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Abstract. A mixture model of Gaussian copulas is proposed to cluster mixed data. This
approach allows to straightforwardly define simple multivariate intra-class dependency models
while preserving classical distributions for the one-dimensional margins of each component in
order to facilitate the model interpretation. Moreover, the intra-class dependencies are taken into
account by the Gaussian copulas which provide one robust correlation coefficient per couple of
variables and per class. This model generalizes different existing models defined for homogeneous
or mixed variables. The Bayesian inference is performed via a Metropolis-within-Gibbs sampler.
The model is illustrated by a real data set clustering.

Keywords. Clustering, Gaussian copula, Gibbs sampler, Mixed data, Mixture models.

1 Introduction

With the informatics advent, multivariate data sets become more complex. Particularly, they
often contain mixed data (variables of different kinds). Clustering provides an efficient solution
to extract the main information from the data by grouping the individuals into few characteristic
classes. It can be performed by probabilistic methods modelling the data generation whose the
most popular one uses finite mixture models of parametric components [12]. In such a case, a
class gathers together the individuals drawn by the same distribution. Obviously, the choice
of the component distributions depends on the kind of the variables at hand. However, few
distributions exist to model mixed data and their margin distributions are often complex [8].

The simplest way to cluster mixed variables consists in approaching the data distribution
with a finite mixture model assuming independence conditionally on the class membership of
each individual. This model, called locally independent model, obtains good results in many real
clustering problems [11, 6], especially when few individuals are described by several variables.
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Indeed, when its one-dimensional margins of each component follow classical distributions, this
model provides a meaningful summary of the data by its margin parameters. However, this
model leads to biases when its assumption of conditional independence is violated.

The aim of this paper is to present a model-based clustering for mixed data of any kinds of
variables admitting a cumulative distribution function. This model has a double objective: to
preserve classical distributions for all its margin distributions of each component and to model
the intra-class dependencies. This objective can naturally be achieved by the use of copulas [9]
since these objects allow to build a multivariate model by setting, on the one hand, the one-
dimensional margins, and, on the other hand, the dependency model between variables. More
precisely, the data distribution is approached by a full parametric mixture model of Gaussian
copulas whose the margin distributions of each component are classical and whose the Gaussian
copulas [7] model the intra-class dependencies. The new mixture model is meaningful since
each class is summarized by its proportion, by the parameters of each marginal distributions
and by the correlation matrix of the Gaussian copula providing one coefficient per couple of
variables measuring the intra-class dependency. In addition, a principal component analysis
(PCA) computed per class is a straightforward by-product of the model. Indeed, it is computed
on the correlation matrix of the class and it can be used to summarize the main intra-class
dependencies and to provide a scatter-plot of the individuals according to the class parameters.

This paper is organized as follows. Section 2 presents the mixture model of Gaussian copulas
for clustering, its links with the existing models and its contribution to the visualization of mixed
variables. Section 3 is devoted to the parameter estimation in a Bayesian framework. Section 4
illustrates the model by a real data set clustering. Section 5 concludes this work.

2 Mixture model of Gaussian copulas

Finite mixture model

Let the vector of e mixed variables x = (x1, . . . , xe) ∈ Rc×X , whose the first c elements are the
set of the continuous variables further denoted by xc, and whose the last d elements are the set
of the discrete variables (integer, ordinal or binary) further denoted by xd, with e = c+d. Note
that if xj is an ordinal variable with mj modalities, then it uses a numeric coding {1, . . . ,mj}.
Data x are supposed to be drawn by the mixture model of g parametric distributions whose the
probability distribution function (pdf) is written as

p(x;θ) =

g∑
k=1

πkp(x;αk), (1)

where θ = (π,α) and where π = (π1, . . . , πg) groups the proportions of each class k denoted by
πk, and respects the following constraints 0 < πk ≤ 1 and

∑g
k=1 πk = 1, while α = (α1, . . . ,αg)

groups the parameters of each class k denoted by αk.

One-dimensional margins of the components

The margin distribution of xj , for the component k, belongs to the exponential family and has
p(xj ;βkj) for pdf and P (xj ;βkj) for cumulative distribution function (cdf). More precisely, the
margin distribution of each component is a Gaussian (if xj is continuous), Poisson (if xj is
integer) or multinomial (if xj is ordinal) distribution where βkj denotes the usual parameters.
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Dependency model of the components

The model assumes that each component k follows a Gaussian copula whose the correlation
matrix is Γk. We note Φe(.; Γk) the cdf of the e-variate centred Gaussian distribution with
correlation matrix Γk, and Φ−11 (.) the inverse cumulative distribution function of univariate
Gaussian variable N1(0, 1). Thus, the cdf of the component k is written as

P (x;αk) = Φe(Φ
−1
1 (u1k), . . . ,Φ

−1
1 (uek); 0,Γk), (2)

where ujk = P (xj ;βkj), αk = (βk,Γk) and βk = (βk1, . . . ,βke).

Remark 2.1 (Standardized coefficient of correlation per class). The Gaussian copula provides
a robust coefficient of correlation per couple of variables. Indeed, when both variables are
continuous, it is equal to the upper bound of the coefficient of correlation obtained by all the
monotonic transformations of the variables [10]. Furthermore, when both variables are discrete,
it is equal to the polychoric coefficient of correlation [13].

Remark 2.2 (Two latent variables). The mixture model of Gaussian copulas involves two latent
variables: a categorical one using a condense coding z ∈ {1, . . . , g} denoting the class membership
and an e-variate Gaussian one y = (y1, . . . , ye) ∈ Re. Indeed, if y|z = k ∼ Ne(0,Γk) and if
xj = P−1(Φ1(y

j);βkj), ∀j = 1 . . . , e, then the component k is a Gaussian copula whose the cdf
is defined in (2). Thus, we deduce the following generative model

• Class membership sampling : z ∼Mg(π1, . . . , πg)

• Gaussian copula sampling : y|z = k ∼ Ne(0,Γk)
• Observed data deterministic computation of x as such xj = P−1(Φ1(y

j);βkj).

Probability distribution function of the components

We introduce the function Ψ(xc;αk) =
(xj−µkj

σkj
; j = 1, . . . , c

)
and the space of the antecedents

of xd in the class k, by Sk = Sc+1
k × . . . × Sek, where Sjk is the interval defined by Sjk =

]b	k (xj), b⊕k (xj)], for j = c + 1, . . . , e, whose the bounds are b	k (xj) = Φ−11 (P (xj − 1;βkj)) and

b⊕k (xj) = Φ−11 (P (xj ;βkj)). The pdf of the component k is written as

p(x;αk) = p(xc;αk)p(x
d|xc;αk) (3)

=
φc(Ψ(xc;αk); 0,Γkcc)∏c

j=1 σkj

∫
Sk
φd(u;µd

k ,Σ
d
k)du, (4)

where Γk =

[
Γkcc Γkcd
Γkdc Γkdd

]
is decomposed into sub-matrices, for instance Γkcc is the sub-matrix

of the first c rows and columns of Γk, where µd
k = ΓkdcΓ

−1
kccΨ(xc;αk) is the conditional mean

of yd and where Σd
k = Γkdd − ΓkdcΓ

−1
kccΓkcd is its conditional covariance matrix.

Heteroscedastic and homoscedastic versions of the model

The trade off between the bias and the variance of the model may be improved by adding some
constraints on the parameter space. Thus, we propose an homoscedastic version of the mixture
model of Gaussian copulas by assuming the equality between the correlation matrices, so

Γ1 = . . . = Γg. (5)
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The heteroscedastic (resp. homoscedastic) mixture model of Gaussian copulas requires νHe

(respectively νHo) parameters where

νHe = (g − 1) + g

(
e(e+ 1)

2
+ d

)
and νHo = (g − 1) +

e(e− 1)

2
+ g(e+ d). (6)

Related models

The mixture model of Gaussian copulas allows to generalize many classical mixture models,
among them one can cite the four followers.

• Obviously, if the correlation matrices are diagonal (i.e. Γk = I, ∀k = 1, . . . , g), then the
mixture model of Gaussian copulas is equivalent to the locally independent mixture model.

• If all the variables are continuous (i.e. c = e and d = 0), then both versions of the
heteroscedastic and homoscedastic mixture models of Gaussian copulas are equivalent to
the heteroscedastic and homoscedastic multivariate Gaussian mixture models [1].

• The mixture model of Gaussian copulas is linked to the binned Gaussian mixture model.
For instance, it is equivalent, when data are ordinal, to the mixture model of [5]. In such
a case and under the true model assumption, this model is stable by fusion of modalities.

• When the variables are continuous and ordinal, the mixture model of Gaussian copulas
is a new parametrization of model proposed by Everitt [4] which directly estimates the
space Sk containing the antecedents of xd and not the margin parameters. The maximum
likelihood inference is performed via a simplex algorithm dramatically limiting the number
of ordinal variables. Note that our approach detailed in Section 3 avoids this drawback.

Data visualization per class: a by-product of Gaussian copulas

We can use the model parameters to perform a visualization of the individuals per class and
to bring out the main intra-class dependencies. Thus, for the class k, we firstly compute the
coordinates E[y|x, z = k;αk] and we secondly project them on the principal component analysis
space of the Gaussian copula of the component k, obtained by the spectral decomposition of
Γk. The individuals drawn by the component k follow a centred Gaussian distribution in the
factorial map (so they are close to the origin) while the other ones have an expectation different
to zero (so they are farther from the origin). Finally, the correlation circle summarizes the
intra-class correlations. The application given in Section 4 illustrates this phenomenon.

3 Bayesian inference

We observe a sample x = (x1, . . . ,xn) composed by n individuals xi ∈ Rc × X assumed to be
independently drawn by a mixture model of Gaussian copulas. We assume the independence
between the prior distributions and we select the classical conjugate prior distributions for each
parameters. The following Gibbs sampler allows to perform the inference, in a Bayesian frame-
work, since its stationary distribution is p(θ, z|x). Thus, it samples a sequel of parameters
according to the marginal posterior distribution p(θ|x). This algorithm relies on two instrumen-
tal variables: the class membership of the individuals of x denoted by z = (z1, . . . , zn) and the
Gaussian vector of the individuals denoted by y = (y1, . . . ,yn).

COMPSTAT 2014 Proceedings



Matthieu Marbac, Christophe Biernacki and Vincent Vandewalle 5

Algorithm 3.1 (The Gibbs sampler). Starting from an initial value θ(0), its iteration (r) is
written as

z(r),y(r−1/2) ∼ z,y|x,θ(r−1) (7)

β
(r)
kj ,y

j(r)
[rk] ∼ βkj ,y

j
[rk]|x,y

↑j(r)
[rk] , z

(r),β
↑j(r)
k ,Γ

(r−1)
k (8)

π(r) ∼ π|z(r) (9)

Γ
(r)
k ∼ Γk|y(r), z(r), (10)

where y[rk] = y{i:z(r)i =k}, y
↑j(r)
i = (y

1(r)
i , . . . , y

j−1(r)
i , y

j+1(r−1/2)
i , . . . , y

e(r−1/2)
i ) and β

↑j(r)
k =

(β
(r)
k1 , . . . ,β

(r)
kj−1,β

(r−1)
kj+1 , . . . ,β

(r−1)
ke ).

Remark 3.2 (Twice sampling of the Gaussian variable). The Gaussian variable y is twice
generated during one iteration of the Gibbs sampler but, obviously, its stationary distribution
stays unchanged. This twice sampling is mandatory because of the strong dependency between
y and z, and between yj[rk] and βkj .

Remark 3.3 (On the Metropolis-within-Gibbs sampler). If the samplings from (9) and (10) are
classical, the two other ones are more complex. Indeed, the sampling from (7) involves to com-
pute the conditional probabilities of the class memberships, so to compute the integral defined in
(4). If the number of discrete variables is large, this computation is time consuming. However,
the sampling from (7) can be efficiently performed by one iteration of a Metropolis-Hastings al-
gorithm having p(zi,yi|xi,θ(r−1)) as stationary distribution. Concerning the sampling according
to (8), it is performed in two steps. Firstly, the margin parameter is sampled by one iteration of a

Metropolis-Hastings algorithm having p(βkj |x,y
↑j(r)
[rk] , z

(r),β
↑j(r)
k ,Γk) as stationary distribution.

Secondly, the latent Gaussian vector is sampled from its full conditional distribution.

Remark 3.4 (Initialization of the algorithm). The algorithm is initialized on the maximum
likelihood estimate of the locally independent model. Thus, it is initialized in a point close to
the maximum of the posterior distribution if the variables are not strongly intra-class correlated.

4 Application: clustering of Portuguese wines

The data The data set [3] contains 6497 variants of the Portuguese “Vinho Verde” wine (1599
red wines and 4898 white wines) described by eleven physiochemical continuous variables (fixed
acidity, volatile acidity, citric acidity, residual sugar, chlorides, free sulfur dioxide, total density
dioxide, density, pH, sulphates, alcohol) and one integer variable (quality of the wine evaluated
by experts). The kinds of the wines (red or white) are hidden and we cluster the data set by
excluding of the study one white wine (number 4381) since it is an outlier.

Model selection We estimate the three mixture models (locally independent one, the het-
eroscedastic and homoscedastic versions of the mixture model of Gaussian copulas) for different
numbers of classes. The estimate is obtained by taking the mean of the sampled parameters
computed after 1000 iterations. The model selection is performed by using two information
criteria (BIC criterion [14], ICL criterion [2]) computed on the maximum a posteriori estimate.
We present the values of both used information criteria in Table 1 which distinctly select the
bi-component heteroscedastic mixture model of Gaussian copulas.
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6 Mixture model of Gaussian copulas to cluster mixed-type data

g 1 2 3 4 5 6

BIC loc. indpt. -63516 -61069 -61010 -55967 -60250 -57163
hetero. -44675 -34520 -39724 -44692 -44484 -48349
homo. -44675 -39372 -38289 -45209 -43217 -42417

ICL loc. indpt. -63516 -61229 -61365 -56310 -60726 -58138
hetero. -44675 -34688 -40176 -44933 -44758 -48959
homo. -44675 -39607 -38791 -45380 -43345 -42667

Table 1: Values of the BIC and ICL criteria for the three mixture models estimated.

Partition comparison Table 2 presents the values of the adjusted Rand index and the con-
fusion matrices in order to compare the relevance of the estimated partitions according to the
true one (wine color). These results confirm that the bi-component heteroscedastic Gaussian
copula mixture model is the best one among the competing models since its partition is the
closest to the true one.

white red

class 1 4359 9
class 2 538 1590

(a) Adj. Rand.: 0.68

white red

class 1 2441 12
class 2 1911 7
class 3 545 1580

(b) Adj. Rand.: 0.30

white red

class 1 2547 1561
class 2 2007 35
class 3 275 3
class 4 68 0

(c) Adj. Rand.: 0.00

Table 2: Adjusted Rand indices and confusion matrices related to: (a) the bi-component het-
eroscedastic Gaussian copula mixture; (b) the tri-component homoscedastic Gaussian copula
mixture; (c) the four-component locally independent mixture.

Visualization Figure 1 displays the individuals in a PCA map of both classes estimated by
the bi-component free mixture model of Gaussian copulas. According to these scatter-plots,
classes are well-separated.

●
●●

● ●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●
●

●

●●
● ●●

●
●

●
●

●

●

●●
●

●

●

●●

●

●
●

●

●

●●
●

● ●

●

● ●
●

●

●

● ●
●●●

●●

●

●●●

●●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●
●

●

●
●

● ●●
●●

●

●
●

●
●

●●●

●

●
●

●
●

●

●

● ●●

●

●

●●
●

●

●

●● ●

●
●●

●
●●

●●

●
●

●

●

●

●

●

●
●

●

●●●●●● ●●

●

●

●
●●

●

● ●
●

●

●●●
● ●

●

●

● ●●●

●

●●●
● ●

●
●●●

●
●●●

●
●

●

● ●●●
●
●●

●●

●
●

● ●

●
●

●

●

● ●●
●●● ● ●

●●

●

●

●

●
●

●
●

● ●

●

●●●●

●

●

●

●

●●
●

●● ●

●

●
●

●
●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●

● ●
●

●

●
●

● ●
●

●

●

● ●●
●

●

●

●

●

●

●
●

●
● ●

●
●
●

●
●

● ●
●● ●

●●

●

●

●
●

●
● ●
● ●

●
●

●
● ●●
●●

● ●

●
●

●●

●
●

●

●

●

●

●

●
●

● ●●●

●

●

●

● ●
●

●

●

●

●

●

● ●
●

●
●●●

● ● ●●
● ●

●

●●
●

●

●
●●

●

●

●●

●

●● ● ●
●

●
●● ●

●

●
●

●
●

●

●●

●

●●

●
●

●● ●
●

●

●
●
●

●
●

●

●
●

●

●

●●

●
●

●

●
●
●

●
●

●

●

●

● ●● ●

●

●●

●

● ●

●

● ● ●●
●

●
●●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●

●
●●

●

●
●

● ●●
●●

●

●●

●

●

●●

●

●●
●

● ● ●●● ●

●

● ●

●

●
●

●●●

●●
●

●
●

●
● ● ●

●●●

●
●

●

●
●

●

●
●

●

●
●

● ●● ●
●●●

●
●

●
●

●

●

●

●● ●●
●

●

●
●

●

●

●

●● ●

●●

●

●

●
● ●

●● ●

● ●

●●

●

●

●

●
●

●
●

● ●
●●

●

●●●
●

●
●

●

●

●

● ●

●

●

●
●

●
●
●

●

●
●

● ●●
● ●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●●●

●
●●●●● ●●

●

●

●

●

●●●

●●

●●●●● ● ●●
●

●

●

●
●

● ●
●●● ● ●●

● ●●
●

●

●

● ●●

●

●
●

●●
●

● ●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●●●
● ●

●●●
●●

●

●
●●

●

●
●●

●

●
● ● ●

●
●

● ●

● ●

●●
●●

●

●

●

●
●

●
●●

●

●

●
●

●
●● ●

●

●●

●●
●●● ●

●

● ●
●●

●

● ●
●

●●●
●

●

●

●

●

●●

●●

●

●
●

●
●

●●
●

●

●●● ●● ●● ● ●●●

●

●
● ●●

●
●

● ●●
●●●

●

●
●

●
●

●

●
●

●●

●

● ●

●

●●
●

●● ●●

● ●●

●●

●

●

●

●

●

●
● ●

●
●●● ●●●●

●

●●
●

● ●●
●

●

●

●
●●●

●●●

●
● ●●

●

●●

●
●● ●●●

●

●●

●●
●

●

●

●

●
●

●●
●

●
●

●

●

● ●●

●●
●

●

●
●●

●
●● ●

●

●

●

●●

● ●
●

●

●

●

●
●

●●
●

●
●

●

●
●

●●

●

● ●

●

●

● ●
●

●

●

●●●● ●●
● ●

●
●

● ● ●● ●
●

●
●● ●

●●

●

●●
● ●

●

●●
●

●

●
●

●

●

●
●

●●

●
●● ●

●
●

●
●

●
●●●

●
●● ●

●●●

●● ●●

● ●

●

●
●

●
● ●

●●

●
●

●

●

● ●

●

●●●

●

●●
●

●

●
●

●
●

●

●
●

●
●

●●

●●

●

●

●

● ●●●

●

● ●●
● ●● ●●

●

●●
●●

●

●

●
●●

● ●●

●
●

●

●

●

●
●

●●

●

● ●

●
●● ●

●

●

●
● ●

●
●●
●

●

● ●

●

●
●

● ●

●

●●●

●

●
●

●
●

●
●

● ●
●

●● ●●
●●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●
●● ●

●

●●

●

●

●

●

●●
●

●

●● ●
●●

●●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●
●

●

● ●●●●

●

● ●
●

●
●

●

●●

●

●

●●

●●

●

●
●

●

●

●

●

●● ●
●

● ●

●

●

●
●

●

●●
●●

●

●
●

●●●

●
●●

●
●

● ●●

●

●

●
●

● ●●

●

●
● ●● ●●

●●●
●

●
● ●●

●●

●

●

●
●

●●

●
●

●

●●

●●

● ●

●

●

●
●

● ●●

●

●

●

●● ●

●

●●

● ●

●

●

●

●

●●
●

●●●● ●
●●

●

●

●

●

●

●●●

●●●●●

●

● ● ●●●
●

● ●●●
●●● ●

●
● ●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●
●

●

●●●

●

●

●

●●
●

●●

●
●
●

●●

●
●

●●
●

●● ●
●

●●

●●
●

●

● ●
●

●●
●

●
●●

●

●
●● ●●

●
●

●●● ●

●●● ●
●

●● ●
●●

●●●

●

●
●

●

●

●

●
●●

●

●

●●●●●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●
●

●
●●●

●

●
●

●
●

● ●●
●

●●
●

●
●● ●

●

● ●

●

●●
●

●

●
●

● ●

●

●
●

●●
●●

●
●

●

●● ● ●● ●

●
● ●

● ●
●● ●

●
●

●

●
●●●

●●
●

●●●

●●●

●●●●

●
●

●
●

●

●●
●

●

●
●

●
●

●● ● ●
●

●
●

● ●●
●

● ●
●
●

●●
● ●

●

●
●●

●
●●

●●
●

●
●

● ●

●

●

●

●

●

●
●

●●●

● ●

●●
●

●●●●●

●
●●●●

● ●●

●

●
●

●

●

●
●

●● ●

●

●
●

●
●

●
●

●
●

●

●

●
●

●●

●

●●

●

● ●

●●

●
●●

●

●

●

●

●
●

●●

●

●●
●

●●

● ●
●

●●

●
● ●

●

●

●
●

●
●

●

●

●

● ●●●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

● ●●●
●

●
●

● ●
●
●

●

●●●
● ●

● ● ●
●

●
●

●● ●
●

●

●

●

●
●

●

●●
●

●
●

●●

●
●

●

●●
●

●
●● ●

●

●
●●

●

●

●●

●
●

●

●

● ●● ●●●● ●●
●

● ●
● ●●●

● ●●●
●

●

●
●●

● ●

●

●●
●

●

● ●

●

●●●

●

●●
●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●

● ●
●

●

●

●

●

●
● ●

●●

●●

●

●

●
●●

● ●
●

●

●

●

●

●

●

● ●●

●

●●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●
●●●

●●● ●

●

●

●
●●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●●

● ●

●
●
●●

●●

●● ●
●

●

●

●

●●

●

●

●●
●
●

●
●

●●

●

●

●

●

● ●●●

●
●

●
●●

●● ●

●
●

●

●
●

●

●

●

●
●

●

● ●●

●
●●

●

● ●

●●

●●

● ●

●●● ●
●

●

●

●●● ●

●

●
●●

●
● ●
●●

●

●●●●

●

●

●
●

●●

●

●

●
●

●

●●●

●

●●●

●●

●

●

●
●●

●

●●
●

●
●●

● ● ●●●

●
●

●

●

●●

●
●

●
●

●●
● ●●●

● ●

●
●●

●

●

●

●
●●

●●
●

●

●
●

●
●●●

●

●
●

●●

● ●●
●●

● ●

●●
●

●●

●●
●

●

●●
●●

●

●

●

●
●

●

●●
●
●

●

−5 0 5

−
15

−
10

−
5

0
5

inertia 9.7 %

in
er

tia
 7

.8
 %

(a) First PCA of the class 1, map(3,5)

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

● ●

●●
●

●

●

●●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●

● ●
●
●

●

●

●
●

● ●●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●
●

●

●●

●
●

●● ● ●●●●

●

●

●

●

●

●

●

● ●

●

●●

●●●●

●
●●

●
●

●●●

●●
●

●

●

●●

●

●
●
●●

●

●●

●

●
●●

●

●

●

●●
●

●

●
●●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●
● ●

●●●

●

● ●
●

●

●
●

●

●

●

●

●● ●●●●●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●
●

●

●●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

● ●

●
●

●

●●

● ●
●

●

●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●●

●

●
●

●●●
●

●

●

●

●

●●

●●

●●
●●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●
● ●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●●
●●●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
● ●

●●●

●●●

●●
● ●●

●

●
●

●

●

●●

●

●

●●●●●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●●

●

●●

●●

●● ●●

●

●

●

●●

●
●

●

●

●●●

●
●

●● ●

●●
●●

●

●●

●

●
●

●

●

● ●

●●
●● ●

●●

●
●

●

●
●

●
●●

●
●

●

●●
●●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●

●

●●

●

●
●

●

●●

●

●

●●●●●●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●●●●●●

●

●

●●
●

●
●

●

●
●

●

●●● ●
●

●

●●●

●

●
●●

●

●

●

●●
●

●

●

●

●
●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●●●
●●

●

●
●

● ●● ●

●●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●● ●

●

●

● ●

●

●

●

●●

●●

●
●●

● ●

●● ●

● ●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●●

●

●

●
●●

●
●
●

●

●●●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

● ●●

●

●●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●●
●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●
●

●

●
●

●●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●●●●●

●●
●●●

●
●●●●

●●●●●

●

●

●

●● ●

●

●

●●● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●●
●

●

●●

● ●

●

●
●

● ●
●●

●

●
●

●●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●
● ●
●●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●●

●

●●●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●● ●

●

●

●

●

●

●●
●●

●

●

●

●
●●

●
● ●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●●
●

●●
●

●

●●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●● ●●●

●

●

●
●

● ● ●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●
●● ●

●●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●●
●

●●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●●●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

● ●

●

●
●●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●
●
●

●

●●
●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●
●●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●●●

●●

●

●

●●●

●

●●

●

●

●
●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●●●

●

●●
●

●
●

●●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●●

●

●

●

●●

●

●●

●●
●

●

●● ●●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

−5 0 5 10

−
10

−
5

0
5

inertia 22.5 %

in
er

tia
 1

8.
8 

%

(b) First PCA of the class 2, map(1,2)

Figure 1: Visualization of the partition by the bi-component heteroscedastic mixture model of
Gaussian copulas (Class 1 is drawn by black circles and Class 2 by red triangles).
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Interpretation of the best model The following interpretation is based on the margin
parameters and on the intra-class correlation matrices summarized in Figure 2. The majority
class (π1 = 0.59) is principally composed by white wines. This class is characterized by lower
rates of acidity, pH, chlorides and sulphites than them of the minority class (π2 = 0.41) which is
principally composed by red wines. The majority class has larger values for both sulfur dioxide
measures and the alcoholic rate. Note than the wine quality of both classes is similar (β1quality =
5.96 and β2quality = 5.58). The majority class is characterized by a strong correlation between
both sulfur measures opposite to a strong correlation between the density and acidity measures.
The minority class underlines that the wine quality is dependent with a larger alcoholic rate
and small values for the chlorides and acidity measures.
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Figure 2: Summary of the bi-component heteroscedastic mixture model of Gaussian copula.
Class 1 is drawn in black and Class 2 in red. (fixed acidity: fxd., volatile acidity: vlt., citric
acidity: ctr., residual sugar: rsd., chlorides: chlr., free sulfur dioxide: fr., total density dioxide:
tt., density: dnst., pH, sulphates: slph., alcohol: alch., quality: qlty.).

Conclusion On this data set, the mixture model of Gaussian copulas overcomes the locally
independent model (reduction of the number of classes, better values of the information criteria,
estimated partition closest to the true one). Based on the individual scatter-plots in the model
PCA, the estimated classes are relevant since they are well-separated. Finally, the estimation
of the intra-class dependencies helps the interpretation since it underlines the link between the
wine quality of the minority class and its physiochemical properties.

5 Conclusion and future extensions

The proposed model uses the properties of copulas: independent choice of the margin distribu-
tions and of the dependency relations. Thus, the mixture model of Gaussian copulas allows to
fix classical margins belonging to the exponential family for the component margin distributions
and takes into account the intra-class dependencies. An approach based on a PCA per class
of the Gaussian latent variable allows to summarize the main intra-class dependencies and to
visualize the data by using the model parameters. The application points out that this model
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is sufficiently flexible to efficiently fit data and that it can reduces the biases of the locally inde-
pendent model (for instance the reduction of the number of classes). The number of parameters
increases with the number of classes and variables especially because of the correlation matrices
of the Gaussian copulas. To avoid this drawback, we propose an homoscedastic version of the
model assuming the equality between the correlation matrices. This model may better fit the
data than the heteroscedastic Gaussian mixture models.
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[6] D.J. Hand and K. Yu. Idiot’s Bayes - Not So Stupid after All? International Statistical
Review, 69(3):385–398, 2001.

[7] P.D. Hoff. Extending the rank likelihood for semiparametric copula estimation. The Annals
of Applied Statistics, pages 265–283, 2007.

[8] L. Hunt and M. Jorgensen. Clustering mixed data. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 1(4):352–361, 2011.

[9] H. Joe. Multivariate models and multivariate dependence concepts, volume 73. CRC Press,
1997.

[10] C.A.J. Klaassen and J.A. Wellner. Efficient estimation in the bivariate normal copula
model: normal margins are least favourable. Bernoulli, 3(1):55–77, 1997.

[11] D.D. Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval.
In Machine learning: ECML-98, pages 4–15. Springer, 1998.

[12] G.J. McLachlan and D. Peel. Finite mixture models. Wiley Series in Probability and
Statistics: Applied Probability and Statistics, Wiley-Interscience, New York, 2000.

[13] U. Olsson. Maximum likelihood estimation of the polychoric correlation coefficient. Psy-
chometrika, 44(4):443–460, 1979.

[14] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

COMPSTAT 2014 Proceedings


