF , as in Proposition 3.19.

Then F “ rF .

Proof. We use r´s„ to denote an equivalence class modulo provable equivalence. Unwinding defi-
nitions, we see that for any formula ϕ of T1, we have

F prϕs„q “ rIF pϕqs„ “
rF prϕs„q

Lemma 3.28. A natural transformation of elementary functors ε : F Ñ F 1, where F, F 1 :
DefpT1q Ñ DefpT2q determines a transformation (mod provable equivalence) of interpretations
η : IF Ñ IF 1, where IF , IF 1 : T1 Ñ T2.

Then rη “ ε.

Proof. For each sort S P DefpT q, put ηS
df
“ rεSs„. Since IF and IF 1 are obtained by choosing

representatives from „-equivalence classes and εS was natural, ηS is a definable function (mod
provable equivalence) IF pSq Ñ IF 1pSq and for any formula ϕpxq of sort S restricts to a definable
function (mod provable equivalence) IF pϕpxqq Ñ IF 1pϕpxqq.

Then, as we did for Lemma 3.27, we see that for an arbitrary formula ϕ,

rηrϕs„ “ rηϕs„ “ εrϕs„ .

The following definition is essentially due to Makkai and Reyes (see “internal theories” in [4]).

Definition 3.29. Let C be a Boolean logical category. The internal logic of C is a theory TC
defined as follows:

1. We form a language LC by associating to every object A of C a sort LpAq, to every morphism
f : A Ñ B of C a function symbol Lpfq of sort LpAq Ñ LpBq, to every morphism from the
terminal object 1

c
Ñ A a constant symbol Lpcq of sort LpAq, and to every subobject B ãÑ A

a relation symbol LApBq of sort LpAq.

2. We form a theory TC whose sentences specify the Boolean logical category structure on C.
That is,

(a) For every identity morphism idA : AÑ A,

TC$p@xq pLpidAqpxq “ xq .
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(b) If g1 ˝ g2 “ h in C, then

TC$p@xq pLpg1qpLpg2qpxqq “ Lphqpxqq .

(c) If

A

AˆB

B

πA

πB

is a product diagram in C, then

TC$p@a P LpAqq p@b P LpBqq pD!c P LpAˆBqq
“

LpπAqpcq “ a ^ LpπBqpcq “ b
‰

(c.f. Proposition 3.5).

(d) If C
u
Ñ A

f
Ñ
g
B is an equalizer diagram in C, then

TC$p@a P LpAqq pD!c P LpCqq
“

Lpfqpaq “ Lpgqpaq Ø Lpuqpcq “ a
‰

.

(e) If B1 _B2 is the finite sup of B1 and B2 in the subobject lattice of A in C, then

TC$p@a P LpAqq
“

LApB1 _B2qpaq Ø LApB1qpaq _ LApB2qpaq
‰

.

(f) If C
f
Ñ A is a morphism in C with image B “ impfq ãÑ A, then

TC$p@a P LpAqq
“

pDc P LpCqq pLpfqpcq “ aq Ø LApBqpaq
‰

.

(g) If 1C is the terminal object of C, then

TC$pD!a P Lp1Cqq
“

a “ a
‰

.

(h) If HC is the empty sup in the subobject lattice of an object A, then

TC$p@a P LpAqq
“

 LpHCqpaq
‰

.

The above data clearly equip C with a canonical functor L : C Ñ DefpTCq, by identifying each
object of C with its corresponding sort in LC, and by identifying each morphism of C with its
corresponding function symbol in LC.

Theorem 3.30. The canonical functor L : C Ñ DefpTCq is an equivalence of categories.

Proof. We will show that the functor is essentially surjective by inducting on the complexity of
formulas in TC and showing that at every step of the induction, we can find a corresponding object
of C gotten by carrying out the construction of the formula “internally” in C.

The base of the induction is almost completely provided by the definition of TC. We remark that,
given a comparison of two terms t1 “ t2, we can treat constants as nullary functions and reduce to
the case where t1 is some composition of function symbols Lpfq applied to some tuple of variables
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x and where t2 is some composition of function symbols Lpgq applied to some tuple of variables y.
Letting S denote the sort of the equality relation we’re using to compare t1 and t2, we have that

Lpfqpxq “ Lpgqpyq » LpSx ˆS Syq

(where SxˆS Sy is the pullback computed in C of Sy and Sy over S with respect to the morphisms
f and g.)

This is because by viewing a pullback as a composition of products and equalizers, our axiomati-
zation of TC gives that LpSx ˆS Syq injects into LpSx ˆ Syq with image LApSx ˆS Syq, and

TC$p@a P LpSxqqp@b P LpSyqqpD!c P LApSxˆSSyqq
“

Lpfqpaq “ Lpgqpbq Ø LpπSxqpcq “ a^LpπSyqpcq “ b
‰

,

which defines a bijection ε´1 from Lpfqpxq “ Lpgqpyq to LApSx ˆS Syq, so that

TC$
`

Lpfqpxq “ Lpgqpyq
˘

Ø
`

LApSx ˆS Syqpε
´1px, yqq

˘

.

Note that above, we are in the following situation. There is a canonical bijection pε : LpSx ˆ Syq Ñ
LpSxqˆLpSyq, given by sending a c to the pair of projections

`

LpπSxqpcq, LpπSyqpcq
˘

, and it restricts

along the inclusion LpSxˆS Syq ãÑ LpSxˆSyq to the bijection ε : LpSxˆS Syq
„
Ñ Lpfqpxq “ Lpgqpyq.

That is, the following diagram, with the horizontal arrows bijections, commutes:

LpSxq ˆ LpSyq LpSx ˆ Syq

Lpfqpxq “ Lpgqpyq LpSx ˆS Syq.

yε´1

ε

So the definable bijection ε is not just any definable bijection. It has the additional property that
a diagram like the one above commutes, where in particular the right vertical arrow is L of an
embedding in C. It is clear that for atomic formulas, the definable bijections witnessing the base
of the induction all satisfy this additional property.

We proceed with the induction. Let us say that an LC-formula ϕpxq, viewed as an object of
DefpTCq, has a counterpart if there exists an object Aϕpxq of C such that there is a definable

bijection LpAϕpxqq
εϕpxq
» ϕpxq in DefpTCq, which satisfies the additional property we discussed above.

If every LC-formula ϕpxq has a counterpart, then L is essentially surjective.

If we know that the LC-formulas ϕpxq and ψpxq of sort S » LpCq have counterparts Aϕpxq and
Aψpxq, then we can form their join

TC$ϕpxq _ ψpxq Ø
`

LpAϕpxqqpεϕpxqpxqq _ LpAψpxqqpεψpxqqpxq
˘

,

and we put

εϕpxq_ψpxq
df
“

#

εϕpxq if x P ϕpxq

εψpxq if x P ψpxqzϕpxq
,

so that ϕpxq _ ψpxq has counterpart Aϕpxq _Aψpxq (finite sup computed in the subobject lattice of
C), witnessed by the definable bijection εϕpxq_ψpxq. We can argue analogously that ϕpxq^ψpxq has
a counterpart.
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Now suppose that ϕpxq of sort S
pε
ÐÝ LpCq has a counterpart Aϕpxq. Then  ϕpxq has counterpart

 Aϕpxq, with definable bijection ε ϕpxq defined to be the restriction of the canonical bijection pε to
the complement of LpAϕpxqq ãÑ LpCq.

Suppose that ϕpx, yq of sort SxˆSy
pε
ÐÝ LpCxˆCyq has a counterpart. It is easy to check that the

canonical bijections (where we have abused notation by so far calling all of them pε) are compatible
with projections, so that the diagram

LpCxq LpCx ˆ Cyq LpCyq

Sx Sx ˆ Sy Sy,

commutes, where the top horizontal maps are L of the projections Cx ˆ Cy Ñ Cx, Cy, the bottom
horizontal maps are the projections Sx ˆ Sy Ñ Sx, Sy, and the vertical maps are the pε.

Let ι be the inclusion of Aϕpx,yq into Cx ˆ Cy. Then Dxϕpx, yq will have counterpart ADxϕpx,yq
df
“

im
`

πCy ˝ ι
˘

ãÑ Cy, with εϕpx,yq the unique map which makes the following diagram commute:

ϕpx, yq Dxϕpx, yq

LpAϕpx,yqq Lpimpπ ˝ ιqq.

»

This completes the induction on complexity of formulas, and we conclude that L is essentially
surjective.

Fullness does not immediately follow from essential surjectivity. Instead, we must look closer at
the proof and use the additional property which allowed us to conclude that every LC-formula had
a counterpart.

Indeed, let f : LpAq Ñ LpBq be a definable function in DefpTCq. Then there is a subobject G of
AˆB such that the following diagram commutes:

LpGq LpAˆBq

Γpfq LpAq ˆ LpBq.

» »

Since Γpfq was a definable function, the canonical projection LpAq ˆ LpBq Ñ LpAq restricts to a
bijection Γpfq » LpAq. Then L of the canonical projection A ˆ B Ñ A restricted to G must be a
definable bijection.

It now remains to show that this implies that the canonical map GÑ A is an isomorphism, since
then G will be the graph of the morphism A

„
Ñ GÑ B.

From how we defined TC, L preserves diagonal embeddings A Ñ A ˆ A. If K is the kernel pair

K Ñ A
f
Ñ B of a morphism f in C, then the diagram

LpAˆAq LpAq ˆ LpAq LpAq LpBq

LpKq kerpLpfqq

Lpfq
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commutes. If Lpfq is injective, then kerpLpfqq is the diagonal relation on LpAq and hence LpKq is
the diagonal relation on LpAq.

Similarly, if Lpfq is surjective, then its image is all of LpBq.

It therefore suffices to show that, for subobjects A,B ãÑ C of C, whenever TC$ LCpAq Ñ LCpBq
as predicates on LpCq, A Ď B as subobjects of C in C.

By the categorical completeness theorem and the discussion of internal theories in [4], we know
that:

1. Whenever the inclusion of A into C does not factor through the inclusion of B into C in C2,
there exists an elementary functor F : C Ñ Set such that F pBqzF pAq ‰ H, and

2. every elementary functor F : C Ñ Set can be expanded to a model of MF of TC.

Therefore, if C does not know that A Ď B as subobjects of C in C, there is a model MF of TC
such that MF pBqzMF pAq ‰ H. Therefore, T ­ $ LpAq Ñ LpBq.

This shows that L is full. This also shows that L is faithful: if f1 ‰ f2 in C, then T ­ $ LpΓpf1qq Ø
LpΓpf2qq.

Proof of Theorem 3.25. Lemma 3.26 shows that Defp´q is faithful on 1-morphisms and 2-morphisms,
Lemma 3.27 and Lemma 3.28 shows that Defp´q is full on 1-morphisms and 2-morphisms, and
Theorem 3.30 shows that Defp´q is surjective up to equivalence.

4 Pretoposes and the p´qeq-construction

Previously, we established an equivalence

 

first-order theories and strict interpretations
(

 

Boolean logical categories and elementary functors
(

.

We would like to expand this picture to incorporate arbitrary interpretations of theories. As we saw
during the proof of Proposition 3.19, we needed to assume strictness of the interpretation I : T Ñ T 1

to ensure that the graph Γpfq of a definable function f in T is interpreted as a relation IpΓpfqq
which T 1 proves to be the graph of a function. Without the strictness assumption, equality is
interpreted as a proper equivalence relation E, and then the definition of an abstract interpretation
only ensures that Ipfq is a function only on E-equivalence classes, i.e. only after quotienting out
by E.

Therefore, if we can always form quotients of definable sets by definable equivalence relations, then
we can canonically associate to any non-strict interpretation a “homotopic” strict interpretation,
by quotienting the non-equality equivalence relations back into equality relations.

2Warning: this is not the same as saying that the terminal map from the complement BzA to 1C has image “ 1C.
This would mean that the internal theory of C proves that BzA is nonempty; however, if C merely does not contain
a factorization of A ãÑ C through B ãÑ C, then the internal theory leaves the proposition LpAq Ñ LpBq undecided.
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First-order theories don’t always have definable quotients of definable sets by definable equivalence
relations, and Boolean logical categories don’t always have quotients of objects by equivalence-
relation-objects. However, we can canonically enlarge any theory T (and so, by Theorem 3.25, any
Boolean logical category C) to a theory T eq (resp., to a Boolean logical category rC) which does have
definable quotients of definable sets by definable equivalence relations (resp. does have quotients
of objects by equivalence-relation-objects). Then arbitrary abstract interpretations T1 Ñ T2 will
correspond to strict abstract interpretations T1 Ñ T eq

2 .

Our goal in this section will be to make everything we have just said precise, and to characterize
those logical categories of the form rC “ DefpT eqq.

Definition 4.1. An equivalence relation (or internal congruence) in a category C with finite
limits is the following data:

1. An object X and a subobject E ãÑ X ˆX,

2. A reflexivity map r : X Ñ E such that r is a section to both projections π1, π2 : XˆX Ñ X,

3. A symmetry map s : E Ñ E such that π1 ˝ s “ π2 and π2 ˝ s “ π1,

4. A transitivity map r : E ˆX E Ñ E, where E ˆX E is the pullback of π1 and π2, as in the
following pullback square (where i : R ãÑ X ˆX is the inclusion map):

E ˆX E R

R X

p2

p1 π1˝i

π2˝i

such that π1 ˝ i ˝ p2 “ π1 ˝ i ˝ t, and π2 ˝ i ˝ p2 “ π2 ˝ i ˝ t.

Example 4.2. Let f : X Ñ Y be a morphism in DefpT q. The pullback X ˆY X with respect to
f and f , as in

X Y

X ˆY X X,

f

π1

π2

f

can be canonically viewed as an internal congruence X ˆY X
π1
Ñ
π2
X, called the kernel or kernel

pair of f . We write kerpfq
df
“ X ˆY X.

Definition 4.3. Let E Ñ X be an equivalence relation in C. A quotient of E, written X{E, is
the coequalizer of E Ñ X.

Definition 4.4. A pretopos is a Boolean logical category C that additionally satisfies:

1. C has a stable disjoint sum of any pair of objects. A disjoint sum A\B of objects A,B is a
coproduct of A and B such that, for the canonical maps i : A ãÑ A\B and j : B ãÑ A\B,
i and j are monomorphisms and the pullback AˆA\B B is isomorphic to 0.
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Stability for disjoint sums means that whenever we have a diagram of the form

A A\B

A1 C 1 B

B1

i

j

with A1 and B1 pullbacks, then C 1 is the disjoint sum of A1 and B1.

2. C has quotients of equivalence relations. Equivalently, every equivalence relation in C is the
kernel pair of some map.

The condition for theories analogous to condition 2 above is elimination of imaginaries.

Definition 4.5. A theory T eliminates imaginaries if for every definable equivalence relation
E Ñ X, there exists a definable set X{E and a definable function πE such that E Ñ X is the

kernel of X
πE
Ñ X{E.

Definition 4.6. The following construction, due to Shelah, associates to any theory T a larger
theory T eq and a strict interpretation T Ñ T eq, such that T eq eliminates imaginaries.

1. First, we expand the language L of T to a language Leq by adding, for every definable
equivalence relation E Ñ X, a new sort SE and a new partial function symbol fE : X Ñ SE .

2. T eq is axiomatized by the theory of T on the original sorts, plus sentences which assert that
for every definable equivalence relation E Ñ X in T , fE : X Ñ SE is a surjection and
E “ kerpfEq.

The new sorts SE are called imaginary sorts, and their elements are called imaginaries. The
original sorts are called real sorts. There is a canonical strict interpretation T Ñ T eq which is
determined by the inclusion of languages L Ď Leq.

The empty sort 1 has itself as a unique quotient, so we view it as both a real and imaginary sort.

The construction suggests that T determines T eq. We can make this precise.

Proposition 4.7. Any product SE ˆ SE1 of imaginary sorts is canonically isomorphic to a single
imaginary sort SE2, and any definable set in T eq is canonically isomorphic to the quotient of a
definable set of T .

Proof. Let E Ñ X and E1 Ñ X 1 be two definable equivalence relations on definable sets X and
X 1. There is a canonical surjective map

X ˆX 1 Ñ X{E ˆX 1{E1, by px, x1q ÞÑ px{E, x1{Eq

with kernel relation E2 Ñ X ˆ X 1 � X{E ˆ X 1{E1. Therefore, there is a canonical definable
bijection SE ˆ SE1 » SE2 . Note that this implies that in T eq, definable subsets of SE ˆ SE1

correspond precisely to definable subsets of SE2 .

Now, let SE “ SE1 be an imaginary sort. We write x “ x1, . . . , xn, y1, . . . , ym, where x1, . . . , xn
are the real-sorted variables and y1, . . . , ym are the imaginary-sorted variables belonging to the
imaginary sorts SE1 , . . . , SEm , where each Ei is an equivalence relation on a definable set Xi of sort
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Bi. Let ψpxq be a quantifier-free definable set in T eq. Putting ψpxq into disjunctive normal form, we
reduce to the case where ψpxq is a conjunction of atomic and negated-atomic Leq-formulas. We will
proceed in two steps. First, we will show that if we put quantifiers over all the real-sorted variables
of ψpxq, the imaginary-sorted result is canonically isomorphic to a product of images of T -definable
sets. Second, we will show that given an imaginary-sorted product of images of T -definable sets,
putting quantifiers over any of the imaginary-sorted variables still results in an imaginary-sorted
product of images of T -definable sets. Quantifying over all the variables except x1, we will get that
each disjunctand of the disjunctive normal form of Dxzx1ψpxq is the image of a T -definable set, and
so their union will be the image of a T -definable set.

So, assuming that ψpxq is a conjunction of atomic and negated-atomic Leq-formulas, we rearrange
the conjunctands according to which kinds of variables appear: purely real, mixed, and pure
imaginary, so that

ψpxq ”

˜

ľ

i

θRi pxq

¸

^

˜

ľ

j

θMj pxq

¸

^

˜

ľ

k

θIkpxq

¸

.

The only purely imaginary-sorted atomic Leq-formulas are just the equality relations on each sort
SEi . Some of the Ei might coincide. Fix an Ei; then, the pure-imaginary part of ψpxq asserts some
equalities and inequalities among the n1 distinct variables belonging to some SEi . Replacing ““SEi

”

and “‰SEi
” by Ei and  EI throughout, obtain a definable subset of Xn1

i whose image under fEi

is the conjunction of those SEi-sorted conjunctands of
Ź

k θ
I
kpxq. Repeating this for each distinct

equivalence relation among the E1, . . . , En, we write
Ź

k θ
I
kpxq as a product of images of T -definable

sets.

To finish the first step, it remains to see what happens to the purely-real and mixed parts of ψpxq
when we quantify over all the real variables. The purely-real part just becomes an L-sentence.
The mixed part consists of the graph relations Γipfqpx, yq of the projections fEi : Xi Ñ SEi (and
their negations). So there are four cases, depending on whether the real variable x is existentially
or universally quantified over, and whether or not Γi is negated. It is easy to see that for all the
cases except for the case where x is existentially quantified over and Γi is positive (so that we have
an image), the resulting formula Qxp qΓpfqpx, yq is equivalent mod T eq to a purely-real sentence
about Ei and Xi. If the real variable x does not appear in the pure real part, then DxΓipx, yq is
equivalent mod T eq to SEi .

Summarizing, we have that

Dx1 . . . Dxn

˜

ľ

i

θRi pxq

¸

^

˜

ľ

j

θMj pxq

¸

is canonically isomorphic to a product of images of T -definable sets. Since the purely-imaginary part
contains no real variables to quantify over and each SEi is the image of Xi under fEi , Dx1 . . . Dxnψpxq
is canonically isomorphic to a product of images of T -definable sets. This completes the first step.

If ψpyq ” py1 P fE1pY1qq ^ ¨ ¨ ¨ ^ pyn P fEnpYnqq is an imaginary-sorted product of images of T -
definable sets, then existentially quantifying over any yk has the same effect as deleting pyk P
fEk
pYkqq, so the result is still a product of images of T -definable sets. Similarly, universally

quantifying over any yk has no effect on the conjunctands pyi P fEipYiqq when i ‰ k, and
@ykDx rpx P Ykq ^ fEk

pxq “ yks is equivalent mod T eq to the assertion in T that Yk is equal to
Xk, the domain of the equivalence relation Ek. Therefore, when we universally quantify over yk,
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the conjunctand pyk P fEk
pYkqq can be replaced by this sentence in T , which is a subterminal object

of 1 whose image is itself. So both Dykψpyq and @ykψpyq are canonically isomorphic to products of
images of T -definable sets.

Proposition 4.8. For any theory T , DefpT eqq is a pretopos.

Proof. DefpT eqq is already a Boolean logical category, so it remains to check the existence of
quotients and stable disjoint sums.

Quotients: If E Ñ X is a definable equivalence relation of T eq, then by Proposition 4.7, the
diagram E Ñ X is the image of an T -definable equivalence relation E1 Ñ X 1, which therefore
has quotient SE1 .

Disjoint sums: In any sort S of T , S ˆ S has at least two disjoint definable sets, given by the
diagonal relation x “S y and its complement x ‰S y. We can define an equivalence relation
E on SˆS whose classes are precisely these two definable sets, and SE will have two distinct
constants 0 and 1. Let X and Y be two definable sets in T eq. We put

X \ Y
df
“ X ˆ Y ˆ t0, 1u

L

EX\Y ,

where

px, y, εq „EX\Y
px1, y1, ε1q ðñ ε “ ε1 and

#

if ε “ ε1 “ 0, then x “ x1

if ε “ ε1 “ 1, then y “ y1.

Whenever we take points in a model, X \ Y as we have defined it is canonically isomorphic
to tpx, 0q

ˇ

ˇx P Xu Y tpy, 1q
ˇ

ˇ y P Y u (unions of sets are not immediately available to us via
_ if X and Y are differently-sorted, which is why we had to use the equivalence relation.)

This determines the canonical inclusions A
ιA
ÝÑ A\B

ιB
ÐÝ B, and it is easy to see that their

pullback is 0.

Stability of disjoint sums: Consider a diagram of T eq-definable sets of the form

A A\B

A1 C 1 B

B1

ιA

ιB

where C 1 is a subobject of A\B and A1 and B1 are pullbacks.

There is a canonical definable map A1\B1 Ñ C 1 such that the following diagram commutes:

A1 C 1 B1

A1 \B1.

Since ιA and ιB are mono, their pullbacks A1 Ñ C 1 and B1 Ñ C 1 are also mono. Therefore,
the map A1 \B1 Ñ C 1 is also mono.
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On the other hand, in any model M of T eq, every point c PMpC 1q is the image of something
in MpA1q or MpB1q; since the above diagram commutes, the function MpA1\B1q ÑMpC 1q is
surjective. Since M was arbitrary, by the completeness theorem T eq proves that A1\B1 Ñ C 1

is a bijection.

We will spend the rest of this section proving that one may as well replace abstract interpretations
between theories with elementary functors between Defp´q of p´qeq of those theories.

Here is what we are going to do. Given an abstract interpretation I : T1 Ñ T2, we can lift
I to a strict abstract interpretation It : T1 Ñ T eq

2 by quotienting out the equivalence relations
interpreting the equality symbols in T1, which then corresponds by Theorem 3.25 to an elementary
functor DefpT1q Ñ DefpT eq

2 q. This determines a “functor”

p´qt : IntpT1, T2q Ñ BoolLogCatpDefpT1q,DefpT eq
2 qq

which will be an equivalence of categories.

(We put scare quotes around “functor” because we have not defined a notion of morphism for
abstract interpretations. In fact, we will tautologically define morphisms of abstract interpretation
T1 Ñ T2 to be transformations of the associated strict abstract interpretations T1 Ñ T eq

2 .)

Dually, instead of lifting I to T eq
2 , we can extend I to an abstract interpretation pI : T eq

1 Ñ T2. This
determines a functor

yp´q : IntpT1, T2q Ñ IntpT eq
1 , T2q

which will be an equivalence of categories.

Let Ąp´q denote the composition p´qt ˝yp´q. Then the “functor”

Ąp´q : IntpT1, T2q Ñ PretoppDefpT eq
1 q,DefpT eq

2 qq

will be an equivalence of categories.

Definition 4.9. Let I : T1 Ñ T2 be an abstract interpretation. We define a strict abstract
interpretation It : T1 Ñ T eq

2 as follows. Let X be a definable set of T1 of sort S with equality
relation “S . Let E be the equality relation on X. Then we put ItpXq to be the following imaginary
sort of T eq:

ItpXq
df
“ IpXq

M

Ip“Sq » SIpEq P T
eq
2 .

It is a lift of I along the canonical interpretation T2 Ñ T eq
2 , i.e. the following diagram commutes:

T eq
2

T1 T2.

It

I

By Theorem 3.25, It determines an elementary functor FIt : DefpT1q Ñ DefpT eq
2 q.

We define a morphism of two abstract interpretations I, I 1 : T1 Ñ T2 to be a transformation of the
strict abstract interpretations It, I

1
t. This obviously defines a category structure IntpT1, T2q on the

collection of abstract interpretations T1 Ñ T2, such that I ÞÑ It ÞÑ FIt determines an equivalence
of categories IntpT1, T2q » BoolLogCatpDefpT1q,DefpT eq

2 qq.
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Definition 4.10. Let I : T1 Ñ T2 be an abstract interpretation. We define an abstract interpreta-
tion pI : T eq

1 Ñ T2 as follows. For every imaginary sort SE “ X{E in T eq
1 ,

pIpSEq
df
“ IpXq, pIp“SE

q
df
“ IpEq, and pIpΓpfEqq

df
“ IpEq.

Recall from Definition 3.23 that ThpT1, T2q denotes the category of strict interpretation T1 Ñ T2

with transformations as morphisms. The yp´q construction determines a functor yp´q : ThpT1, T
eq
2 q Ñ

ThpT eq
1 , T eq

2 q as follows: for each transformation η : I Ñ I 1, and for each imaginary sort SE » X{E
in T eq

1 , it is easy to see that by virtue of being a transformation, ηX : IpXq Ñ I 1pXq descends to a
map ηX{E : IpXq{IpEq Ñ I 1pXq{I 1pEq, and so we put

pηpSEq
df
“ ηX{E .

We claim that yp´q : ThpT1, T
eq
2 q Ñ ThpT eq

1 , T eq
2 is an equivalence.

There is a functor going the other way given by precomposing by the canonical interpretation

T1 Ñ T eq
1 . This is a retract of yp´q, so yp´q is faithful.

yp´q is full: for the definition of a transformation to be satisfied, the components of any transfor-
mation pI Ñ pI 1 at imaginary sorts SE for E Ñ X is determined by the component at X.

yp´q is essentially surjective: let J : T eq
1 Ñ T eq

2 be some strict interpretation. Let J 1 be the
interpretation obtained by precomposing by the interpretation T1 Ñ T eq

1 and then applying the
yp´q construction again. Since J was an interpretation, JpSEq is canonically isomorphic to the
quotient of JpXq by JpEq, which is J 1pSEq. These canonical isomorphisms determine a natural
isomorphism J » J 1.

The functor ThpT1, T
eq
2 q Ñ ThpT eq

1 , T eq
2 q determines a functor

IntpT1, T2q Ñ IntpT eq
1 , T2q,

and since ThpT1, T
eq
2 q Ñ ThpT eq

1 , T eq
2 q was an equivalence, so is IntpT1, T2q Ñ IntpT eq

1 , T2q.

Definition 4.11. Let C be a Boolean logical category. The pretopos completion of C is

rC
df
“ Def ppTCq

eq
q .

Definition 4.12. Let F : C Ñ C1 be an elementary functor between Boolean logical categories.
We define the pretopos completion of F to be

rF : rC Ñ ĂC1

in the sense of Ąp´q
df
“ yp´q ˝ p´qt in the above discussion.

Identifying theories with Boolean logical categories, we also define the pretopos completion rI of an
abstract interpretation I : T1 Ñ T2 to be the strict abstract interpretation rI : T eq

1 Ñ T eq
2 .
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5 Categories of models

Definition 5.1. Let M and N be models of T . An elementary embedding f : M Ñ N
comprises the following data:

1. For every sort S of T , a function fS : MpSq Ñ NpSq, such that

2. the collection tfSu is compatible with forming tuples of sorts: if S is a tuple of basic sorts
S “ pB1, . . . , Bnq, fS “ fB1 ˆ ¨ ¨ ¨ ˆ fBn , and furthermore

3. for every tuple a of sort S and every formula ϕpxq such that M |ù ϕpaq, N |ù ϕpfSpaqq.

Definition 5.2. The category of models of a theory T is defined to be:

ModpT q
df
“

#

Objects: models of T ,

Morphisms: elementary embeddings.

The category Set of all sets is a Boolean logical category, although unlike those Boolean loogical
categories of the form DefpT q for theories T , Set is not small.

However, for every regular cardinal κ, the category Setκ of all hereditarily κ-small sets is a small
Boolean logical category. By the downward Löwenheim-Skolem theorem, for every theory there
exists some κ such that one only needs to test points in κ-small models to invoke the completeness
theorem, and Set “

Ť

κ Setκ.

Proposition 5.3. Every model M |ù T determines an elementary functor DefpT q Ñ Set.

Proof. By item 3 of Definition 2.1, a model is an assignment of sets to L-formulas. Since T proves
that every definable function is a function, this must be true after taking points in a model, so this
assignment is a functor M : DefpT q Ñ Set. Now we must show that the functor M is elementary.

To see that M preserves finite limits, it suffices to check the preservation and reflection of limits
on just products and equalizers.

The usual construction of an equalizer of two maps f, g : X Ñ Y in Set is always definable: it is
the subset of X consisting of those elements x such that fpxq “ gpxq.

Similarly, if X and Y are definable, then XˆY is definable, and the projections XˆY
πX
πY
Ñ
X,Y are

definable.

If J is a finite diagram in DefM pT q and lim
ÐÝ

J its limit, and Z P DefM pT q is a definable set in M

equipped with a cone of definable maps to J , then Z has (in Set) a unique mediating map to lim
ÐÝ

J ,

which is definable because it is definable in the cases when J is a product or equalizer diagram,
the limit is finite, and by the canonical product-equalizer decomposition the mediating map for a
general finite J is a composition of finitely many mediating maps for products and equalizers.

To check preservation of finite sups, let tϕ1pxq, . . . , ϕnpxqu be a finite collection of formulas of the
same sort. Then their sup is given by

Ž

n ϕipxq, and the sup of tϕ1pMq, . . . , ϕnpMqu is precisely
Ť

n ϕipMq. The empty sup is the empty formula, represented in DefpT q by the T -provable equiv-
alence class of “x ‰ x”, and this is interpreted by M as the empty set, which is the empty sup for
any set in Set.
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To check preservation of images, let f be a definable function. The image of f in DefpT q is just the
formula which describes the image of f , and M interprets this formula as the image of fpMq.

Proposition 5.3 determines an inclusion ModpT q ãÑ BoolLogCatpDefpT q,Setq.

Proposition 5.4. The inclusion ModpT q ãÑ BoolLogCatpDefpT q,Setq is an equivalence of
categories.

Proof. Fix an elementary functor F : DefpT q Ñ Set. We must find a model M such that M » F as
elementary functors. Equivalently, we will show that we can “perturb” F to a model (which is just
an elementary functor with some additional strictness conditions) without changing its isomorphism
type as a functor.

For every basic sort B, there are canonical isomorphisms F pBkq » F pBqk. Up to isomorphism
of functors (where the isomorphism of functors is given by conjugating by these canonical isomor-
phisms), we can assume therefore that F pBkq “ F pBqk.

Furthermore, for every sort ~B “ B1ˆ¨ ¨ ¨ˆBn, there are canonical isomorphisms F pB1ˆ¨ ¨ ¨ˆBnq »

F pB1q ˆ ¨ ¨ ¨ ˆ F pBnq. Again, up to isomorphism of functors, we can assume that F p ~Bq “ ~F pBq.
Furthermore, if ϕpxq is a formula of sort B, then there is a canonical definable injection ϕpxq ãÑ B
such that the image of F pϕpxq ãÑ Bq is a subset of F pBq; arguing as before, we can assume up to
an isomorphism of functors that F pϕpxqq Ď F pBq. Similarly, we can assume up to an isomorphism
of functors that if T |ù @xpϕpxq Ñ ψpxqq, then F pϕpxqq Ď F pψpxqq.

The canonical isomorphisms described so far induce isomorphisms of Boolean algebras 2
~B » 2

~F pBq.
Therefore, up to isomorphism of functors, we can assume that F pϕpxq_ψpxqq “ F pϕpxqqYF pψpxqq
(resp. ^ and negations).

Since F preserves images, then for every definable function f , F pimpfqq » impF pfqq. Then up to
isomorphism of functors, F pimpfqq “ impF pfqq.

Now we have, up to isomorphism, completely “strictified” F . It remains to show that an elementary
functor which strictly preserves products, finite sups, and images is a model.

Indeed, let ~c be a tuple of terms such that Rp~cq is an atomic sentence. Then by our previous
reductions, F px “ ~cq Ď F pRpxqq, so F |ù Rp~cq.

It is obvious that if ϕ and ψ satisfy that pT |ù ϕ ùñ F |ù ϕq and pT |ù ψ ùñ F |ù ψq, then
pT |ù ϕ^ ψ ùñ F |ù ϕ^ ψq.

If ϕpxq is a formula, then T |ù Dxϕpxq if and only if the image of the projection of ϕpxq to the
empty sort (which is the empty product, so is the terminal object 1) is all of 1. Since F is a logical
functor, it preserves the terminal object and all maps into the terminal object, so F of the image
of the projection of ϕpxq to the empty sort is still 1. Then F pϕpxqq cannot be empty, since if it
were, the image of its canonical map to 1 would be the empty set. So F |ù Dxϕpxq.

Similarly, if T |ù  ψ, then if ψ is quantifier-free it is easy to see that F |ù  ψ. If ψ is of the form
Dϕpxq, then as a subobject of the terminal object 1, Dxϕpxq “ H the empty sup. Since F is logical,
it preserves empty sups, so again Dxϕpxq “ H as a subobject of the terminal set 1, and therefore,
F |ù  Dxϕpxq.

This concludes the induction on complexity of formulas, and finishes the proof.
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For any regular cardinal κ, Setκ is a pretopos in addition to being a Boolean logical category. So,
by the discussion above, we have equivalences

ModpT q » BoolLogCatpDefpT q,Setκq, and ModpT eqq » PretoppDefpT eqq,Setκq.

By the discussion following Definition 4.10, BoolLogCatpDefpT q,Setκq and PretoppDefpT eqq,Setq
are equivalent. We conclude:

Proposition 5.5. For any theory T , the categories ModpT q and ModpT eqq are equivalent.

Remark 5.6. In the discussion following Definition 4.10, one can show that the canonical functor
PretoppT eq,Setq Ñ BoolLogCatpT,Setq induced by the canonical interpretation T Ñ T eq is

pseudo-inverse to the functor yp´q, so that the equivalence ModpT q » ModpT eqq is given by the
canonical functor ModpT eqq Ñ ModpT q induced by the canonical interpretation T Ñ T eq.

Definition 5.7. In general, an interpretation T Ñ T 1 induces a strict interpretation of pretopos
completions T eq Ñ T 1 eq and thus an elementary functor DefpT eqq Ñ DefpT 1 eqq. Since models
are essentially elementary functors into Set, the elementary functor DefpT eqq Ñ DefpT 1 eqq pulls
back models of T 1 to models of T , inducing a functor ModpT 1q Ñ ModpT q. We call such functors
between categories of models reduct functors. If I : T Ñ T 1 is an abstract interpretation, we
write I˚ : ModpT 1q Ñ ModpT q for the induced reduct functor.

6 Notions of equivalence between the notions of interpretations

In this section, we examine various notions of equivalence between abstract interpretations, concrete
interpretations, and elementary functors.

The first notion is due to [1].

Definition 6.1. Let M |ù T and M 1 |ù T 1, and let pf, f˚q, pg, g˚q : M ÑM 1 be concrete interpre-
tations. We use the letter U for the preimages of sorts along f , and we use the letter V for the
preimages of sorts along g.

We say that pf, f˚q and pg, g˚q are homotopic if for every sort S of T , the pullbacks

US ˆMpSq VS VS

US MpSq

g

f

are definable in M 1.

Remark 6.2. Note that if fS and gS are injective, then the above pullback describes the graph of
a bijection US » VS .

We define the analogous notion for abstract interpretations.

Definition 6.3. Let I, I 1 : T1 Ñ T2 be abstract interpretations. For every sort S, we denote by ES
the definable equivalence relation in T2 given by Ipx “S yq (resp. E1S , I

1). A homotopy between
I and I 1 comprises the following data:
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1. For every sort S of T1, a definable relation RS ãÑ IpSq ˆ I 1pSq, such that the following
conditions are satisfied:

2. (Naturality mod E and E1) For every formula ϕpxq of sort S,

T2$p@x P Ipϕpxqqq
“

RSpx, yq Ñ pDy1 P I 1pϕpxqqqrE1Spy, y
1qs
‰

.

3. (Univalence mod E and E1)

T2$p@x1, x2 P IpSqqp@y1, y2 P I
1pSqq

“

ESpx1, X2q Ñ
`

RSpx1, y1q ^RSpx2, y2q Ñ E1Spy1, y2q
˘‰

.

4. (Injectivity mod E and E1)

T2$p@x1, x2 P IpSqqp@y1, y2 P I
1pSqq

“

E1Spy1, y2q ^RSpx1, y1q ^RSpx2, y2q Ñ ESpx1, x2q
‰

.

5. (Surjectivity mod E and E1)

T2$p@y P I
1pSqqpDx P IpSqq

“

RSpx, yq
‰

.

Finally, given two elementary functors F, F 1 : C1 Ñ C2, a natural notion of equivalence is just
natural isomorphism of functors.

An immediate consequence of Definition 6.3 is:

Proposition 6.4. Let I and I 1 be abstract interpretations T1 Ñ T2. I and I 1 are abstractly
homotopic if and only if the elementary functors associated to their pretopos completions

F
rI
, F

rI 1
: DefpT eq

1 q Ñ DefpT eq
2 q

are naturally isomorphic.

Corollary 6.5. Let I, I 1 : T1 Ñ T2 be homotopic abstract interpretations. For any model N |ù

T2, there exists an isomorphism tσSuSPSortspT1q of models of T1 such that the following diagram
commutes:

I˚pNq

N

I 1˚pNq.

σ

pfI ,f
˚
I q

pfI1 ,f
˚

I1
q

From Remark 6.2, we get:

Proposition 6.6. Let M and N be models of T and T 1. If two concrete interpretations

pf, f˚q, pg, g˚q : M Ñ N

are homotopic, then the underlying abstract interpretations f˚, g˚ : T Ñ T 1 are homotopic.
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