Computer Arithmetic

Jamie M. foster http://www.math.mcmaster.ca/~jmfoster

Floating point numbers

Any real number, *i.e.* any number in \mathbb{R} , is represented on a computer by a **floating point** (FP) number. A particular floating point number system, $\hat{\mathbb{N}}$, is characterised by four integers:

- 1. β Base or radix
- 2. p Precision
- 3. [l, u] Exponent range

Any number $x \in \hat{\mathbb{N}}$ has the form

$$x = \pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \dots + \frac{d_{p-1}}{\beta^{p-1}} \right) \beta^m,$$
 (1)

where d_i is an **non-zero** integer such that $0 \le d_i \le \beta - 1$, $i = 0, \dots, p - 1$. *m* is an integer such that $l \le m \le u$.

Properties of FP numbers:

- 1. FP representation is unique.
- 2. No digits wasted in leading zeros
- 3. If working in binary, *i.e.* with $\beta = 2$, leading digit, d_0 is always 1 and hence need not be stored.
- 4. FP numbers are finite and discrete.
- 5. There are, in total, $2(\beta 1)\beta^{p-1}(U L + 1) + 1$ in an FP system.
- 6. The smallest positive FP number is β^L (known as the under flow limit).
- 7. The largest positive FP number is $\beta^{U+1}(1-\beta^{-p})$ (known as the over flow limit).
- 8. FP numbers are not uniformly distributed throughout their range.

Rounding

The two most common rules of rounding are **chop** and **round to nearest**.

Chop: Number is truncated after p-1 digits.

Round to nearest: x is represented by the $\hat{x} \in \mathbb{N}$ that is the nearest to x. In the case of tie, round to the nearest even.

Chop	Round to nearest
1.6	1.6
1.6	1.6*
1.6	1.7
1.7	1.7
1.7	1.8*
	Chop 1.6 1.6 1.6 1.7 1.7

Table 1: Rounding and chopping in a floating point system.

* Round to even!

Machine precision

Characterises the accuracy of a computing system. For rounding by **chopping**:- $\epsilon_{mach} = \beta^{1-p}$ For rounding to **nearest even**:- $\epsilon_{mach} = 0.5\beta^{1-p}$ For a general FP system

$$\left|\frac{\hat{x}-x}{x}\right| \le \epsilon_{mach}.$$
(2)

Comment: In IEEE FP system $\epsilon_{mach} = 2^{-24} \approx 10^{-7}$ in single precision and $\epsilon_{mach} = 2^{-53} \approx 10^{-16}$ in double precision.

Subnormal FP numbers

If we relax the condition on the leading digit, d_0 , and allow it be zero, then the extra numbers added to the FP system the subnormal (or *denormalised*) FP numbers.

Comment: No change in machine precision by denormalization. Subnormal numbers have lower digits of precision.

FP arithmetic

If the operation of 2 p-digit numbers contains more than p digits, then the excess digits are lost in in rounding.

1. For addition and subtraction, the exponents must match before their mantissas can be added or subtracted.

- 2. No such restriction for multiplication or division.
- 3. Overflow is more serious problem than underflow.