Theories, interpretations, and pretoposes

Jesse Han

May 21, 2018

Abstract

We explicate the relationships between interpretations of first-order theories, interpretations
of first-order structures, and elementary functors between categories of definable sets and their
pretopos completions.

Contents

[1 Theories and abstract interpretations|

[2 Structures and concrete interpretations|

[3 Categories of definable sets and elementary functors|

[4 Pretoposes and the (—)“!-construction|

[6 Categories of models]

[6 Notions of equivalence between the notions of interpretations|

Notation and conventions

15

22

24

e Unless explicitly stated otherwise, we are always working in multisorted classical first-order

logic; every sort S has its own equality symbol =g.

e Unless explicitly stated otherwise, definable means definable without parameters.

e Unadorned variables in formulas will generally stand for finite tuples of appropriately-sorted

variables.

e Similarly, when we say “sort” we mean a finite tuple of the basic sorts of the language. We

allow the empty finite tuple of sorts, and denote it by 1.

e If we have already mentioned a tuple of variables x, then we will write S, for the sort

corresponding to x.

o Greek letters (except for o and p, which will usually denote automorphisms) will usually

mean first-order formulas.

o If £ is a first-order language, we write Sorts(L), Functions(L), Relations(L), Constants(L), and
Formulas(£) to mean the collections of sorts, function symbols, relation symbols, constant
symbols, and first-order £-formulas, respectively.

1 Theories and abstract interpretations

Definition 1.1. Fix a first-order language £. An L-theory (when we wish to avoid emphasizing
the ambient language, we will just say theory) is a set of L-sentences.

Definition 1.2. If ¢ is an L-formula, we say that the sort, or ambient sort, of ¢ is the sort S,
corresponding to the tuple x of free variables in . If ¢ is a sentence, i.e. an L-formula with no
free variables, we understand that in this case the ambient sort of ¢ is the empty sort.

Definition 1.3. Let T' be an L-theory and let 7" be an £’-theory. An abstract interpretation
I of Tin T', written I : T'— T”, consists of the following data:

1. For each sort S € Sorts(L), we assign an £'-formula I(.S), with the convention that the empty
sort 1 of T is sent to the empty sort 1 of T".

We also require this assignment to preserve the operation of forming finite tuples of sorts: if
the basic sorts By and By are sent to the sorts S; and S5, then the sort By Bs is sent to the
sort 5152 (where we write sorts right next to each other to indicate their concatenation as
tuples of basic sorts).

2. For each basic non-logical symbol ¢ € Constants(L), R € Relations(L), or f € Functions(L),
we assign an £'-formula I(c) (resp. I(R), I(f)(, such that the assignment is compatible with
sorts: if a nonlogical symbol X belongs to the sort Sx, then I(X) is a subset of the sort
I(Sx).

3. By an induction on complexity of formulas, the above assignments determine an assignment
of L-formulas to £'-formulas, in particular of £-sentences to £'-sentences. We finally require
that if ¢ is an L-sentence such that T = 1), then T |= I(v).

Definition 1.4. If an abstract interpretation I : T — T” interprets all equalities x = y as equiva-
lence relations with singleton equivalence classes, we say that I is a strict abstract interpretation.
This is sometimes called a definition of T in T".

2 Structures and concrete interpretations

Definition 2.1. Let T be an L-theory. A model M of T' consists of the following data:

1. For each sort S € Sorts(L), we assign a set M(S), with the convention that the empty sort 1
of T' is sent to the empty product 1 of Set.

We also require that this assignment preserves the operation of forming finite tuples of sorts:
if the basic sorts By and Bj are sent to the set M (B;) and M(Bz), then the sort B;Bj is
sent to the set M (B1Bs) = M(B1) x M(Ba).

2. For each basic non-logical symbol ¢ € Constants(L), R € Relations(L), or f € Functions(L), we
assign a set M (c) (resp. M(R), M(f)), such that the assignment is compatible with sorts: if
a nonlogical symbol X belongs to the sort Sx, then M (X) belongs to M (Sx).

3. By an induction on complexity of formulas, the above assignments determine an assignment
of L-formulas to sets. Since the assignments above respect sorts, any L-sentence, which lives
in the empty sort 1, will be sent to a subset of the terminal set 1, of which there are only
two possibilities, the entire terminal set 1, or . We finally require that if ¢ is an £-sentence
such that T |= ¢, then M (¢) = 1.

Definition 2.2. Let £ be a language. An L-structure is a model M of the empty L-theory.

Definition 2.3. Let M be an L-structure. By [Definition 2.1} M includes the data of an function
Sentences(L£) — {J,1}. The L-theory of M, written Th(M), is the preimage of 1 along this
function:

Th(M) £ {4y € Sentences(L) | M (1) = 1}.

Definition 2.4. Let M be an L-structure. A definable set U of M is some set U such that
U = M(p(x)) for some L-formula ¢(x).

Definition 2.5. Let M be an L-theory, and let M’ be an £'-theory. A concrete interpretation
(f, f*) of M in M’, written (f, f*): M — M’, consists of the following data:

1. For each sort S of £, we assign a definable set Ug of M’ and a surjective function fg: Ug —»
M(S).

We also require that this assignment preserves the operation of forming finite tuples of sorts:
if the basic sorts B and By are assigned the functions fp, : U, — By and fp, : Up, — Ba,
then the sort By Bs is assigned Up, g, = Up, x Up, and the function fp B, = fB, X [B,-

2. These surjective functions must satisfy the following property: for every sort S and for defin-
able subset V' < M (S), the preimage f*V of V along f is definable in M’.

Definition 2.6. If a concrete interpretation (f, f*) additionally satisfies that f is injective, we say
that (f, f*) is a strict concrete interpretation.

Remark 2.7. Since we have defined models so that models always interpret tuples of basic sorts
as products of basic sorts, this gives the correct definition of a model in the 1-sorted case, when
there is a unique basic sort.

An important consequence of the fact that models interpret tuples of basic sorts as products of
basic sorts is that the definable projection functions from tuples of sorts to their subtuples are
interpreted as literal projections in any model.

Example 2.8. Let M be an L-structure, and let ¢ : M — M be an automorphism. Then
os : M(S) — M(S) is a strict concrete interpretation (o,0*) : M — M. Since definable sets are
invariant under automorphisms, o* is the identity.

3 Categories of definable sets and elementary functors

The starting point for first-order categorical logic is the identification of a theory with its category
of definable sets.

Definition 3.1. Let T" be a first-order £-theory. The category of definable sets Def(7") com-
prises:

Def(T) & Objects: Formulas(L) /| where ¢(z) ~ p(z) < T |= ¢(z) o (z),
ef (T) = Morphisms: {¢ € Formulas(L) | T |= ¢ is a function ¢(z) — V() /o

Remark 3.2. Above, we are defining morphisms to be equivalence classes of graphs of definable
functions, where we are using the same equivalence relation as we did for objects. By the com-
pleteness theorem for first-order logic, the notion of equivalence of formulas proved in defining the
objects of Def(T) is the same as T-provable equivalence, i.e. p(x) ~ P(y) < T+ p(x) < ¥(x).
By the downward Lowenheim-Skolem theorem, it also suffices to check ~-equivalence by checking
if two formulas have the same points on just those models whose sizes are less than or equal to the
size of the theory.

Remark 3.3. Every sort S has its own equality symbol =g, and the formula x =g x represents S
in Def(T). Sorts are “maximal” objects in Def(T); just as, syntactically, they provide the contexts
in which we reason about formulas, every definable set A € Def(T') belongs to, and thus embeds
into, a sort.

Notation 3.4. From now on, unless if we are explicitly working in a model, “definable set” will
mean an equivalence class of formulas in the above sense.

We now note some important features of the category Def(T):

Proposition 3.5. Def(T') has all finite limits.

Proof. By the canonical product-equalizer decomposition for limits (see e.g. [2]), it suffices to see
that Def(7T) has all equalizers and finite products.

Given a pair of morphisms in Def(T), as in f,g : ¢(z) 3 ¢¥(y), we can write a first-order formula
eq(f,g) with a canonical inclusion eq(f, g) < ¢(x) whose points in any model will be the equalizer

df
of the functions f and g: eq(f,g) = f(x) =g, g(z). We will show that eq(f,g) has the expected
universal property. So suppose the universal property fails, and we have in Def(T") a commutative
diagram like this:

eq(f,g) — X %3 Y

such that hi # ho. Then by definition of the equivalence relation defining objects and morphisms in
Def (7)), this is witnessed by a model M such that we can take two formulas ¢1 (21, z2) and ¢a(z1, x2)
representing the graphs of hy and hy and M (¢1) # M(¢2). This contradicts that M (eq(f,g)) is
the equalizer of M (X =3Y). We conclude that Def(T) has all equalizers.

Now we will show that Def(7) has all finite products. We note that the empty product (i.e. a
terminal object) is the equivalence class of the empty sort, which we think of as being the ambient
sort for the empty tuple of variables; we can view any finite tuple of variables as being padded by an
empty variable of the empty sort, and so any formula is vacuously a definable function from itself

to the empty sort, so the empty sort is a terminal object. Now, for n > 1, let ¢1(x1),...,on(zn)
be a finite collection of L-formulas. Then, just as for the case of equalizers, we can write a first-
order formula (@1 X -+ X ,)(21,...,2,) whose points in any model will be the product of the

sets ¢1(1), ..., on(xy): replacing x; with distinct variables of the same sort as necessary, so that
Z1,...,2, are all distinet (this respects T-provable equivalence), put

df
01 X - X (w1, .., x0) = @1(x1) A0 A o).

(Note that in any model, this is a subset of M (Sy,..2,) = M(Sz,) % -+ x M(Sy,).)

Now we can repeat the argument we used for equalizers word-for-word, except replacing equalizer
diagrams with product diagrams throughout. We conclude that Def(7") has all finite products. [

Definition 3.6. Let f : X — Y be a morphism in some category. The image of f, if it exists, is
a subobject I — Y of Y such that there is a factorization of f through I, and if f factors through
any other subobject I’ of Y, then there is a unique map of subobjects I > I’ making the diagram

commute.

Proposition 3.7. Every morphism f : p(x) — ¥(y) has an image.

Proof. We claim that the image of a definable function f is described by the formula im(f) d
2T (f)(x,y). This is equipped with the canonical projection to ¥ (y). By how we defined models’
interpretations of formulas built with existential quantifiers, M (3a2T'(f)(x,y)) is the literal projec-
tion of M(T'(f)(z,y) to M(¢(y)), and is therefore the image of M(f). The same argument we used
for equalizers and limits then shows that im(f) is the image of f in Def(T). O

Definition 3.8. Let S51,...,5, be finitely many subobjects of X in some category. The finite
sup of S1,...,S,, if it exists, is a subobject S7 v --- v S, of X such that any other subobject S’
containing S1,...,S, contains S1 v --- v Sj,.

Proposition 3.9. Def(T') has all finite sups.

Proof. Note that since the empty set is a definable subset of every definable set, Def(T') always
has empty sups. It then suffices to obtain binary sups. Let ¢(z) and ¥ (x) be subobjects of 6(x)
in Def(T). Then T |= p(z) — 0(x)&&y(x) — 0(x); therefore, T = p(z) v ¥(z) — O(x). In every
model M of T, M(p(x) v ¥(x)) is the sup of the subsets M (¢(z)), M (¢ (x)) of M(6(x). Now we
argue as in the previous two propositions: if this were not true in Def(T"), this must be witnessed
in a model, an impossibility, so ¢(x) v ¥(x) is the sup of ¢(x) and ¥ (z) in Def(T). O

Definition 3.10. Let C be a category with pullbacks.

1. Let f : X — Y be a morphism in C which has an image. We say that the image im(f)
is stable if for every morphism g : Z — Y, the two horizontal maps at the bottom of the

diagram of pullback squares

X —2 5y im(f)

[|

XXyZHZ%im(f)XyZ

have the same image (colloquially, “the pullback of the image is the image of the pullback”).

2. Let Sq,...,5S, be subobjects of B in C which have a finite sup. We say that the finite sup
Vi<n Si is stable if for every morphism g : Z — B, the pullback of \/,_, S; along g, as in
the pullback diagram

<n

Vien i —— B

] |

(VienSi) xB Z —— Z

is the finite sup of the pullbacks of the S; (this makes sense because the pullback of a monomor-
phism is always a monomorphism).

We say that C has stable images and stable finite sups if C has all images and finite sups,
and they are all stable.

Proposition 3.11. Def(T') has stable images and stable finite sups.

Proof. Let f: X — Y and g : Z — Y be morphisms in Def(7"). The pullback of X and Z with
respect to f and g is the equalizer of the following pair of maps:
Xxz2' 5y
gormz
and can therefore be represented by the formula (f(z) = g(z)), and the image of its canonical
projection to Z can be represented by dz (f(z) = g(z)).

Similarly, the image of im(f) Xy Z in Z is represented by the formula 3y (y = g(z)). For any model
M, it is true that M (3z (f(z) = g(z))) = M3y (y = g(2))). By the completeness theorem for
first-order logic, T |= 3z (f(x) = g(2)) < Jy (y = g(z)). Since f and g were arbitrary, we conclude
Def(T') has stable images.

Now, let Si,...,S, be subobjects of B in Def(T'). It is easy to check, using the description of
pullbacks we used in the previous paragraph, that the pullback of any subobject of B along a map
g : Z — B is just the (formula describing the) preimage of that subobject along g. Since models
interpret finite sups as unions, and in the category of sets, taking preimages commute with unions,
then we may argue as before using the completeness theorem that finite sups are stable. This
applies equally well to the empty sup; we conclude Def(7") has stable finite sups. O

Definition 3.12. Let C be a category with pullbacks and finite sups.

We say that C is Boolean if for every subobject S of B in C, there exists another subobject —S
such that the pullback of S and —S over B is the empty sup in B, and the finite sup S v =5 is all
of B.

Proposition 3.13. Def(T") is Boolean.

Proof. If T = ¢(x) — ¢(x), then

T = =(e(@) A (mp(@)) A B)

and
Tk o(@) v (~¢(x) A B) < B.
O

In [4], Makkai and Reyes showed that the properties we studied above actually characterize those
categories of the form Def(T) for some theory T'. They call such categories (Boolean) logical
categories.

Definition 3.14. A category C is a logical category if it has finite limits, has stable images, and
has stable sups.

Proposition 3.15. Let T be a theory. Then Def(T) is a Boolean logical category.

Proof. We saw in Propositions and that for every theory T, Def(T") has

finite limits, stable images, stable sups, and is Boolean.]

By requiring the preservation of those categorical properties which define logical categories, we can
define what it means for a functor to be a morphism of logical categories. E|

Definition 3.16. Let C and C’ be logical categories. An elementary functor C — C’ is a
functor which preserves finite limits, finite sups of subobjects, and images.

FElementary functors preserve complements whenever they exist:

Lemma 3.17. Let A be a subobject of C in a logical category C. Suppose that A has a complement
B inside C. Let I : C — C' be an elementary functor. Then I(A) and I(B) are complements
inside I1(C).

Proof. A and B satisfy that their pullback A n B over C is the empty sup J of C. Since I preserves
pullbacks and finite sups, I(A) N I(B) = I(An B) = I(J) = . Similarly, A v B = C and since
I preserves finite sups, I(C) = I(A v B) = I(A) v I(B). O

Up until now, we have seen how the categorical features of a Boolean logical category correspond
to the logical operations of a theory: finite limits correspond to meets and forming products of
sorts, images (of projections) correspond to existential quantification, finite sups correspond to
finite joins, and complementation corresponds to taking negations. So modulo an induction on
complexity of formulas, elementary functors should correspond to interpretations.

We will devote much of our energy in the rest of this section, and the following section, into making
this intuition precise.

Proposition 3.18. Let T and T' be L and L'-theories. Let F : Def(T) — Def(T") be an elemen-
tary functor. Then F induces a strict interpretation Ip : T — T'.

'Tn [4] these are called, aptly, logical functors, but we follow the terminology of [3], wherein logical functors between
pretoposes are called elementary.

Proof. Let S be a basic sort in Def (7). We choose a representative formula of the equivalence
class F(S) and make that Ip(S). After specifying the basic sorts, Ir is determined on all sorts.
Since 1 is the limit of the empty diagram in Def(7") and elementary functors preserve finite limits,
the empty sort 1 of T' gets sent to the empty sort 1 of T”. This satisfies part 1 of the of
an abstract interpretation.

Let ¢ be a constant symbol of sort S. Then in Def(T), ¢ is interpreted as a nullary function
15 S. Applying F, we get a nullary function 1 — F(S). We now abuse notation and identify the
formula Ix(S) with the definable set in Def(7”) it represents. Since F preserves finite products,
Ir(S) ~ F(S) and we define Ir(c) to be the definable nullary function 1 — F(S) = Ip(S) of T".

Let R be a relation symbol of sort S. Then F(R) — F(S); composing by the isomorphism
F(S) ~ Ir(S), we have that F(R) — Ir(S). We define Ir(R) to be the image of this embedding.

Let f be a function symbol whose graph relation I'(f) is of sort S1.S2. Then we define Ir(f) by
defining Ir(T'(f)) just as we did for a relation symbol.

We have now defined Ir up to part 2 of the [definition|of an abstract interpretation. By an induction
on complexity of formulas, I'r determines a map of L-sentences to £'-sentences. We must now check
that whenever T |= ¢, T' |= Irp(¢)). We will show that at each step of the inductive definition of
Ir : Formulas(£) — Formulas(’, the truth of sentences is preserved.

I'r preserves negations of formulas: given v (z) and —(z) of sort S, we have that I(y(z)) and
I(—(z)) have empty intersection (since elementary functors preserves pullbacks and finite sups)
and that I(¢(z))vI(—y(z)) = I(S) (since elementary functors preserve finite sups), so I(—¢(x)) =
—I(1¢(x)). Since F preserves finite sups and pullbacks, Ir preserves disjunctions and conjunctions
of formulas.

By viewing sentences as subobjects of the empty sort 1, we see that Ip preserves the truth of

negations, conjunctions, and disjunctions of sentences.

I preserves existential quantification of formulas: generally, 3xp(z, y) is the image of the projection
™

o(z,y) y Sy, and since I preserves finite limits, it preserves images and projection maps from

products, so

ﬂ-F(Sy

Ir(re(a,y)) = FErp(a,y) = im (p(e,y) " 1(,)) = ToF(p(,y) = ole(e(@,p)).

Note that this applies equally well when y is an empty variable belonging to the empty sort 1, and
we are considering a sentence Jzp(z). If T = Jzp(z), then in Def(T'), Jzp(x) = 1. Since F is
elementary, it preserves terminal objects, so F/(3zp(z)) = Ir(Jze(x)) = 1.

Now, let ¢ be an atomic L-sentence. Then 9 is of the form R(t) or t; =g ts for terms ¢, ¢, to. Since
1 is atomic, these terms are definable constants of T, and so can be thought of as nullary definable

t
functions 1 - R(t) or 1 tzil S. Applying F', we see that F(t) goes into F(R) and F(t;) = F(t2)
2
(since F' is at least a function), so Ir(t) € Ir(R) and Ip(t;) = Ip(t2). This provides the base of
the induction and completes the proof. O
This has an obvious converse:

Proposition 3.19. Let I : T — T’ be a strict abstract interpretation. Let [(z)] denote the

~-equivalence class of 1 (as in the of Def(T)).

Let X Ly be a definable function in T'. Then the assignment

xLyox1¥y

determines an elementary functor Fr : Def(T') — Def(T").

Proof. Fy is well-defined on objects since [is an interpretation, and so preserves the sentences
which assert that any two given formulas are provably equivalent. F7 is well-defined on morphisms
since I is a strict interpretation, so that for every definable function f of T, T” proves that I(f) is
a function.

Now we check that F preserves finite products. We saw in [Proposition 3.5|that any finite collection

of formulas ¢1(x1),...,on(z,) has a canonical product ¢1 x -+ X @, (x1,...,2,). Given any tuple
(a; € ¥i(x)), T proves that there is a unique @ € ¢ x -+ X @p(x1,...,2,) which projects to
each a;. Since I was an interpretation, 7" proves the same thing about I(p; X @, (21,...,2y)), S0

I(p1 x pp(x1,...,2,)) satisfies the universal property of the product I(p1(z1)) x -+ x I(pn(xy))-

The same argument works for equalizers, so F7 preserves finite limits.

We saw in [Proposition 3.9/ that finite sups in Def(7T') are given by disjunctions of formulas. I was
defined by induction to send ¢(z) v (x) to I(p(z)) v I(¢p(x)), so Fr preserves finite sups.

Similarly, Ir was defined by induction to send an existentially quantified formula Jzp(z,y) to
JxI(p(x,y)). So Fr preserves images of the canonical projections between tuples of sorts. We saw
in|[Proposition 3.7|that the image of a definable function f in Def(T') is given by binding the domain
variable of the graph relation I'(f)(z,y), so that im(f) = 3aI'(x,y). Therefore, F preserves the
images of definable functions. O

We have seen how strict interpretations between theories induce elementary functors between the
categories of definable sets, and vice-versa. It is natural to ask if this implements a one-one
correspondence, and if such a correspondence is functorial. Indeed, we will finish this section by
showing that the constructions of [Proposition 3.18| and [Proposition 3.19| essentially implement a
equivalence of categories between theories and Boolean logical categories.

Definition 3.20. Let I,I’ : Ty — T be strict abstract interpretations. A transformation
n: I — T’ comprises the following data:

1. For every sort S of Ti, a definable function ng : I(S) — I'(S) in Ty, such that

2. for every formula p(z) of sort S in T1, ng : I(S) — I'(S) restricts to a definable function
Ne(e) : L(p(x)) = I'(p(2)).

Definition 3.21. Let us say that two strict interpretations I,I’ : Ty — T5 are provably equiva-
lent if for every formula ¢ of 77,
Ti+=1(p) < I'(p).

Similarly, we say that two transformations I :n’, I’ are provably equivalent if for every sort S,
77/
the graph of ng is Th-provably equivalent to the graph of 7.

Let [I]~ and [I'].~ be two equivalence classes of interpretations mod provable equivalence. We
define a transformation [I]. — [I’]. to be an equivalence class of transformations I — I’ mod

provable equivalence. It is easy to see that this does not depend on our choice of representatives
I, I’ of the equivalence classes of interpretations.

Proposition 3.22. Let I,1I' : Ty — Ty be strict abstract interpretations, and let n : I — I' be a
transformation. Then the construction I — Fy from [Proposition 3.19 determines from n a natural
transformation of elementary functors 1 : Fr — Fp.

Proof. A natural transformation F; — F assigns to each object A of Def(7}) a definable function
Fr(A) — Fp(A) which is natural with respect to definable functions A — B.

Our definition of natural transformation already gives us a collection of definable functions 7j4 :
Fr(A) — Fp(A) (by taking the mod-T,-provable equivalence classes of the definable functions 74)
and so it remains to verify that for every definable function f : A — B, the following diagram
commutes:

Fi(A) —M Fp(A)

Ei)| |Fwn

Fr(B) B Fr(B)

Definition 3.23. We define the 2-category of first-order theories, written Th, by

Objects: first-order theories
df
Th = < 1-morphisms: strict interpretations mod provable equivalence

2-morphisms: transformations.

Definition 3.24. We define the 2-category of Boolean logical categories, written BoolLogCat,
by
Objects: Boolean logical categories
BoolLogCat & 1-morphisms: elementary functors
2-morphisms: natural transformations.
Our goal for the remainder of this section is to prove the following theorem.
Theorem 3.25. The assignment

==y = Fl=lF,

T2 Def(Tz)

determines an equivalence of 2-categories Def(—) : Th — BoolLogCat.

Lemma 3.26. If I,I' : T — T’ are different morphisms in Th, then F; # F] as elementary
functors.

Similarly, if ni,me : I — I' are different transformations, then 11 # 72 as natural transformations
of elementary functors.

10

Proof. By definition I and I’ are different morphisms in Th if and only if they are not provably
equivalent. This means that there exists some formula ¢ of T such that I(p) are I'(¢) do not
represent the same equivalence class in Def(7”), so Fi(y) # Fp (p).

Similarly, 71 # n2 in Th if for some sort S, the definable functions 7; and 72 are not provably
equivalent. Then (71)s # (72)s, so T # 7. O

Lemma 3.27. Let F : Def(T1) — Def (1) be an elementary functor. Let F be the elementary
functor induced by the interpretation Ir, as in|Proposition 3.19

Then F = F.

Proof. We use [—]~ to denote an equivalence class modulo provable equivalence. Unwinding defi-
nitions, we see that for any formula ¢ of T}, we have

F([¢]~) = [Ir(9)]. = F([¢]~)
0

Lemma 3.28. A natural transformation of elementary functors € : F — F', where F,F’ :
Def(T)) — Def (1) determines a transformation (mod provable equivalence) of interpretations
n: IF — IF/, where IF,IF/ : T1 — TQ.

Then 1] = €.

Proof. For each sort S € Def(T'), put ng a [es]~. Since Ir and Ips are obtained by choosing
representatives from ~-equivalence classes and eg was natural, ng is a definable function (mod
provable equivalence) Ir(S) — Ip/(S) and for any formula ¢(z) of sort S restricts to a definable
function (mod provable equivalence) Irp(p(x)) — I (p(x)).

Then, as we did for we see that for an arbitrary formula ¢,

~

el = (Mol = €]

4

The following definition is essentially due to Makkai and Reyes (see “internal theories” in [4]).

Definition 3.29. Let C be a Boolean logical category. The internal logic of C is a theory T¢
defined as follows:

1. We form a language L¢ by associating to every object A of C a sort L(A), to every morphism
f: A — B of C a function symbol L(f) of sort L(4) — L(B), to every morphism from the
terminal object 1 > A a constant symbol L(c) of sort L(A), and to every subobject B < A
a relation symbol L4 (B) of sort L(A).

2. We form a theory Tc whose sentences specify the Boolean logical category structure on C.
That is,

(a) For every identity morphism idg : A — A,

TctHVz) (Lida)(z) = z).

11

(b) If g1 0 g2 = h in C, then

Te =(Vz) (L(g1)(L(g2)(2)) = L(R)(2)) .

) If 4xpB is a product diagram in C, then

Tct (Vae L(A)) (vbe L(B)) Blce L(A x B)) [L(ma)(c) =a A~ L(mp)(c) = b]

(c.f. [Proposition 3.5)).

f
(d) If C % A 33 B is an equalizer diagram in C, then
g

Tor (Va e L(A)) (3l e L(O)) [L()(@) = Lg)(a) < L(u)(c) = al.
(e) If By v By is the finite sup of By and Bs in the subobject lattice of A in C, then
TC — (VCL € L(A)) [LA(Bl \Y Bg)(a) L d LA(Bl)(a) \4 LA(BQ)(CL)].
(f) If C L Aisa morphism in C with image B = im(f) < A, then
To (Ya € L(A)) [(Be € L(CO)) (L(f)(c) = a) < La(B)(a)].

(g) If 1¢ is the terminal object of C, then

Tc }—(H!a € L(lc))[a = (l].

(h) If ¢ is the empty sup in the subobject lattice of an object A, then

TcH(Vae L(A)[-L(Tc)(a)].

The above data clearly equip C with a canonical functor L : C — Def(T¢), by identifying each
object of C with its corresponding sort in L, and by identifying each morphism of C with its

corresponding function symbol in L.

Theorem 3.30. The canonical functor L : C — Def(T¢) is an equivalence of categories.

Proof. We will show that the functor is essentially surjective by inducting on the complexity of
formulas in T¢ and showing that at every step of the induction, we can find a corresponding object

of C gotten by carrying out the construction of the formula “internally” in C.

The base of the induction is almost completely provided by the definition of T. We remark that,
given a comparison of two terms t; = ts, we can treat constants as nullary functions and reduce to
the case where t; is some composition of function symbols L(f) applied to some tuple of variables

12

T and where ty is some composition of function symbols L(g) applied to some tuple of variables 7.
Letting S denote the sort of the equality relation we’re using to compare ¢; and to, we have that

L(F)(@) = L@ @) ~ L(Sz x5 Sy)

(where S, x g .Sy is the pullback computed in C of S, and S, over S with respect to the morphisms
fandg.)

This is because by viewing a pullback as a composition of products and equalizers, our axiomati-
zation of T¢ gives that L(S, xg Sy) injects into L(S, x S,) with image La(S; x5.5y), and

Tct(Vae L(S;))(Vbe L(Sy))(Ace LA(SIXSSy))[L(?)(a) = L(g)(b) < L(ms,)(c) = anL(ms,)(c) = b],
which defines a bijection ¢! from L(f)(Z) = L(g)(¥) to La(S; xs Sy), so that

TeH(L(N@) = L@)®) < (La(Se xs Sy)(e (2,1))).

Note that above, we are in the following situation. There is a canonical bijection € : L(S, x Sy) —
L(Sz) x L(S,), given by sending a ¢ to the pair of projections (L(7s,)(c),L(rs,)(c)), and it restricts
along the inclusion L(S; x g S,) = L(S; x Sy) to the bijection € : L(S; xgSy) = L(f)(Z) = L(7)[®).
That is, the following diagram, with the horizontal arrows bijections, commutes:

—

L(S,) x L(S,) ——— L(S, x S,)

J J

L(N)@) = L@)@) < L(Sa x5 .5y).

So the definable bijection € is not just any definable bijection. It has the additional property that
a diagram like the one above commutes, where in particular the right vertical arrow is L of an
embedding in C. It is clear that for atomic formulas, the definable bijections witnessing the base
of the induction all satisfy this additional property.

We proceed with the induction. Let us say that an Lc-formula ¢(z), viewed as an object of
Def(Tc), has a counterpart if there exists an object A,,) of C such that there is a definable

Co(z

bijection L(Ayy)) =) ¢(x) in Def (T¢), which satisfies the additional property we discussed above.
If every Lc-formula ¢(z) has a counterpart, then L is essentially surjective.

If we know that the Lco-formulas ¢(x) and v(z) of sort S ~ L(C) have counterparts A, and
Ay (z), then we can form their join

Te k@) v (x) o (L(Ap@) (@) (@) v L(Ay@) (€p@) (),
and we put

)

af) €p(z) if € p(T)
Co(z)vyp(a) = T
€y(z) If = € Y(z)\p(z)

so that () v 1 (x) has counterpart A ;) v Ay(s) (finite sup computed in the subobject lattice of
C), witnessed by the definable bijection €, ;) (z)- We can argue analogously that p(z) A ¢(x) has
a counterpart.

13

Now suppose that ¢(z) of sort S £ L(C) has a counterpart A
— Ay (), With definable bijection e,
the complement of L(A,) — L(C).

o(x)- Then —¢(x) has counterpart
defined to be the restriction of the canonical bijection € to

Suppose that ¢(z,y) of sort Sy x S, £ L(Cy x Cy) has a counterpart. It is easy to check that the
canonical bijections (where we have abused notation by so far calling all of them €) are compatible
with projections, so that the diagram

L(C,) «—— L(C, x C)) — L(C,)

| | |

Sy ¢« Sz X Sy ———— Sy,
commutes, where the top horizontal maps are L of the projections C, x Cy = Cy, Cy, the bottom
horizontal maps are the projections S, x Sy =3 53, Sy, and the vertical maps are the €.

Let ¢ be the inclusion of A, into Cp x Cyy. Then Jzp(x,y) will have counterpart Az (.4 a

im(TrCy o L) — Cy, with €, ,) the unique map which makes the following diagram commute:

o(r,y) ——— Jzp(x,y)

L(Apay) — L(im(;r o).

This completes the induction on complexity of formulas, and we conclude that L is essentially
surjective.

Fullness does not immediately follow from essential surjectivity. Instead, we must look closer at
the proof and use the additional property which allowed us to conclude that every Lc-formula had
a counterpart.

Indeed, let f : L(A) — L(B) be a definable function in Def(7¢). Then there is a subobject G of
A x B such that the following diagram commutes:

L(G) — L(A x B)

% lg

T(f) — L(A) x L(B).

Since T'(f) was a definable function, the canonical projection L(A) x L(B) — L(A) restricts to a
bijection I'(f) ~ L(A). Then L of the canonical projection A x B — A restricted to G must be a
definable bijection.

It now remains to show that this implies that the canonical map G — A is an isomorphism, since
then G will be the graph of the morphism A > G — B.

From how we defined T¢, L preserves diagonal embeddings A — A x A. If K is the kernel pair
K3 A 5, Bofa morphism f in C, then the diagram

L(A x A) —— L(A) x L(4) —= L(4) Y%,

| |

L(K) ——— ker(L(f))

L(B)

14

commutes. If L(f) is injective, then ker(L(f)) is the diagonal relation on L(A) and hence L(K) is
the diagonal relation on L(A).

Similarly, if L(f) is surjective, then its image is all of L(B).

It therefore suffices to show that, for subobjects A, B — C of C, whenever Tc + Lc(A) — La(B)
as predicates on L(C), A € B as subobjects of C' in C.

By the categorical completeness theorem and the discussion of internal theories in [4], we know
that:

1. Whenever the inclusion of A into C' does not factor through the inclusion of B into C' in (f}
there exists an elementary functor F': C — Set such that F/(B)\F(A) # &, and

2. every elementary functor F' : C — Set can be expanded to a model of Mg of T¢.

Therefore, if C does not know that A = B as subobjects of C' in C, there is a model Mg of T¢
such that Mp(B)\Mp(A) # . Therefore, T |- L(A) — L(B).

This shows that L is full. This also shows that L is faithful: if f; # fo in C, then T' |- L(I'(f1)) <
L(L(f2))- O

Proof of Theorem [3.25. [Lemma 3.26|shows that Def(—) is faithful on 1-morphisms and 2-morphisms,
[ILemma 3.27| and [Lemma 3.28| shows that Def(—) is full on 1-morphisms and 2-morphisms, and
Theorem 3.30| shows that Def(—) is surjective up to equivalence. O

4 Pretoposes and the (—)®-construction

Previously, we established an equivalence

{ﬁrst—order theories and strict interpretations}

!

{Boolean logical categories and elementary functors}.

We would like to expand this picture to incorporate arbitrary interpretations of theories. As we saw
during the proof of [Proposition 3.19, we needed to assume strictness of the interpretation I : T — T’
to ensure that the graph I'(f) of a definable function f in 7T is interpreted as a relation I(I'(f))
which T” proves to be the graph of a function. Without the strictness assumption, equality is
interpreted as a proper equivalence relation F, and then the definition of an abstract interpretation
only ensures that I(f) is a function only on E-equivalence classes, i.e. only after quotienting out
by E.

Therefore, if we can always form quotients of definable sets by definable equivalence relations, then
we can canonically associate to any non-strict interpretation a “homotopic” strict interpretation,
by quotienting the non-equality equivalence relations back into equality relations.

*Warning: this is not the same as saying that the terminal map from the complement B\A to 1¢ has image = 1c.
This would mean that the internal theory of C proves that B\A is nonempty; however, if C merely does not contain
a factorization of A — C through B — C, then the internal theory leaves the proposition L(A4) — L(B) undecided.

15

First-order theories don’t always have definable quotients of definable sets by definable equivalence
relations, and Boolean logical categories don’t always have quotients of objects by equivalence-
relation-objects. However, we can canonically enlarge any theory T' (and so, by Theorem any
Boolean logical category C) to a theory T (resp., to a Boolean logical category é) which does have
definable quotients of definable sets by definable equivalence relations (resp. does have quotients
of objects by equivalence-relation-objects). Then arbitrary abstract interpretations 77 — T5 will
correspond to strict abstract interpretations T — T;q.

Our goal in this section will be to make everything we have just said precise, and to characterize
those logical categories of the form C' = Def (7).

Definition 4.1. An equivalence relation (or internal congruence) in a category C with finite
limits is the following data:

1. An object X and a subobject £ — X x X,

2. A reflexivity map r : X — E such that r is a section to both projections 7y, m : X x X — X,
3. A symmetry map s : E — E such that m o s = m and w9 0 s = 7y,

4. A transitivity map v : E xx E — E, where E x x F is the pullback of 7y and 75, as in the

following pullback square (where i : R — X x X is the inclusion map):

ExyE -5 R

p1l J/ﬂ'l o1

R T 0% X

such that m; otopy =moiot,and mpotopy =mgo0iot.

Example 4.2. Let f : X — Y be a morphism in Def(T"). The pullback X xy X with respect to
fand f, asin

x 71 .y

4]

X xy X —— X,

s
can be canonically viewed as an internal congruence X xy X =.¢ , called the kernel or kernel
T2

pair of f. We write ker(f) Iy xy X.

Definition 4.3. Let £ 3 X be an equivalence relation in C. A quotient of E, written X/F), is
the coequalizer of £ =3 X.

Definition 4.4. A pretopos is a Boolean logical category C that additionally satisfies:

1. C has a stable disjoint sum of any pair of objects. A disjoint sum A L B of objects A, B is a
coproduct of A and B such that, for the canonical mapsi: A< A Band j: B— Au B,
7 and j are monomorphisms and the pullback A X 4,,p B is isomorphic to 0.

16

Stability for disjoint sums means that whenever we have a diagram of the form

A—“ s ALB

.

A ——
[
B/

with A" and B’ pullbacks, then C’ is the disjoint sum of A" and B’.

2. C has quotients of equivalence relations. Equivalently, every equivalence relation in C is the
kernel pair of some map.

The condition for theories analogous to condition 2| above is elimination of imaginaries.

Definition 4.5. A theory T eliminates imaginaries if for every definable equivalence relation
E 33 X, there exists a definable set X/E and a definable function g such that F = X is the
kernel of X ™5 X /E.

Definition 4.6. The following construction, due to Shelah, associates to any theory 7' a larger
theory T°1 and a strict interpretation 7' — T4, such that T°? eliminates imaginaries.

1. First, we expand the language £ of T to a language L£°? by adding, for every definable
equivalence relation £ 3 X, a new sort Sgp and a new partial function symbol fr: X — Sg.

2. T*1 is axiomatized by the theory of T" on the original sorts, plus sentences which assert that
for every definable equivalence relation £ =3 X in T, fp : X — Sg is a surjection and
E = ker(fg).

The new sorts Sk are called imaginary sorts, and their elements are called imaginaries. The
original sorts are called real sorts. There is a canonical strict interpretation T' — T°? which is
determined by the inclusion of languages £ < £,

The empty sort 1 has itself as a unique quotient, so we view it as both a real and imaginary sort.
The construction suggests that T' determines 7°?. We can make this precise.

Proposition 4.7. Any product Sg x Sg of imaginary sorts is canonically isomorphic to a single
imaginary sort Sgr, and any definable set in T is canonically isomorphic to the quotient of a
definable set of T.

Proof. Let E 3 X and E' 2 X’ be two definable equivalence relations on definable sets X and
X'. There is a canonical surjective map

XxX' - X/ExX'/E', by (z,2)— (z/E,2'/E)

with kernel relation E” =3 X x X' — X/E x X'/E’. Therefore, there is a canonical definable
bijection Sg x Sgr ~ Sgr. Note that this implies that in T°Y, definable subsets of S x Sg
correspond precisely to definable subsets of Sgn.

Now, let S = Sg, be an imaginary sort. We write T = x1,...,2y,Y1,...,Ym, Where x1,..., 2,
are the real-sorted variables and yi,...,¥,, are the imaginary-sorted variables belonging to the
imaginary sorts Sg,,...,SEg,,, where each E; is an equivalence relation on a definable set X; of sort

17

B;. Let ¥(T) be a quantifier-free definable set in 7. Putting ¢(Z) into disjunctive normal form, we
reduce to the case where ¥ () is a conjunction of atomic and negated-atomic £%4-formulas. We will
proceed in two steps. First, we will show that if we put quantifiers over all the real-sorted variables
of (Z), the imaginary-sorted result is canonically isomorphic to a product of images of T-definable
sets. Second, we will show that given an imaginary-sorted product of images of T-definable sets,
putting quantifiers over any of the imaginary-sorted variables still results in an imaginary-sorted
product of images of T-definable sets. Quantifying over all the variables except z1, we will get that
each disjunctand of the disjunctive normal form of 37\z11(Z) is the image of a T-definable set, and
so their union will be the image of a T-definable set.

So, assuming that ¢ (%) is a conjunction of atomic and negated-atomic £°I-formulas, we rearrange
the conjunctands according to which kinds of variables appear: purely real, mixed, and pure
imaginary, so that

W(T) = (/\9?@)) A (/\9%@) A (/\e,g(;c))
i j k

The only purely imaginary-sorted atomic £°I-formulas are just the equality relations on each sort
SE;. Some of the E; might coincide. Fix an Fj;; then, the pure-imaginary part of ¢(z) asserts some
equalities and inequalities among the n’ distinct variables belonging to some Sg,. Replacing “= Sg, 7
and “#g, 7 by E; and —E; throughout, obtain a definable subset of XZ-"/ whose image under fg,
is the conjunction of those Sg;-sorted conjunctands of A\, Hi (). Repeating this for each distinct
equivalence relation among the Ey, ..., E,, we write /\, Hli (Z) as a product of images of T-definable
sets.

To finish the first step, it remains to see what happens to the purely-real and mixed parts of (%)
when we quantify over all the real variables. The purely-real part just becomes an L-sentence.
The mixed part consists of the graph relations I';(f)(z,y) of the projections fg, : X; — Sg, (and
their negations). So there are four cases, depending on whether the real variable x is existentially
or universally quantified over, and whether or not I'; is negated. It is easy to see that for all the
cases except for the case where z is existentially quantified over and T'; is positive (so that we have
an image), the resulting formula Qx(—)I'(f)(z,y) is equivalent mod 7°? to a purely-real sentence
about F; and X;. If the real variable x does not appear in the pure real part, then 3al';(z,y) is
equivalent mod 7°9 to Sg;.

Summarizing, we have that

321 ... 3z, </\ eﬁ(@) A (/\ 9?%:))

is canonically isomorphic to a product of images of T-definable sets. Since the purely-imaginary part
contains no real variables to quantify over and each Sg, is the image of X; under fg,, 3z ... 3z,9(7)
is canonically isomorphic to a product of images of T-definable sets. This completes the first step.

If (@) = (1 € fe,(Y1)) A+ A (yn € fE,(Yy)) is an imaginary-sorted product of images of T-
definable sets, then existentially quantifying over any y; has the same effect as deleting (y; €
fe,(Yy)), so the result is still a product of images of T-definable sets. Similarly, universally
quantifying over any y; has no effect on the conjunctands (y; € fg,(Yi)) when ¢ # k, and
Vyrdz [(x € Yi) A fE,(2) = yi] is equivalent mod T°? to the assertion in 7' that Y is equal to
Xk, the domain of the equivalence relation Ej. Therefore, when we universally quantify over yg,

18

the conjunctand (y; € fg, (Yx)) can be replaced by this sentence in 7', which is a subterminal object
of 1 whose image is itself. So both Jyx1(7) and Yy (7) are canonically isomorphic to products of
images of T-definable sets. O

Proposition 4.8. For any theory T, Def(T°Y) is a pretopos.
Proof. Def(T°1) is already a Boolean logical category, so it remains to check the existence of
quotients and stable disjoint sums.

Quotients: If £ 33 X is a definable equivalence relation of 7%, then by Proposition [£.7] the
diagram F =3 X is the image of an T-definable equivalence relation ' =3 X', which therefore
has quotient Sgr.

Disjoint sums: In any sort S of 7', S x S has at least two disjoint definable sets, given by the
diagonal relation x =g y and its complement x #g y. We can define an equivalence relation
FE on S x S whose classes are precisely these two definable sets, and Sg will have two distinct
constants 0 and 1. Let X and Y be two definable sets in 7°1. We put

Xuy ¥ X xyx 0.1} /pe v,
where

ife=¢ =0, then z =12’

/ / / /
ZT,Y,€) ~Ex.y (,Y,€) <= e=¢€ and { .
(@9,€) ~Exoy (@9 €) {1f6=6’=1,theny=y'.

Whenever we take points in a model, X 1Y as we have defined it is canonically isomorphic
to {(#,0)|z € X} u{(y,1)|y € Y} (unions of sets are not immediately available to us via
v if X and Y are differently-sorted, which is why we had to use the equivalence relation.)

This determines the canonical inclusions A —%> A L B <£- B, and it is easy to see that their
pullback is 0.

Stability of disjoint sums: Consider a diagram of T°%-definable sets of the form

A-—“ 5 AuUB

where C’ is a subobject of A 1 B and A’ and B’ are pullbacks.

There is a canonical definable map A’ 1 B’ — C’ such that the following diagram commutes:

A ' ¢ B

~

A U B.

Since ¢4 and tg are mono, their pullbacks A” — C’ and B’ — C’ are also mono. Therefore,
the map A’ U B’ — (' is also mono.

19

On the other hand, in any model M of T, every point ¢ € M(C") is the image of something
in M(A’) or M(B’); since the above diagram commutes, the function M (A’ L B') — M(C’) is
surjective. Since M was arbitrary, by the completeness theorem 7 proves that A’ B — C’
is a bijection.

O

We will spend the rest of this section proving that one may as well replace abstract interpretations
between theories with elementary functors between Def(—) of (—)°? of those theories.

Here is what we are going to do. Given an abstract interpretation I : 77 — 75, we can lift
I to a strict abstract interpretation I, : 71 — Ty by quotienting out the equivalence relations
interpreting the equality symbols in 77, which then corresponds by Theorem to an elementary
functor Def(T;) — Def(T5%). This determines a “functor”

(=)t : Int(T4, To) — BoolLogCat(Def (T}), Def (T5%))
which will be an equivalence of categories.

(We put scare quotes around “functor” because we have not defined a notion of morphism for
abstract interpretations. In fact, we will tautologically define morphisms of abstract interpretation
T1 — T5 to be transformations of the associated strict abstract interpretations 177 — T;q.)

Dually, instead of lifting I to T, %, we can extend I to an abstract interpretation T: 174 — Ty. This
determines a functor /\
(*) : Int(Tl,Tg) i Int(qu,Tg)

which will be an equivalence of categories.

—

Let () denote the composition (—); o (—). Then the “functor”
(=) : Int(Ty, Ty) — Pretop(Def(T5%), Def (T5%))
will be an equivalence of categories.

Definition 4.9. Let I : 177 — 715 be an abstract interpretation. We define a strict abstract
interpretation I; : 71 — Ty? as follows. Let X be a definable set of Ty of sort S with equality
relation =g. Let E be the equality relation on X. Then we put I;(X) to be the following imaginary
sort of T4

X /I(=s) ~ Syp) € Ty"

I is a lift of I along the canonical interpretation 7o — T4, i.e. the following diagram commutes:

/T

T1 *}TQ

By Theorem I; determines an elementary functor Fy, : Def(T) — Def (75%).

We define a morphism of two abstract interpretations I, I’ : T} — T5 to be a transformation of the
strict abstract interpretations I, I;. This obviously defines a category structure Int(7%,7%) on the
collection of abstract interpretations 77 — 7%, such that I — I; — Fj, determines an equivalence
of categories Int(7},72) ~ BoolLogCat(Def(7}), Def (75%)).

20

Definition 4.10. Let I : 77 — 15 be an abstract interpretation. We define an abstract interpreta-
tion [: 774 — Ty as follows. For every imaginary sort Sgp = X/E in 174,

1(Sp) £ 1(X),1(=s,) L I(E), and I(T(fr)) L I(E).

Recall from Definition that Th(71,7>) denotes the category of strict interpretation 77 — T5

—

with transformations as morphisms. The (—) construction determines a functor (—) : Th(Ty,T5%) —
Th(T74, Ty%) as follows: for each transformation n : I — I, and for each imaginary sort Sp ~ X /E
in 774, it is easy to see that by virtue of being a transformation, nx : I(X) — I’(X) descends to a
map 1x/g : [(X)/I(E) — I'(X)/I'(E), and so we put

. dt
n(Sk) = nx/e-

We claim that (/—\) : Th(Th,T5%) — Th(T7%, T34 is an equivalence.

There is a functor going the other way given by precomposing by the canonical interpretation
Ty — Ty, This is a retract of (—), so (—) is faithful.

(/—\) is full: for the definition of a transformation to be satisfied, the components of any transfor-
mation I — I’ at imaginary sorts Sg for £ =3 X is determined by the component at X.

—

(—) is essentially surjective: let J : 77" — T3 be some strict interpretation. Let J’ be the
interpretation obtained by precomposing by the interpretation T3 — 77 and then applying the

—

(—) construction again. Since J was an interpretation, J(Sg) is canonically isomorphic to the
quotient of J(X) by J(FE), which is J'(Sg). These canonical isomorphisms determine a natural
isomorphism J ~ J'.

The functor Th(T1,T,%) — Th(7}4,T5) determines a functor
Int(Tl, Tg) - Int(Tleq, Tz),

and since Th(Ty,T5%) — Th(17%,T5,") was an equivalence, so is Int(T%, 7o) — Int(17%, Tb).

Definition 4.11. Let C be a Boolean logical category. The pretopos completion of C is
C € Def ((T¢)*).

Definition 4.12. Let F' : C — C’ be an elementary functor between Boolean logical categories.
We define the pretopos completion of F' to be

F:CoC

in the sense of (—) a (/—\) o (—)¢ in the above discussion.

Identifying theories with Boolean logical categories, we also define the pretopos completion T of an
abstract interpretation I : 77 — Tb to be the strict abstract interpretation I : T7* — T3,

21

5 Categories of models

Definition 5.1. Let M and N be models of T. An elementary embedding f : M — N
comprises the following data:

1. For every sort S of T, a function fg: M(S) — N(S), such that

2. the collection {fg} is compatible with forming tuples of sorts: if S is a tuple of basic sorts
S = (B1,...,Byn), fs = fp, X+ x fB,, and furthermore

3. for every tuple @ of sort S and every formula ¢(Z) such that M = ¢(a), N = ¢(fs(@)).
Definition 5.2. The category of models of a theory T is defined to be:

Mod(T) dr Objects: models of T,
Morphisms: elementary embeddings.

The category Set of all sets is a Boolean logical category, although unlike those Boolean loogical
categories of the form Def(T') for theories T, Set is not small.

However, for every regular cardinal x, the category Set, of all hereditarily x-small sets is a small
Boolean logical category. By the downward Léwenheim-Skolem theorem, for every theory there
exists some & such that one only needs to test points in k-small models to invoke the completeness
theorem, and Set = [J,. Set,..

Proposition 5.3. Every model M =T determines an elementary functor Def(T) — Set.

Proof. By item 3 of [Definition 2.1} a model is an assignment of sets to L-formulas. Since T proves
that every definable function is a function, this must be true after taking points in a model, so this
assignment is a functor M : Def(T) — Set. Now we must show that the functor M is elementary.

To see that M preserves finite limits, it suffices to check the preservation and reflection of limits
on just products and equalizers.

The usual construction of an equalizer of two maps f,g : X — Y in Set is always definable: it is
the subset of X consisting of those elements x such that f(x) = g(x).

Similarly, if X and Y are definable, then X x Y is definable, and the projections X x Yy X ,Y are
definable. -

If J is a finite diagram in Def),/ (7) and lim J its limit, and Z € Def/(T) is a definable set in M
equipped with a cone of definable maps to J, then Z has (in Set) a unique mediating map to lim J,

which is definable because it is definable in the cases when J is a product or equalizer diagram,
the limit is finite, and by the canonical product-equalizer decomposition the mediating map for a
general finite J is a composition of finitely many mediating maps for products and equalizers.

To check preservation of finite sups, let {¢1(x),...,¢on(z)} be a finite collection of formulas of the
same sort. Then their sup is given by \/, ¢;(z), and the sup of {p1(M),..., ¢, (M)} is precisely
U,, wi(M). The empty sup is the empty formula, represented in Def(T") by the T-provable equiv-
alence class of “x # x”, and this is interpreted by M as the empty set, which is the empty sup for
any set in Set.

22

To check preservation of images, let f be a definable function. The image of f in Def(T") is just the
formula which describes the image of f, and M interprets this formula as the image of f(M). O

[Proposition 5.3 determines an inclusion Mod(7') — BoolLogCat(Def(T'), Set).

Proposition 5.4. The inclusion Mod(T) — BoolLogCat(Def(T'), Set) is an equivalence of
categories.

Proof. Fix an elementary functor F' : Def (7)) — Set. We must find a model M such that M ~ F as
elementary functors. Equivalently, we will show that we can “perturb” F' to a model (which is just
an elementary functor with some additional strictness conditions) without changing its isomorphism
type as a functor.

For every basic sort B, there are canonical isomorphisms F(B¥) ~ F(B)*. Up to isomorphism
of functors (where the isomorphism of functors is given by conjugating by these canonical isomor-
phisms), we can assume therefore that F'(B*) = F(B)*.

Furthermore, for every sort B = Bj x -+ - x By, there are canonical isomorphisms F(By X - - - x B,) ~
F(By) x -+ x F(By). Again, up to 1somorphlsm of functors, we can assume that F'(B) (q B).
Furthermore, if ¢(z) is a formula of sort B, then there is a canonical definable injection ¢(z) — B
such that the image of F(p(z) — B) is a subset of F'(B); arguing as before, we can assume up to
an isomorphism of functors that F(¢(z)) € F(B). Similarly, we can assume up to an isomorphism

of functors that if T' = Va(p(x) — ¢ (x)), then F(p(x)) € F(¢(x)).

The canonical isomorphisms described so far induce isomorphisms of Boolean algebras 9B ~ ().
Therefore, up to isomorphism of functors, we can assume that F(p(z) v (x)) = F(p(z))u ((x))
(resp. A and negations).

Since F' preserves images, then for every definable function f, F(im(f)) ~ im(F'(f)). Then up to
isomorphism of functors, F(im(f)) = im(F'(f)).

Now we have, up to isomorphism, completely “strictified” F'. It remains to show that an elementary
functor which strictly preserves products, finite sups, and images is a model.

Indeed, let & be a tuple of terms such that R(¢) is an atomic sentence. Then by our previous
reductions, F'(z = @) € F(R(x)), so F = R(?).

It is obvious that if ¢ and ¢ satisfy that (T'}= ¢ = F = ¢)and (T ¢ = F), then
TEery = FlEpa).

If p(z) is a formula, then 7' |= Jxp(z) if and only if the image of the projection of ¢(z) to the
empty sort (which is the empty product, so is the terminal object 1) is all of 1. Since F'is a logical
functor, it preserves the terminal object and all maps into the terminal object, so F' of the image

of the projection of ¢(x) to the empty sort is still 1. Then F(p(x)) cannot be empty, since if it
were, the image of its canonical map to 1 would be the empty set. So F' = Jxp(z).

Similarly, if T = —), then if ¢ is quantifier-free it is easy to see that F' |= —. If ¢ is of the form
Jp(x), then as a subobject of the terminal object 1, 3xp(x) = ¢ the empty sup. Since F is logical,
it preserves empty sups, so again Jzp(x) = & as a subobject of the terminal set 1, and therefore,

F = —3zp(z).

This concludes the induction on complexity of formulas, and finishes the proof. O

23

For any regular cardinal x, Set, is a pretopos in addition to being a Boolean logical category. So,
by the discussion above, we have equivalences

Mod(T) ~ BoolLogCat(Def(T), Set,), and Mod(7T°?) ~ Pretop(Def(7°), Set,,).

By the discussion following |Definition 4.10, BoolLogCat(Def(T), Set,.) and Pretop(Def(7°?), Set)
are equivalent. We conclude:

Proposition 5.5. For any theory T, the categories Mod(T') and Mod(T°?) are equivalent.

Remark 5.6. In the discussion following one can show that the canonical functor
Pretop(7°4,Set) — BoolLogCat(T, Set) induced by the canonical interpretation 7" — T is
pseudo-inverse to the functor (/—\), so that the equivalence Mod(7T') ~ Mod(7*?) is given by the
canonical functor Mod(7°?) — Mod(T') induced by the canonical interpretation 7" — T°4.

Definition 5.7. In general, an interpretation 7' — T’ induces a strict interpretation of pretopos
completions 7% — T7"¢1 and thus an elementary functor Def(7°1) — Def(77°?). Since models
are essentially elementary functors into Set, the elementary functor Def (7°%) — Def(7”?) pulls
back models of 77 to models of T', inducing a functor Mod(7") — Mod(T'). We call such functors
between categories of models reduct functors. If I : 7' — T’ is an abstract interpretation, we
write I* : Mod(T") — Mod(T) for the induced reduct functor.

6 Notions of equivalence between the notions of interpretations

In this section, we examine various notions of equivalence between abstract interpretations, concrete
interpretations, and elementary functors.

The first notion is due to [I].

Definition 6.1. Let M =T and M’ =T, and let (f, f*),(g,9%) : M — M’ be concrete interpre-
tations. We use the letter U for the preimages of sorts along f, and we use the letter V' for the
preimages of sorts along g.

We say that (f, f*) and (g, g*) are homotopic if for every sort S of T', the pullbacks

Us Xp(s) Vs — Vs

| L

are definable in M’.

Remark 6.2. Note that if fg and gg are injective, then the above pullback describes the graph of
a bijection Ug ~ V.

We define the analogous notion for abstract interpretations.

Definition 6.3. Let I, I’ : T} — T, be abstract interpretations. For every sort S, we denote by Fg
the definable equivalence relation in T given by I(x =g y) (resp. Eg,I’). A homotopy between
I and I’ comprises the following data:

24

1. For every sort S of T1, a definable relation Rg < I(S) x I'(S), such that the following
conditions are satisfied:

2. (Naturality mod FE and E’) For every formula ¢(z) of sort .S,
Ty (Vo € I(p(2)))[Rs(z,y) — Qy' € I'((2)))[Es(y,4/)]]-
3. (Univalence mod E and E’)

Ty (Y1, w9 € 1(S)) (Vy1, y2 € I'(S)) [Es(21, X2) = (Rs(z1,91) A Rs(x2,y2) = Es(y1,92))]-

4. (Injectivity mod E and E’)

Ty (V1,22 € 1(S))(Vy1,y2 € I'(S))[E5(y1,y2) A Rs(z1,51) A Rs(w2,y2) — Es(z1,22)].

5. (Surjectivity mod E and E’)

Ty (vy € I'(S)) (3 € I(S)[Rs(x.1)].

Finally, given two elementary functors F, F’ : C; — Cs, a natural notion of equivalence is just
natural isomorphism of functors.

An immediate consequence of is:

Proposition 6.4. Let I and I' be abstract interpretations Ty — Ty. I and I' are abstractly
homotopic if and only if the elementary functors associated to their pretopos completions

Fy, Fy, Def(77") — Def(T5%)
are naturally isomorphic.

Corollary 6.5. Let I,I' : Ty — Ty be homotopic abstract interpretations. For any model N =
15, there exists an isomorphism {US}SESorts(Tl) of models of T1 such that the following diagram
commautes:

I*(N)
(f1.75)
4 N
/(f;u)
I'*(N).

From we get:
Proposition 6.6. Let M and N be models of T and T'. If two concrete interpretations

(f;f*),(9.9%): M —> N

are homotopic, then the underlying abstract interpretations f*,g* : T — T’ are homotopic.

25

References

[1] G. AHLBRANDT AND M. ZIEGLER, Quasi-finitely axiomatizable totally categorical theories,
Annals of Pure and Applied Logic, 30(1) (1986), pp. 63-82.

[2] S. M. LANE, Categories for the working mathematician, 2nd ed., Springer-Verlag, 1998.

[3] M. MAKKAI, Stone duality for first-order logic, Annals of Pure and Applied Logic, 40 (1988),
pp. 167-215.

[4] M. MAKKAI AND G. REYES, First-order categorical logic, Springer-Verlag, 1977.

26

	Theories and abstract interpretations
	Structures and concrete interpretations
	Categories of definable sets and elementary functors
	Pretoposes and the (-)eq-construction
	Categories of models
	Notions of equivalence between the notions of interpretations

