
On the Expression Complexity of Equivalence and
Isomorphism of Primitive Positive Formulas

Simone Bova1, Hubie Chen2, and Matthew Valeriote3

1 Department of Mathematics
Vanderbilt University (Nashville, USA)

simone.bova@vanderbilt.edu
2 Departament de Tecnologies de la Informació i les Comunicacions

Universitat Pompeu Fabra (Barcelona, Spain)
hubie.chen@upf.edu

3 Department of Mathematics & Statistics
McMaster University (Hamilton, Canada)

matt@math.mcmaster.ca

Abstract. We study the complexity of equivalence and isomorphism on primitive positive for-
mulas with respect to a given structure. We study these problems for various fixed structures;
we present generic hardness and complexity class containment results, and give classification
theorems for the case of two-element (boolean) structures.

1 Introduction

A primitive positive formula is a first-order formula defined from atomic formulas and equality
of variables using conjunction and existential quantification. The class of primitive positive
formulas includes–and is essentially equivalent to–the class of conjunctive queries, which is
well-established in relational database theory as a pertinent and useful class of queries, and
which has been studied complexity-theoretically from a number of perspectives (see for ex-
ample [25, 21, 3]). In this paper, we study the complexity of two basic questions associated to
primitive positive formulas:

(1) Given two such formulas having the same free variables and a relational structure, are
the formulas equivalent over the structure? That is, do they admit the same satisfying
assignments?

(2) Given two such formulas and a relational structure, are the formulas isomorphic over the
structure? By isomorphic, we mean that there is a way to rename the free variables of one
formula with the free variables of the other so that the formulas are equivalent.

We study both of these problems with respect to various fixed structures. That is, we pa-
rameterize each of these problems with respect to the structure to obtain a family of problems,
containing one member for each structure, and study the resulting two families of problems.
Following the terminology of Vardi [32], one may conceive of this as a study of the expression
complexity of the two presented problems relative to various fixed structures. The suggestion
here is that various relational structures–which may represent databases or knowledge bases,
according to use–may possess structural characteristics that affect the complexity of the re-
sulting problems, and this article initiates a study of this relationship between such structure
and complexity.

Our investigation makes use of universal-algebraic tools and ideas that are of current
interest in the study of the constraint satisfaction problem (CSP), which can be defined

Dagstuhl Seminar Proceedings 09441
The Constraint Satisfaction Problem: Complexity and Approximability
http://drops.dagstuhl.de/opus/volltexte/2010/2369

1

as the problem of deciding, given a primitive positive formula without free variables and
a structure, whether or not the formula is true in the structure. As has been shown for
CSPs, we demonstrate that to each structure one can associate an algebra in such a way that
the complexity of all structures associated to the same algebra is the same, which permits
the deployment of algebraic concepts in the study of our problems. We present a number of
sufficient conditions for hardness for various complexity classes, as well as sufficient conditions
for containment in various complexity classes. We then apply these results and further ideas
to classify the complexity of these problems for boolean (two-element) structures.

Perspective and related work. Isomorphism problems have long been of interest in the
theory of computational complexity (see for example [20, 27, 1, 30] and the references therein).
The most prominent such problem, the graph isomorphism problem–decide if two given undi-
rected graphs are isomorphic–is a famous example of a natural problem that is in NP but has
defied classification as being in P or NP-complete. It is not NP-complete unless the polynomial
hierarchy collapses [27], and not known to be in P.

Although Ladner’s theorem [22] guarantees that there is a well-populated zone of inter-
mediate problems that are in NP but not in P nor NP-complete (assuming that P does not
equal NP), an interesting outcome of the study of constraint satisfaction problems and their
variants [13] is that such problems tend to characterize established complexity classes; this
can (and has been) taken as evidence for the thesis that natural problems can, by and large,
be classified using existing complexity classes. A now classical example of this phenomenon
is Schaefer’s dichotomy theorem [26], which shows that every boolean CSP is either in P or
is NP-complete; this result has been refined by a more recent result of Allender et al. [2] who
showed that boolean CSPs are either complete for one of five established complexity classes
(NP, P, NL, L, parity L) under AC0 reductions, or of extremely low complexity (solvable in
coNLOGTIME).

An additional motivation behind our investigation of the studied isomorphism problems
was to see if any new degrees (interreducible sets of problems) of isomorphism problems would
be revealed; or if these problems would simply inhabit established degrees of isomorphism
problems, which might suggest that the natural degrees of isomorphism problems have already
emerged. Of the five modes of behavior demonstrated by our isomorphism classification result,
there is just one mode that appears somewhat new (see Theorem 10 (2)); the corresponding
problems can be viewed as isomorphism on structures whose relations are definable by different
types of sets of equations over the two-element field. Closely related problems have already
been studied by Nordh [24]. For these problems, however, we show that their relationships
to the major complexity classes in their vicinity, P and NP, are similar to those for graph
isomorphism: these problems are in NP but not NP-complete unless the polynomial hierarchy
collapses, and are not in P unless graph isomorphism is as well (graph isomorphism reduces
to them).

We now turn to discuss some work directly related to our investigation, and which we draw
upon. We develop some relationships between the complexity of the problems studied here
and the complexity of the CSP, and in some concrete cases make use of the complexity results
on the boolean CSP due to Allender et al. [2]. Böhler et al. [9, 8] have studied equivalence
and isomorphism for boolean constraint satisfaction. The problems that they studied have a
formulation similar to ours, with the key difference that the formulas that they studied are not
permitted to contain existential quantification. The expressiveness of their formulas is thus in

2

general lower than that of ours, and this is reflected in the complexity results. Nordh [24] has
conducted a study of equivalence and isomorphism of systems of equations over finite groups.

2 Problems Studied

In this section, we present the problems under study. Although we assume familiarity with
the basics of first-order logic, we now review a few notions and present some conventions that
we will use. For us, a signature is a finite set of relation symbols, each having an associated
arity. A relational structure over a signature σ consists of a domain or universe B and, for
each relation symbol R ∈ σ, a relation RB ⊆ Bk where k is the arity of R. We assume that
all relational structures under discussion have finite universe. A primitive positive formula (in
short, pp-formula) on σ is a first-order formula formed using equalities on variables (x = x′),
atomic formulas R(x1, . . . , xk) over σ, conjunction (∧), and existential quantification (∃).

Definition 1. The primitive positive equivalence problem, PPEQ, is the problem of deciding,
given a relational structure B with signature σ, and two pp-formulas φ, φ′ over σ having the
same set of free variables X, whether φ and φ′ are equivalent in B, that is, whether for all
f : X → B,

B, f |= φ if and only if B, f |= φ′.

For every relational structure B, the problem PPEQ(B) is the primitive positive equivalence
problem where the relational structure is fixed to be B.

Definition 2. The primitive positive isomorphism problem, PPISO, is the problem of decid-
ing, given a relational structure B with signature σ, and two pp-formulas φ, φ′ over σ having
the same set of free variables X, whether φ and φ′ are isomorphic in B, that is, whether there
exists a bijection π : X → X such that for all f : X → B,

B, f |= φ if and only if B, f ◦ π |= φ′,

where f ◦ π(·) = f(π(·)). For every relational structure B, the problem PPISO(B) is the
primitive positive isomorphism problem where the relational structure is fixed to be B.

We use BOOL-PPISO to denote the problem PPISO where B is required to have a universe
of size 2.

The following facts are both known and straightforward to verify.

Proposition 1. PPEQ(B) is in Πp
2 for every relational structure B.

Proposition 2. PPISO(B) is in Σp
3 for every relational structure B.

3 Algebra

We will study the problems of interest using techniques and notions from universal algebra.
We follow the universal algebraic study of constraint satisfaction problems initiated in [12],
and the results in this section are all either known or straightforward adaptations of results
used to study constraint satisfaction. We begin by reviewing some definitions and concepts.
An algebra is a pair A = (A,F) such that A is a nonempty set, called the domain or universe
of the algebra, and F is a set of finitary operations on A. Let A = (A,F) be an algebra; a term

3

operation of A is a finitary operation obtained by composition of (1) operations in F and (2)
projections on A, and a polynomial operation is a finitary operation obtained by composition
of (1) operations in F , (2) projections on A and (3) constants from A. Two algebras are term
(polynomially) equivalent if they have the same universe and the same term (polynomial)
operations; we will generally be interested in algebras up to term equivalence. A clone is a
set of operations that contains all projections and is closed under composition. Clearly, the
set of all term operations of an algebra is the smallest clone containing the basic operations
of the algebra. (See [28] for more details and discussion of these notions).

We say that an operation f is idempotent if the identity f(x, . . . , x) = x holds. An algebra
is idempotent if all of its operations are idempotent; note that an idempotent algebra has only
idempotent term operations. The idempotent reduct of an algebra A = (A,F), denoted by
I(A), is the algebra with universe A and whose operations are the idempotent term operations
of A.

Let B be a nonempty set, let f be an n-ary operation on B, and let R be a k-ary relation
on B. We say that f preserves R (or f is a polymorphism of R, or R is invariant under f),
if for every length n sequence of tuples t1, . . . , tn ∈ R, denoting the tuple ti by (ti,1, . . . , ti,k),
it holds that the tuple

f(t1, . . . , tn) = (f(t1,1, . . . , tn,1), . . . , f(t1,k, . . . , tn,k))

is in R. We extend this terminology to relational structures: an operation f is a polymorphism
of a relational structure B if f is a polymorphism of every relation of B. We use Pol(B) to
denote the set of all polymorphisms of a relational structure B, and use AB to denote the
algebra (B,Pol(B)). For any relational structure B, the set Pol(B) is a clone. Dually, for an
operation f , we use Inv(f) to denote the set of all relations that are preserved by f , and for a
set of operations F , we define Inv(F) as

⋂
f∈F Inv(f). We will make use of the following result

connecting the Pol(·) and Inv(·) operators to pp-definability.

Theorem 1. (Geiger [14]/Bodcharnuk et al. [6]) Let B be a finite relational structure. The
set of relations Inv(Pol(B)) is equal to the set of relations that are pp-definable over B.

We will make use of the following fact, which is both well-known and straightforward to
verify.

Proposition 3. Let A be an algebra, and let R ⊆ Ak be any relation. The smallest relation
that contains R and is preserved by the operations of A is equal to

{f(t1, . . . , tn) | n ≥ 1, f is an n-ary term operation of A, and t1, . . . , tn ∈ R}.

We associate to each algebra A = (A,F) the sets of problems

PPEQ(A) = {PPEQ(B) | B relational structure on A with F ⊆ Pol(B)},
PPISO(A) = {PPISO(B) | B relational structure on A with F ⊆ Pol(B)}.

For a complexity class C, we say that the problem PPEQ(A) is in C if PPEQ(A) ⊆ C. We
say that the problem PPEQ(A) is C-hard if PPEQ(A) contains a problem PPEQ(B) that is
C-hard. We say that the problem PPEQ(A) is C-complete if it is both in C and C-hard. We
adopt a similar terminology for PPISO(A). The following result justifies these definitions.

Theorem 2. Let B be a finite relational structure, and let C be a complexity class closed
under logspace reduction.

4

– PPEQ(B) is in C if and only if PPEQ(AB) is in C.
– PPEQ(B) is C-hard if and only if PPEQ(AB) is C-hard.
– PPEQ(B) is C-complete if and only if PPEQ(AB) is C-complete.

And, the same results hold for PPISO(·).

Throughout the paper, the notion of reduction used is logspace many-one reducibility,
unless stated otherwise.

Proof. The third claim follows from the first two, so we turn to prove those. In the first
claim, the (⇐) direction is obvious; in the second claim, the (⇒) direction is obvious. For
the other directions, it suffices to show that each problem PPEQ(B′) ∈ PPEQ(AB) reduces
to PPEQ(B). By definition, we have Pol(B) ⊆ Pol(B′). It follows from the definition of Inv(·)
that Inv(Pol(B)) ⊇ Inv(Pol(B′)). From Theorem 1 and the fact that each relation of B′ is
contained in the set Inv(Pol(B′)), we have that each relation of B′ is pp-definable over B. The
problem PPEQ(B′) can be reduced to PPEQ(B) by substituting each atomic formula in the
original instance with a corresponding pp-definition.

The proofs are identical for PPISO(·). ut

Let A = (A,F) be an algebra. Let us say that a subset B ⊆ A is preserved by the
operations F of A if for every n ≥ 1, every n-ary operation f ∈ F , and every (b1, . . . , bn) ∈ B,
it holds that f(b1, . . . , bn) ∈ B. A subalgebra of A is an algebra of the form (B,F |B) where B
is preserved by the operations of A. Here, F |B denotes the set of all restrictions of operations
in F to B, that is, {f |B | f ∈ F}. A congruence of A is an equivalence relation θ ⊆ A × A
that is preserved by all operations of A. When θ is a congruence of A, the equivalence class
of θ containing a ∈ A is denoted by aθ; and, for each operation f ∈ F , the operation fθ

defined by fθ(aθ1, . . . , a
θ
k) = (f(a1, . . . , ak))

θ, is well-defined. We say that an algebra AB is a
homomorphic image of A if it is isomorphic to the algebra (Aθ, F θ), where Aθ = {aθ | a ∈ A}
and F θ = {fθ | f ∈ F}.

Proposition 4. Let B be a subalgebra or homomorphic image of an algebra A. Then, for
every problem PPEQ(B) ∈ PPEQ(B), there exists a problem PPEQ(B′) ∈ PPEQ(A) such that
PPEQ(B) logspace reduces to PPEQ(B′), and likewise for PPISO(·).

Proof. First, suppose that B is a subalgebra of A. Consider a problem PPEQ(B) ∈ PPEQ(B);
suppose that σ is the signature of B. Define σ′ to be a signature equal to σ but expanded
by a relation symbol U of arity 1. Let B′ be the relational structure over σ′ with universe
A where RB′

= RB for all R ∈ σ and UB′
= B. It follows from the definition of subalgebra

that PPEQ(B′) ∈ PPEQ(A). To reduce an instance φ, φ′ of PPEQ(B) to PPEQ(B′), we simply
restrict all variables to take on values in B, in each of the formulas. For each formula ψ ∈
{φ, φ′}, this can be done, for instance, by replacing every atomic formula R(v1, . . . , vk) by
R(v1, . . . , vk) ∧ U(v1) ∧ . . . ∧ U(vk) to obtain ψ′, and then returning ψ′ ∧ U(x1) ∧ . . . ∧ U(xn)
where {x1, . . . , xn} are the free variables of ψ′.

Next, suppose that B is a homomorphic image of A. We assume that the elements of B
are {aθ | a ∈ A} for a congruence θ of A. Suppose that PPEQ(B) ∈ PPEQ(B), let σ denote
the signature of B, and define B′ to be the structure over σ with universe A defined by
RB′

= {(a1, . . . , ak) | (aθ1, . . . , a
θ
k) ∈ RB}. Consider a pp-formula ψ. It is straightforward

to verify that an assignment (c1, . . . , cn) satisfies ψ over B′ if and only if the assignment
(cθ1, . . . , c

θ
n) satisfies ψ over B. Thus, a pair of pp-formulas φ, φ′ is equivalent over B′ if and

only if it is equivalent over B, and we have PPEQ(B′) = PPEQ(B). ut

5

The notion of a variety is typically defined on indexed algebras; a variety is a class of
similar algebras that is closed under the formation of homomorphic images, subalgebras, and
products. For our purposes here, however, we may note that the variety generated by an
algebra A, denoted by V(A), is known to be equal to HSP ({A}), where the operator H (for
instance) is the set of algebras derivable by taking homomorphic images of algebras in the
given argument set. The power of an algebra (A,F) with respect to index set I is the algebra
with universe Πi∈IAi, where each Ai is a copy of A, and which has an operation f ′ for each
operation f ∈ F that is defined to act as f on all coordinates.

We will make use of the language of tame congruence theory [17] to present some of our
results. This theory associates a typeset to an algebra, which contains one or more of five
types: (1) the unary type, (2) the affine type, (3) the boolean type, (4) the lattice type, and
(5) the semilattice type. By extension, a typeset is associated to each variety, namely, the
union of all typesets of algebras contained in a variety. A variety is said to admit a type if
the type is contained in its typeset, and is otherwise said to omit the type.

We will make use of the following lemma, which generalizes a result found in [11]. A factor
of A is a homomorphic image of a subalgebra of A. An algebra is strictly simple if it is simple
(has no non-trivial congruences) and has no non-trivial subalgebras.

Lemma 1. ([31]) Let A be a finite, idempotent algebra such that V(A) admits type i. Then,
the algebra A has as a factor a strictly simple algebra of type at most i with respect to the
ordering 1 < 2 < 3 > 4 > 5 > 1.

Szendrei classified all idempotent strictly simple algebras [29]; here, as in [23], we will
make use of the following cases. By a two-element set, we mean a two-element algebra with
no basic operations. An affine algebra is an algebra having an abelian group structure on its
base set such that (1) m(x, y, z) = x−y+z is a term of the algebra, and (2) every term of the
algebra commutes with m. A two-element semilattice is an algebra isomorphic to the algebra
({0, 1}, {∧}). A two-element lattice is an algebra isomorphic to the algebra ({0, 1}, {∧,∨}).

Lemma 2. (follows from Szendrei [29]) Let A be a strictly simple idempotent algebra.

– If A has the unary type, then it is term equivalent to a two-element set.
– If A has the affine type, then it is an affine algebra.
– If A has the semilattice type, then it is term equivalent to a two-element semilattice.
– If A has the lattice type, then it is polynomially equivalent to a two-element lattice.

4 Hardness Results

In this section, we present hardness results for the problems under study. We will make use of
the following problems to give hardness results for the primitive positive isomorphism problem.
The graph isomorphism problem, GI, is the problem of deciding whether two graphs G = (V,E)
and G′ = (V,E′) are isomorphic, that is, whether there exists a bijection π : V → V such that
(x, y) is in E if and only if (π(x), π(y)) is in E′. The problem GI is in NP, not known to be in
P, and not NP-hard unless the polynomial hierarchy collapses [20]; it is also known to be hard
for NL and other nondeterministic logarithmic space classes [30]. The circuit isomorphism
problem, CI, is the problem of deciding whether two boolean circuits over the same input
gates are isomorphic, that is, whether there exists a permutation of the input gates making
both circuits compute the same boolean function. The problem CI is coNP-hard, in Σp

2 , and

6

not Σp
2 -hard unless the polynomial hierarchy collapses [1]. At the risk of feeling slightly guilty,

we will overload our notation and also use GI, CI, and BOOL-PPISO to denote the class of
problems that reduce to the problem at hand. For instance, GI will be used to denote the class
of problems that reduce to GI; we will then be able to speak of, for instance, GI-hardness.

Our first hardness result shows, roughly speaking, that for a given algebra, the two prob-
lems studied here are harder than the constraint satisfaction problem over the idempotent
reduct of the algebra. This result allows us to infer hardness results on these two problems
from hardness results on the constraint satisfaction problem. In order to state the result, we
introduce the following notions. Let B be a relational structure over signature σ. We use
CSP(B) to denote the problem of deciding, given a pp-formula with no free variables over σ,
whether or not the formula is true over B. For an algebra A, we define CSP(A) analogously
to our definitions of PPEQ(A) and PPISO(A):

CSP(A) = {CSP(B) | B relational structure on A with F ⊆ Pol(B)}.

Theorem 3. Let A be an algebra. Each problem CSP(B) in CSP(I(A)) reduces to both a
problem in PPEQ(A) and a problem in PPISO(A).

Proof. Let φ be an instance of CSP(B) ∈ CSP(I(A)). Let {b1, . . . , bk} denote the universe of B
and suppose that σ is the signature of B. Let σ′ be the signature containing a relation symbol
R′ of arity n+k for each relation symbol R of arity n in σ. We define a relational structure B′ as
follows. For each R′ ∈ σ′, define R′B

′
to be the smallest relation closed under the operations of

A containing Z = {(b1, . . . , bk, a1, . . . , an) | (a1, . . . , an) ∈ RB}. By Proposition 3, this smallest
relation is equal to {f(t1, . . . , tm) | m ≥ 1, t1, . . . , tm ∈ Z, f m-ary term operation of A}.

Define φ′(x1, . . . , xk) to be the pp-formula derived from φ by replacing each atomic formula
R(v1, . . . , vn) with R′(x1, . . . , xk, v1, . . . , vn). (We assume that the variables x1, . . . , xk are new
variables that do not occur in φ.) Define ψ′(x1, . . . , xk) to be the pp-formula

∃v1 . . . ∃vn(R′(x1, . . . , xk, v1, . . . , vn))

for any relation symbolR′ ∈ σ′. We will interpret ψ′ on B′; notice that it does not matter which
relation symbol R′ ∈ σ′ we pick to define ψ′, as all of the relations R′B

′
with R′ ∈ σ′, when

projected onto the first k coordinates, are equal to the smallest relation containing (b1, . . . , bk)
closed under the operations of A; let us denote this common projection by S ⊆ Bk.

We claim that if φ is true, then φ′ and ψ′ are equivalent on B′, and are not isomorphic on
B′ otherwise.

Suppose that φ is true. Then (b1, . . . , bk) clearly satisfies φ′. As φ′ is a pp-formula, the
relation T it defines is preserved by all polymorphisms of B′ (by Theorem 1), and hence by all
operations of A. It follows that S is a subset of T ; on the other hand, T is, by our definition
of φ′, a subset of S, and we have S = T . Hence φ′ and ψ′ are equivalent on B′.

Suppose that φ is false. Then (b1, . . . , bk) does not satisfy φ′. This follows from the following
claim: for each tuple of the form (b1, . . . , bk, c1, . . . , cn) ∈ R′B′

, it holds that (c1, . . . , cn) ∈ RB.
This claim holds by the following reasoning: for such a tuple (b1, . . . , bk, c1, . . . , cn) ∈ R′B′

, we
have that there are m tuples t1, . . . , tm ∈ {(b1, . . . , bk, a1, . . . , an) | (a1, . . . , an) ∈ RB}, and a
term operation f of A such that f(t1, . . . , tm) = (b1, . . . , bk, c1, . . . , cn); an operation f such
that this holds is idempotent; and, the relation RB is thus preserved by f by assumption,
implying that (c1, . . . , cn) ∈ RB. As mentioned in the previous paragraph, the relation T
defined by φ′ is a subset of S; since (b1, . . . , bk) is not in T , it follows that T is a proper subset
of S, and that φ′ and ψ′ are not isomorphic. ut

7

The next three theorems give hardness results on the studied problems based on the
presence of types, in the sense of tame congruence theory. In particular, we give hardness
results based on admitting the unary, semilattice, and lattice types.

Theorem 4. Let A be a finite idempotent algebra such that V(A) admits the unary type.
Then, PPEQ(A) is Πp

2 -hard, and PPISO(A) is BOOL-PPISO-hard.

Proof. By Lemma 1, there exists a strictly simple idempotent factor of A having type 1; by
Lemma 2, this factor is term equivalent to the algebra A′ = ({0, 1}, ∅); by Proposition 4, it
suffices to show that PPEQ(A′) is Πp

2 -hard, and that PPISO(A′) is BOOL-PPISO-hard.

Let B be the relational structure over the domain {0, 1} and the signature σ = {R0, R1, R2, R3}
such that RB

0 = {(x, y, z) ∈ {0, 1}3 | x ∨ y ∨ z}, RB
1 = {(x, y, z) ∈ {0, 1}3 | ¬x ∨ y ∨ z},

RB
2 = {(x, y, z) ∈ {0, 1}3 | ¬x ∨ ¬y ∨ z}, RB

3 = {(x, y, z) ∈ {0, 1}3 | ¬x ∨ ¬y ∨ ¬z}. Clearly,
PPEQ(B) ∈ PPEQ(A′) and PPISO(B) ∈ PPISO(A′). We prove that PPEQ(B) is Πp

2 -hard, and
that PPISO(B) is BOOL-PPISO-hard. The claimed hardness results follow by Proposition 4.

As regards PPEQ(B), the satisfiability problem of boolean formulas ∀X∃Y φ, where φ is
a 3-CNF, and X and Y partition the variables of φ, is Πp

2 -hard. Letting φ′ be the pp-formula
over σ that corresponds to φ in the obvious way, it is immediate to verify that ∀X∃Y φ is
satisfiable if and only if ∃Y φ′ is equivalent to the formula identically true over B. As regards
PPISO(B), let B′, φ, φ′ be an instance of BOOL-PPISO. It is well-known that every boolean
relation is pp-definable over B, so by replacing atomic formulas with pp-definitions, from the
formulas φ, φ′ we may compute formulas φ, φ′ where B, f |= φ if and only if B′, f |= φ, and
likewise for φ′ and φ′. Thus (φ, φ′) ∈ PPISO(B′) if and only if (φ, φ′) ∈ PPISO(B′). ut

We now present a lemma that facilitates the establishment of hardness results for the
isomorphism problem. Let X be a set, let {X1, . . . , Xk} be a partition of X, and let π be a
permutation of X. We say that π fixes Xi if {π(x) | x ∈ Xi} = Xi.

Lemma 3. Let σ be a signature, let B be a relational structure over σ, and let φ and ψ be
pp-formulas on σ. For each k ≥ 2, it is possible to construct in logspace, given a partition
{X1, . . . , Xk} of the set X of free variables of φ and ψ, two pp-formulas φ′ and ψ′ on σ
satisfying: φ′ and ψ′ are isomorphic if and only if φ and ψ have an isomorphism that fixes
X1, . . . , Xk.

Proof. We prove the following: (1) If φ′ and ψ′ are isomorphic over B, then φ′ and ψ′ have
an isomorphism over B that fixes X1, . . . , Xk; (2) φ′ and ψ′ have an isomorphism over B that
fixes X1, . . . , Xk if and only if φ and ψ have an isomorphism over B that fixes X1, . . . , Xk.
The proof follows.

Let s1 = 1 and, for 2 ≤ i ≤ k, let si = |X1|s1+ · · ·+ |Xi−1|si−1. For every i ∈ [k] and every
x ∈ Xi, introduce si many new variables {xj | j ∈ [si]}. Let Wx = {x} ∪ {xj | j ∈ [si]}, so
that |Wx| = 1+si. The pp-formula φ′ on σ is constructed by conjoining to φ, for every i ∈ [k],
every x ∈ Xi, and every pair y, y′ ∈ Wx, the equality constraint y = y′. The construction of
ψ′ is identical. Let X ′ be the free variables of φ′ and ψ′.

Claim 1. Let π be an isomorphism of φ′ and ψ′, and let π(x) = y and π(x′) = y′. If
f(y) = f(y′) for every assignment f to X ′ satisfying φ′ over B, then the permutation π′,
identical to π with the exception that π′(x) = y′ and π′(x′) = y, is an isomorphism of φ′ and
ψ′.

8

Proof of Claim 1. Let f be an assignment to X ′ that models φ′ over B. Since by hypothesis
f(y) = f(y′), we have that f ◦ π′ = f ◦ π: indeed f ◦ π′(x) = f(π′(x)) = f(y′) = f(y) =
f(π(x)) = f ◦π(x), and f ◦π′(x′) = f(π′(x′)) = f(y) = f(y′) = f(π(x′)) = f ◦π(x′). Therefore,
f models φ′ if and only if f ◦ π models ψ′ if and only if f ◦ π′ models ψ′. ut

For (1), let π be an isomorphism of φ′ and ψ′. We show that there exists an isomorphism
π′ of φ′ and ψ′ that fixes Xi for every i ∈ [k]. Towards this aim, say that a permutation
of X ′ is correct if, for every i ∈ [k] and every x ∈ Xi, there exists x′ ∈ Xi such that
π(Wx) = {π(y) | y ∈Wx} = Wx′ .

First consider Xk, and let x ∈ Xk. Note that by definition

|π(Wx)| = 1 + sk >

∣∣∣∣∣∣
⋃

x′∈X\Xk

Wx′

∣∣∣∣∣∣ ;
hence, there exists x′ ∈ Xk and y ∈Wx such that π(y) = y′ ∈Wx′ . Let

A = {π−1(z) | z ∈Wx′} \Wx = {a1, . . . , an},
B = {z | z ∈Wx′} \ π(Wx) = {b1, . . . , bn},
C = {z | z ∈Wx, π(z) /∈Wx′} = {c1, . . . , cn},
D = {π(z) | z ∈Wx, π(z) /∈Wx′} = {d1, . . . , dn}.

Let πk,x be the permutation of X ′ defined as follows: πk,x is identical to π with the exception
that, for i = 1, . . . , n, πk,x(ai) = π(ci) and πk,x(ci) = π(ai). It is easy to verify that πk,x is
an isomorphism of φ′ and ψ′. Indeed, suppose for notation that π(a1) = b1 and π(c1) = d1,
and consider the swap πk,x(a1) = π(c1) = d1 and πk,x(c1) = π(a1) = b1. Note that, for every
assignment f satisfying φ′, f(b1) = f(d1). Indeed,

f(y′) = f(b1) = · · · = f(bn)

because the constraint y′ = b1 = · · · = bn is in φ′, and

f(π(y)) = f(π(c1)) = · · · = f(π(cn))

because the constraint y = c1 = · · · = cn is in ψ′; hence, since π(y) = y′,

f(b1) = f(y′) = f(π(y)) = f(π(c1)) = f(d1).

But then, since π reaches πk,x by a sequence of swaps, and each swap is sound by Claim 1,
πk,x is an isomorphism of φ′ and ψ′.

Iterating over all x ∈ Xk, we obtain an isomorphism πk of φ′ and ψ′ such that, for all
x ∈ Xk, there exists x′ ∈ Xk such that πk(Wx) = Wx′ .

Possibly πk(x) = y ∈ Wx′ \ {x′} for some x ∈ Xk. In this case, for some y′ ∈ Wx \ {x},
πk(y

′) = x′ ∈Wx′ . But again, it is easy to check that the permutation that is identical to πk
with the exception that it sends x to x′ and y′ to y is an isomorphism of φ′ and ψ′; hence
iterating, we get an isomorphism ρk of φ′ and ψ′ that fixes Xk.

Now iterate over Xi for i = k− 1, . . . , 1, until an isomorphism ρ1 of φ′ and ψ′ is obtained
such that ρ1 fixes Xi for every i ∈ [k]. The claim is settled by letting π′ = ρ.

For (2, ⇒), let π′ be an isomorphism of φ′ and ψ′ that fixes Xi for every i ∈ [k]. By
construction, π′|X is an isomorphism of φ and ψ, and clearly π′|X fixes Xi for every i ∈ [k].

9

For (2, ⇐), let ρ be an isomorphism of φ and ψ that fixes Xi for every i ∈ [k]. Then any
permutation ρ′ extending ρ to X ′, such that for every i ∈ [k] and every x ∈ Xi, ρ

′(Wx\{x}) =
Wx′ \ {x′} if and only if ρ(x) = x′, is an isomorphism of φ′ and ψ′. ut

Theorem 5. Let A be a finite idempotent algebra such that V(A) admits the semilattice type.
Then, PPEQ(A) is coNP-hard, and PPISO(A) is CI-hard.

Proof. By Lemma 1, there exists a strictly simple idempotent factor of A having type at
most 5. If this factor has type 1, both claimed hardness results follow from Theorem 4;
otherwise, it has type 5, and is term equivalent to the algebra A′ = ({0, 1}, {∧}) by Lemma 2.
By Proposition 4, it suffices to show that PPEQ(A′) is coNP-hard, and that PPISO(A′) is
CI-hard.

Let B be the relational structure over the domain {0, 1} and the signature σ = {T, F, I,N2, H}
where TB = {(1)}, FB = {(0)}, IB = {(x, y) ∈ {0, 1}2 | x → y}, NB

2 = {(x, y) ∈
{0, 1}2 | ¬x ∨ ¬y}, and HB = {(x, y, z) ∈ {0, 1}3 | x ∧ y → z}. It is straightforward to
verify that PPEQ(B) ∈ PPEQ(A′) and PPISO(B) ∈ PPISO(A′). We prove that PPEQ(B) is
coNP-hard, and that PPISO(B) is CI-hard. The claimed hardness results follow by Proposi-
tion 4.

To this aim, we describe a logspace algorithm, φ(·), that takes in input a boolean circuit
C over the basis {∧,¬}, say with input gates x1, . . . , xn, internal gates xn+1, . . . , xm−1, and
output gate xm, and returns in output a pp-formula φ(C) of σ, having free variables in

X = {fi, ti | i ∈ [n]},

and existentially quantified variables in

{oi | i ∈ [n]} ∪ {fi, ti | i ∈ {n+ 1, . . . ,m}} ∪ {yi | i ∈ [n+ 2]}.

Note that, for n ≥ 3, the pp-formula Hn+1(x1, . . . , xn, xn+1) defined by

∃y1 · · · ∃yn (I(x1, y1) ∧H(y1, x2, y2) ∧ · · · ∧H(yn−1, xn, yn) ∧ I(yn, xn+1))

pp-defines the relation {(x1, . . . , xn, xn+1) ∈ {0, 1}n+1 | (x1 ∧ · · · ∧ xn) → xn+1} over B, and
the pp-formula Nn(x1, . . . , xn) defined by

Hn+1(x1, . . . , xn, xn+1) ∧ F (xn+1)

pp-defines the relation {(x1, . . . , xn) ∈ {0, 1}n | ¬x1 ∨ · · · ∨ ¬xn} over B.
The following is a logspace construction of φ(C): For every input gate xi of C, φ(C)

contains the input clauses
I(fi, oi), I(ti, oi), N2(fi, ti);

for every internal gate xi: if xi = ¬xj , φ(C) contains the internal clauses

I(fj , ti), I(tj , fi);

if xi = xj ∧ xk, φ(C) contains the internal clauses

H(fj , fk, fi), H(fj , tk, fi), H(tj , fk, fi), H(tj , tk, ti);

eventually, corresponding to the output gate xm, φ(C) contains the output clause

Nn+1(o1, . . . , on, tm).

Let f ′ : X → {0, 1}. Say that f ′ corresponds to f : {x1, . . . , xn} → {0, 1} if f(xi) = 0
implies f ′(fi) = 1, f ′(ti) = 0, and f(xi) = 1 implies f ′(fi) = 0, f ′(ti) = 1.

10

Claim 1. f ′ does not model φ(C) over B if and only if either (1) f ′(fi) = f ′(ti) = 1 for some
i ∈ [n], or (2) f ′ corresponds to f and f satisfies C.

Proof of Claim 1. (⇐) If (1) holds, then some input clause N2(fi, ti) is false in B under f ′.
Suppose that (2) holds, and let f ′′ be an assignment to the existentially quantified variables
of φ(C). The input clauses force f ′′ to send all the oi’s to 1. A routine inductive argument
shows that the internal clauses force f ′′ to send tm to 1 (respectively, fm to 1) if the output
gate xm takes the value 1 (respectively, 0) under f ; therefore, since f satisfies C, f ′′ sends tm
to 1. But then, the output clause Nn+1(o1, . . . , on, tm) is false in B under f ′.

(⇒) Suppose that neither (1) nor (2) hold. Suppose that f ′ corresponds to an assignment
f not satisfying C. Let g be a partial assignment to the existentially quantified variables of
φ(C) such that g(oi) = 1 for all i ∈ [n], and g(fi) = 1 if and only if the value of gate xi
under the assignment f is 0 if and only if g(ti) = 0 for all i ∈ {n + 1, . . . ,m}. Note that
in particular, g(fm) = 1 and g(tm) = 0. It is easy to check that g extends to a complete
assignment f ′′ to the existentially quantified variables of φ(C) such that f ′ and f ′′ satisfy all
the clauses of φ(C) in B. Now suppose that i ∈ [n] is such that f ′(fi) = f ′(ti) = 0. Note that,
by hypothesis, there is no i ∈ [n] such that f ′(fi) = f ′(ti) = 1. Then it is possible to extend
a partial assignment g such that g(oi) = 0 to a complete assignment f ′′ such that f ′ and f ′′

satisfy all the clauses of φ(C) in B. ut

As regards PPEQ(B), we reduce from the coNP-hard problem of deciding whether two
boolean circuits over the same input gates are equivalent, that is, compute the same boolean
function. Let C and C ′ be boolean circuits over {∧,¬} with the same input gates, and let
φ(C) and φ(C ′) be the corresponding pp-formulas of σ. Exploiting Claim 1, it is easy to verify
that C and C ′ are equivalent if and only if φ(C) and φ(C ′) are equivalent over B.

As regards PPISO(B), we reduce from the circuit isomorphism problem. Let C and C ′ be
boolean circuits over {∧,¬} with n many input gates x1, . . . , xn, and let φ(C) and φ(C ′) be
the pp-formulas of σ specified above, over the free variables X = {fi, ti | i ∈ [n]}. Let φ(C)′

and φ(C ′)′ be the pp-formulas of σ given by applying Lemma 3 to the blocks F = {fi | i ∈ [n]}
and T = {ti | i ∈ [n]} of X, so that φ(C)′ and φ(C ′)′ are isomorphic if and only if φ(C) and
φ(C ′) have an isomorphism that fixes F and T . We show that C and C ′ are isomorphic if and
only if φ(C)′ and φ(C ′)′ are isomorphic over B.

(⇒) Let π be an isomorphism of C and C ′. Define the permutation π′ of X by putting
π′(fi) = fj and π′(ti) = tj if and only if π(xi) = xj . Clearly, π′ fixes F and T , and it is
straightforward to verify that π′ is an isomorphism of φ(C) and φ(C ′). Therefore, by Lemma 3,
φ(C)′ and φ(C ′)′ are isomorphic.

(⇐) Let π′ be an isomorphism of φ(C)′ and φ(C ′)′. By Lemma 3, φ(C) and φ(C ′) have
an isomorphism that fixes F and T .

Claim 2. Let π : X → X be an isomorphism of φ(C) and φ(C ′) that fixes F and T . For
every i ∈ [n], π(fi) = fj and π(ti) = tk implies j = k.

Proof of Claim 2. Let f : X → {0, 1} be identically 0 over X \ {fj , tk}, and such that f(fj) =
f(tk) = 1. Then, f ◦ π(fi) = f(π(fi)) = f(fj) = 1 and f ◦ π(ti) = f(π(ti)) = f(tk) = 1. By
Claim 1, f ◦ π does not model φ(C ′) over B. Since π is an isomorphism of φ(C) and φ(C ′),
f ◦ π ◦ π−1 = f does not model φ(C) over B. Noticing that f does not correspond to any
assignment to the circuit C (take n ≥ 3), by Claim 1 we have that f(fl) = f(tl) = 1 for some
l ∈ [n]. But the only possibility is j = k = l. ut

11

Define the permutation π of {x1, . . . , xn} by putting π(xi) = xj if and only if π′(fi) = fj
and π′(ti) = tj . This definition is sound by Claim 2. It is straightforward to verify that π is
an isomorphism of C and C ′. ut

Theorem 6. Let A be a finite idempotent algebra such that V(A) admits the lattice type.
Then, PPEQ(A) is NL-hard, and PPISO(A) is GI-hard.

Proof. By Lemma 1, there exists a strictly simple idempotent factor of A having type at most
4. If this factor has type 1 or type 5, we invoke the proof of Theorem 4 and Theorem 5 to
obtain the hardness result. In the case that we have such a factor of type 4, by Lemma 2, this
factor is term equivalent to the algebra A′ = ({0, 1}, {∧,∨}).

Let B be the structure over signature {R, T, F} with universe {0, 1} and where RB =
{(0, 0), (0, 1), (1, 1)}, TB = {(1)} and FB = {(0)}. As the relation RB is preserved by all
polynomials of A′, it is preserved by all terms of the factor; also, as the factor is idempotent,
it preserves both TB and FB. Hence, by Proposition 4, it suffices to show that B satisfies
the described hardness results. The problem CSP(B) is known to be NL-hard [2], and we
thus obtain that PPEQ(B) is NL-hard by the reduction that maps an instance φ of CSP(B)
to the instance φ, φ′ of PPEQ(B) where φ′ is a true pp-formula with no free variables. It
follows from [8, Lemma 14(1)] that PPISO(B) is GI-hard; their reduction can be implemented
in logspace. ut

5 Containment Results

This section presents complexity class containment results for the studied problems. We begin
with an observation.

Proposition 5. Let B be a relational structure. If CSP(B) is in P, then PPEQ(B) is in
coNP, and PPISO(B) reduces to CI.

The condition of having few subpowers was studied in [5]. Examples of algebras enjoying
this property are those having a Maltsev term, that is, a ternary term m satisfying the
identities

m(x, y, y) = m(y, y, x) = x

and those having a near-unanimity term, that is, a term f of arity greater than or equal to 3
satisfying the identities

f(y, x, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) = x.

We show that this condition in fact places the equivalence problem in P.

Theorem 7. Let B be a relational structure. If AB has few subpowers, then PPEQ(B) is in
P.

Proof. Without loss of generality, we may assume that the structure B has all unary singletons
as relations, since adding them will not change that AB has few subpowers. The following is
a polynomial time algorithm for PPEQ(B). Given two formulas φ, φ′ on free variables X, let
x1, . . . , xn be an arbitrary ordering of the variables in X. Convert φ and φ′ to prenex form,
and let D, D′ be extensions of the ordering x1, . . . , xn that include the existentially quantified

12

variables of φ and φ′, respectively. Invoke the algorithm of [18] on φ and D to compute a
succinct representation of the solution space (of the quantifier free part), and similarly for
φ′ and D′. Then, in the succinct representations, project away the existentially quantified
variables to obtain succinct representations S and S′ of the satisfying assignments of φ and
φ′ respectively. The algorithm then needs to check if S and S′ are equal in the sense that
they represent the same relation. As they are generating sets for the relations represented, it
suffices to check that every tuple in each of S and S′ is a solution of φ and φ′; this can be
done by invoking the CSP decision procedure of [18]. For instance, if (s1, . . . , sn) ∈ S (and
hence a solution of φ) then to determine if this tuple is a solution of φ′, we need only check
that the instance of CSP(B) obtained from φ′ by substituting the variables xi by the si has
a solution. Since we assume that B has all unary singletons as relations, this instance does
indeed belong to CSP(B). ut

We now present results on structures having near-unanimity terms, giving different con-
tainment results depending on the complexity of the constraint satisfaction problem.

Theorem 8. Let B be a relational structure. Suppose that AB has a near-unanimity term.

– If CSP(I(AB)) is in L, then the problem PPEQ(B) is in L, and the problem PPISO(B)
reduces to GI under logspace reduction.

– If CSP(I(AB)) is in NL, then the problem PPEQ(B) is in NL.
– If CSP(I(AB)) is in P, then the problem PPISO(B) reduces to GI under polynomial time

many-one reduction.

Proof. Let B be a relational structure whose algebra AB has a near-unanimity term of arity
k, and let ψ be a pp-formula with free variables X. It is known that, over B, the formula ψ
is satisfied by an assignment f if and only if for every subset S ⊆ X of size less than or equal
to k − 1, the restriction f |S can be extended to a satisfying assignment of ψ [19].

Now consider the problem PPEQ(B). By expanding B if necessary, we may assume that
B contains each of the constant relations RB

b = {(b)} for b ∈ B; this is because adding
these relations does not change the set of idempotent polymorphisms. To decide if φ, φ′ are
equivalent, it suffices to decide (by the initially stated fact) if, for every subset S ⊆ X of size
less than or equal to k − 1, the sets AS,φ, AS,φ′ containing the assignments g on S that can
be extended to satisfying assignments in φ and φ′, are equal. This can be checked by looping
over each such subset S and each assignment g on S; the body of the loop instantiates the
assignment g in each formula by adding the constraint Rb(v) when g(v) = b, and then calls a
procedure for the CSP to check that one formula is true if and only if the other one is. When
CSP(B) is in L, all of this can be carried out in logarithmic space. Similarly, when CSP(B) is
in NL, this can be carried out in NL (note that since NL is closed under complementation,
we may assume that the complement of CSP(B) is also in NL; we may then handle queries to
the CSP by first guessing the outcome, and then querying either the CSP or its complement,
continuing only if the guess was correct, and rejecting otherwise).

To reduce PPISO(B) to GI, for each of the formulas φ, φ′ we may compute an equivalent
quantifier-free pp-formula by looping over each subset S and assignment g on S (as above)
and creating an atomic formula whose variables are S and where the relation contains the set
of satisfying assignments. Although this relation may not be in B, it is clearly pp-definable
over B and hence is preserved by all polymorphisms of B. The resulting quantifier-free pp-
formulas may be reduced to GI by [9, Claim 22]. We can clearly carry this out in polynomial
time if CSP(I(AB)) is in P. ut

13

6 Classification of Boolean Case

In this section, we classify the complexity of the studied problems in the case of boolean
structures. We begin with a lemma that will permit us to obtain hardness results for an
algebra based on hardness results for the idempotent reduct of the algebra. Let us say that
a clone over {0, 1} satisfies the simple diagonal property if for any operation f in the clone
whose diagonal f(x, . . . , x) is equal to a constant c, it holds that f itself is equal to c.

Lemma 4. Let A be an algebra with universe {0, 1} whose clone of term operations satisfies
the simple diagonal property. Then, for every problem PPEQ(B) ∈ PPEQ(I(A)), there exists
a problem PPEQ(B′) ∈ PPEQ(A) such that PPEQ(B) reduces to PPEQ(B′), and likewise for
PPISO(·).

Proof. Let B be any relational structure, let σ be its signature, and suppose that the relations
of B are preserved by the operations of I(A). Let B′ be a relational structure, with the same
universe and signature of B, such that for every k-ary relation symbol R in σ, RB′

is the
smallest (k + 2)-ary relation that contains {(0, 1, a1, . . . , ak) | (a1, . . . , ak) ∈ RB} and is
preserved by the operations of A (compare Proposition 3).

As regards the equivalence problem, let (φ, ψ) be an instance of PPEQ(B). Let X be
the set of free variables of φ and ψ. We define an instance (φ′, ψ′) of PPEQ(B′), as follows.
Let w0 and w1 be variables not occurring in φ or ψ. The pp-formula φ′ of σ contains the
constraint R(w0, w1, x1, . . . , xk) if and only if φ contains the constraint R(x1, . . . , xk). ψ

′ is
defined similarly. We show that (φ, ψ) ∈ PPEQ(B) if and only if (φ′, ψ′) ∈ PPEQ(B′).

(⇐) Let f be any assignment of X to {0, 1}. We show that B, f |= φ implies B, f |= ψ
(the converse is similar). Suppose that f models φ over B. Define f ′ : X ∪ {w0, w1} → {0, 1}
such that f ′|X = f , f ′(w0) = 0, and f ′(w1) = 1. By construction, f ′ models φ′ over B′, thus
by hypothesis, f ′ models ψ′ over B′; but by construction again, f models ψ over B.

(⇒) Let f be any assignment of X ∪ {w0, w1} to {0, 1}. We show that B′, f |= φ′ implies
B′, f |= ψ′ (the converse is similar). Suppose that f models φ′ over B′. LetR(w0, w1, x1, . . . , xk)
be any constraint in φ′. The tuple (f(w0), f(w1), f(x1), . . . , f(xk)) is in RB′

. By construction,
there exist an m-ary term operation g of A, and m many (k + 2)-tuples (0, 1, ai,1, . . . , ai,k) ∈
RB′

, i ∈ [m], such that g(0, 0, . . . , 0) = f(w0), g(1, 1, . . . , 1) = f(w1), and g(a1,j , a2,j , . . . , am,j) =
f(xj), j ∈ [k]. We distinguish three cases.

Case f(w0) = f(w1) = a: Since A has the simple diagonal property, by the above g is the
constant a. Therefore f(x1) = · · · = f(xk) = a. Without loss of generality, every variable in
X occurs in φ′, hence we conclude that f is identically a over X. But then, f models ψ′ over
B′, because every relation of B′ has g = a as a polymorphism.

Case f(w0) = 0 and f(w1) = 1: By the above, g is idempotent. Then, g is in I(A) and
(f(x1), . . . , f(xk)) ∈ RB. Hence, f |X models φ over B and by hypothesis f |X models ψ over
B. By construction, f models ψ′ over B′.

Case f(w0) = 1 and f(w1) = 0: First note that the unary term operation that sends 0 to 1
and 1 to 0, in symbols ¬x, is a term operation of A, because ¬x = g(x, . . . , x). Hence the op-
eration ¬g is an idempotent term operation of A, because ¬g(x, . . . , x) = ¬(g(x, . . . , x)) = x.
Therefore, by construction, (1, 0, f(x1), . . . , f(xk)) is in RB′

if and only if (¬f(x1), . . . ,¬f(xk))
is in RB. But then, letting ¬f |X be the assignment of X to {0, 1} such that ¬f |X(x) = ¬f(x)
for every x ∈ X, we have that ¬f |X models φ over B. By hypothesis, ¬f |X models ψ over B,
and therefore, f models ψ′ over B.

14

As regards the isomorphism problem, let (φ, ψ) be an instance of PPISO(B). Let X be
the set of free variables of φ and ψ. We define an instance (φ′′, ψ′′) of PPISO(B′) in two
steps, as follows. φ′ and ψ′ are defined as for the equivalence problem. φ′′ and ψ′′ are defined
by applying Lemma 3 to φ′ and ψ′ with the partition {w0}, {w1}, and X. We show that
(φ, ψ) ∈ PPISO(B) if and only if (φ′′, ψ′′) ∈ PPISO(B′).

(⇐) Let π′′ be an isomorphism of φ′′ and ψ′′ over B′. By Lemma 3, φ′ and ψ′ have an
isomorphism π′ that fixes {w0}, {w1}, and X. We show that π = π′|X is an isomorphism of φ
and ψ over B. Let f : X → {0, 1}. We show that B, f |= φ implies B, f ◦ π |= ψ (the converse
is similar). Suppose that f models φ over B. By construction, the assignment f ′ : X∪{w0, w1}
such that f ′|X = f , f ′(w0) = 0, and f ′(w1) = 1, models φ′ over B′, then, f ′ ◦ π′ models ψ′

over B′. Since f ′ ◦ π′(w0) = f ′(π′(w0)) = f ′(w0) = 0, f ′ ◦ π′(w1) = f ′(π′(w1)) = f ′(w1) = 1,
and f ′ ◦ π′(x) = f ′(π′(x)) = f ′(π(x)) = f(π(x)) = f ◦ π(x) for all x ∈ X, by construction we
have that f ◦ π models ψ over B.

(⇒) Let π be an isomorphism of φ and ψ over B. Let π′ be the permutation of X∪{w0, w1}
such that π′|X = π, π′(w0) = w0, and π′(w1) = w1, that is, π′ fixes {w0}, {w1}, and X. By
the construction of φ′ and ψ′, π′ is an isomorphism of φ′ and ψ′ over B′. By Lemma 3, φ′′

and ψ′′ are isomorphic over B′. ut

Theorem 9 (Equivalence Classification). Let B be a relational structure with universe
{0, 1}, and let V be the variety generated by the algebra I(AB).

1. If V admits the unary type, then PPEQ(B) is Πp
2 -complete.

2. If V omits the unary type but admits the affine type, then PPEQ(B) is hard for parity L
but contained in P .

3. If V omits the unary and affine types but admits the semilattice type, then PPEQ(B) is
coNP-complete.

4. If V omits the unary, affine and semilattice types but admits the lattice type, then PPEQ(B)
is NL-complete.

5. If V admits only the boolean type, then PPEQ(B) is in L.

Proof. We consider each of the five cases in turn. In each case, the clone of term operations
of I(AB) is known from the analysis in [23]. From there, the possibilities for the clone of term
operations of AB can be readily derived from Post’s lattice [7]. By Theorem 2, it is sufficient to
prove hardness results with respect to PPEQ(AB). We use the notation for clones introduced
by [7].

Case 1: The algebra I(AB) has term clone I2. The term clone of AB is thus contained in N .
As N satisfies the simple diagonal property, to obtain Πp

2 -hardness of PPEQ(B) it suffices by
Lemma 4 to show that PPEQ(I(AB)) is Πp

2 -hard. This follows from Theorem 4. Containment
of PPEQ(B) in Πp

2 follows from Proposition 1.
Case 2: The algebra I(AB) has term clone L2. As x⊕ y⊕ z is contained in this clone, this

operation is a term of AB. This is a Maltsev operation and thus AB has few subpowers [5],
and it follows from Theorem 7 that PPEQ(B) is in P. Parity L hardness of PPEQ(B) follows
from Theorem 3 and the parity L hardness of CSP(I(AB)) [2].

Case 3: The algebra I(AB) has term clone V2 or E2. The term clone of AB is thus contained
in V or in E. As V and E satisfy the simple diagonal property, to obtain coNP-hardness of
PPEQ(B) it suffices by Lemma 4 to show that PPEQ(I(AB)) is coNP-hard. This follows from
Theorem 5. The inclusion of PPEQ(B) in coNP follows from Proposition 5 and the fact that
CSP(AB) is in P [2].

15

Case 4: The algebra I(AB) has term clone Sn00, S
n
10, D2, or M2. For all of these term

clones, CSP(I(AB)) is known to be NL-complete [2]. The NL-hardness of PPEQ(B) follows
from Theorem 3 and the NL-hardness of CSP(I(AB)). Inclusion of PPEQ(B) in NL follows
from Theorem 8.

Case 5: The algebra I(AB) has term clone D1, R2, S
n
02, or Sn12. Each of these term clones

contains a near-unanimity operation and from [2] we have that CSP(I(AB)) is in L; thus
PPEQ(B) is contained in L by Theorem 8. ut

Theorem 10 (Isomorphism Classification). Let B be a relational structure with universe
{0, 1}, and let V be the variety generated by the algebra I(AB).

1. If V admits the unary type, then PPISO(B) is BOOL-PPISO-complete.
2. If V omits the unary type but admits the affine type, then PPISO(B) is in NP and GI-hard,

but not NP-complete unless the polynomial hierarchy collapses.
3. If V omits the unary and affine types but admits the semilattice type, then PPISO(B) is

CI-complete.
4. If V omits the unary, affine and semilattice types but admits the lattice type, then PPISO(B)

is GI-complete with respect to polynomial time many-one reduction.
5. If V admits only the boolean type, then PPISO(B) is either GI-complete or in L.

To establish the isomorphism classification, we will make use of the following two lemmas.
The first gives a hardness result for certain cases of the isomorphism problem.

Lemma 5. Let B be a relational structure with universe {0, 1} such that the term clone of
AB is contained in the clone L (which is generated by ⊕ and the constants 0 and 1). Then,
the problem PPISO(B) is GI-hard.

Proof. We make use of a construction and ideas from the paper by Nordh [24]. This paper
shows the GI-hardness of deciding the isomorphism of systems of equations having the form
a⊕ b⊕ c = 1. We will show that this isomorphism problem reduces to the problem of deciding
the isomorphism of systems of equations having the form a⊕ b⊕ c⊕ d = 0; this suffices, since
such an equation defines a 4-ary relation that is preserved by all operations in the clone L.

As in the paper of Nordh, we will make use of the concept of a maximum set of equations.
We say that a set of equations U of a certain type (for instance, a⊕ b⊕ c = 1) is maximum
if any equation of the same type that is entailed by U is included in U . It is straightforward
to verify that for two maximum sets U1, U2 of equations (over the same type of equation),
it holds that U1 ≡ U2, that is, U1, U2 have the same solutions, if and only if U1 = U2, by
which we mean that the sets of equations are the same (up to commutativity of ⊕). As a
consequence, two maximum systems of equations U1, U2 have isomorphic solution spaces if
and only if there exists a permutation π such that π(U1) = U2.

Let T1, T2 be two sets of equations of the form a⊕b⊕c = 1 that are maximum. We show how
to construct two sets of equations S1, S2 of the form a⊕b⊕c⊕d = 0 that are isomorphic if and
only if T1, T2 are isomorphic. For each i, define Si = {(a⊕b⊕c⊕w = 0) | (a⊕b⊕c = 1) ∈ Ti},
where w is a fresh variable not occurring in T1 and T2. By Lemma 3, we may create an
instance of the problem PPISO(B) that is a yes instance if and only if S1, S2 are isomorphic
via a permutation that fixes w. If S1 and S2 are isomorphic via such a permutation, then
in particular they are isomorphic on assignments where w = 1, implying that T1 and T2 are
isomorphic. On the other hand, if T1 and T2 are isomorphic via π, then by maximality they are
in fact also isomorphic if each equation a⊕ b⊕ c = 1 is replaced by an equation a⊕ b⊕ c = 0.
It follows that S1 and S2 are isomorphic via the extension of π that maps w to w. ut

16

The next lemma gives a complexity upper bound for the isomorphism problem, assuming
that the term clone has a particular clone.

Lemma 6. Let B be a relational structure with universe {0, 1} such that the term clone of
AB contains the operation x⊕ y⊕ z. Then, the problem PPISO(B) is not NP-complete unless
the polynomial hierarchy collapses.

Proof. It is known that relations preserved by the given operation are equivalent to the
conjunction of linear equations over {0, 1}. We may hence rewrite our formulas so that in
place of atomic formulas, they contain such linear equations. By using Gaussian elimination,
existentially quantified variables may be eliminated in a way that preserves the set of satisfying
assignments. Hence, in polynomial time we may convert pp-formulas over B to systems of
linear equations over {0, 1}.

We give a constant-round interactive protocol for non-isomorphism of systems of linear
equations over {0, 1}, which is based on the protocol for graph non-isomorphism [15]. By
the results of [16, 4, 10], this implies that the corresponding isomorphism question is not
NP-complete, unless the polynomial hierarchy collapses. This resolves an open question of
Nordh [24].

Given two systems of equations S1, S2 over the same variables X, the verifier does the
following. He first checks satisfiability for each of the systems; if one or both are not satisfiable,
he accepts or rejects accordingly. Next, he picks a random b ∈ {1, 2}, and works with Sb.
Throughout, we assume that equations have the form a1x1 ⊕ · · · ⊕ anxn = c where X =
{x1, . . . , xn} and a1, . . . , an, c ∈ {0, 1}. Let us say that a variable v in a system of equations
is obedient if, for any assignment g to the other variables, at most one of the extensions
g[v → 0], g[v → 1] satisfies the system. Observe that a variable appears in an equation if and
only if it is obedient. The verifier next picks a random variable v from those appearing in an
equation, selects an equation E in which it occurs, and substitutes away all instances of the
variable v in other equations based on E. The verifier then records (v,E), eliminates it from
the system, and repeats, picking a random variable from the remaining equations.

When this process has terminated, any assignment to the non-recorded variables can
be extended uniquely to a full assignment including the recorded variables. By using back
substitution, every recorded variable can be written uniquely as a linear combination of non-
recorded variables. The verifier creates an equation for each recorded variable based on this
linear combination, randomly renames all of the variables, and outputs the result.

The verifier then sends the resulting system to prover. Prover’s job is to attempt to identify
which b was originally picked. As the transformation performed by verifier preserves the set
of satisfying assignments up to permutation of variables, prover can do this if the original
systems were not isomorphic. If the original systems were isomorphic, we claim that prover
succeeds with probability 1/2. This is because if the original systems were isomorphic, the
distribution of formulas produced by the verifier for each choice of b is identical. In particular,
suppose that π is an isomorphism from S1 to S2. The probability that the verifier chooses a
sequence v1, . . . , vk of recorded variables when run on S1 is equivalent to the probability that
the verifier chooses the sequence π(v1), . . . , π(vk) of recorded variables when run on S2. ut

Proof. (Proof of Theorem 10) As in the proof of Theorem 9, we consider each of the five cases
in turn. In each case, the clone of term operations of I(AB) is known from the analysis in [23].
From there, the possibilities for the clone of term operations of AB can be readily derived

17

from Post’s lattice [7]. By Theorem 2, it is sufficient to prove hardness results with respect
to PPISO(AB). We use the notation for clones introduced by [7].

Case 1: The algebra I(AB) has term clone I2. The term clone of AB is thus contained in N .
As all operations in N satisfy the simple diagonal property, to obtain BOOL-PPISO-hardness
it suffices to show by Lemma 4 that PPISO(I(AB)) is BOOL-PPISO-hard. This follows from
Theorem 4. Containment of PPISO(B) in BOOL-PPISO is clear.

Case 2: The algebra I(AB) has term clone L2. As x ⊕ y ⊕ z is contained in this clone,
this operation is a term of AB. It follows from Lemma 6 that PPISO(B) is not NP-complete
unless the polynomial hierarchy collapses. By Theorem 9, the problem PPEQ(B) is in P, from
which it follows that PPISO(B) is in NP.

From Post’s lattice, we have that the term clone of AB is contained in L. The GI-hardness
of PPISO(B) follows from Lemma 5.

Case 3: The algebra I(AB) has term clone V2 or E2. From Theorem 5, we obtain that
PPISO(I(AB)) is CI-hard. Hence, by Lemma 4, PPISO(AB) is CI-hard, and by Theorem 2, we
conclude that PPISO(B) is CI-hard. The inclusion of PPISO(B) in CI follows from Proposi-
tion 5 and the fact that CSP(AB) is in P [2].

Case 4: The algebra I(AB) has term clone Sn00, S
n
10, D2, or M2. In all of these term clones,

there is a near-unanimity operation. We obtain that PPISO(B) polynomial time reduces to
GI by Theorem 8. The GI-hardness of PPISO(B) follows from [8, Theorem 7(2)].

Case 5: The algebra I(AB) has term clone D1, R2, S
n
02, or Sn12 (for some n ≥ 2). Each of

these term clones contains a near-unanimity operation and from [2] we have that CSP(B) is
in L; thus, PPISO(B) logspace reduces to GI by Theorem 8.

In the case that the term clone of I(AB) is of the form Sn02, the term clone of AB is
contained in S2

0 , and the relation x ∨ y is preserved by the term clone of AB. The problem
GI can be reduced to a structure B having the relation RB = {(x, y) | x ∨ y} by creating a
formula for each graph containing an atomic formula R(v, v′) for each edge {v, v′}. The case
of Sn12 is dual.

In the other two cases, where the term clone of I(AB) is equal to either D1 or R2, all
operations in D1 are term operations of AB. By the 2-decomposability [19] of the relations, we
know that the set of satisfying assignments for a pp-formula with free variables X is equivalent
to the conjunction of constraints x 6= y, x (x is true), and ¬x (x is false); moreover, given
one of these constraints, we may determine if it is entailed in logspace. Now consider two
pp-formulas φ, φ′. In logspace, we can verify if both are satisfiable; if not, we can immediately
determine isomorphism and either reject or accept. Now, consider the graphs G,G′ where two
variables x, x′ are adjacent if there is an entailed constraint x 6= x′ in φ (respectively, φ′).
Our logspace algorithm is as follows. For each of the formulas ψ ∈ {φ, φ′}, we loop over all
variables v.

On variable v, we compute a triple tv defined as (m,n, s) where m is the number of vertices
reachable by an even number of G-steps from v, n is the number of vertices reachable by an
odd number of G-steps from v, and s is equal to a ∈ {0, 1} if v must be equal to a in any
satisfying assignment, and equal to ∗ otherwise. We then count the number of connected
components in G having a vertex w with tw = tv, and likewise for G′; if the numbers are
different, we reject. (Looping over all connected components can be done by looping over all
variables in order, and considering the component of a variable if and only if the variable is
not connected to a variable coming before it in the order.)

If the algorithm loops over all variables in both formulas without rejecting, then the
formulas are isomorphic, and the algorithm accepts. ut

18

References

1. M. Agrawal and T. Thierauf. The Formula Isomorphism Problem. SIAM Journal on Computing, 30(3):990–
1009, 2000.

2. E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The Complexity of Satisfiability
Problems: Refining Schaefer’s Theorem. In Proceedings of the 30th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS), 2005.

3. A. Atserias. Conjunctive Query Evaluation by Search-Tree Revisited. Theoretical Computer Science,
371(3):155–168, 2007.

4. L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Com-
plexity Classes. Journal of Computer and System Sciences, 36(2):254 – 276, 1988.

5. J. Berman, P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Varieties with Few
Subalgebras of Powers. To appear in Transactions of the American Mathematical Society.

6. V. Bodnarchuk, L. Kaluzhnin, V. Kotov, and B. Romov. Galois Theory for Post Algebras. I, II. Cybernetics,
5:243–252, 531–539, 1969.

7. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean Blocks, Part I: Post’s Lattice
with Applications to Complexity Theory. ACM SIGACT-Newsletter, 34(4):38–52, 2003.

8. E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. The Complexity of Boolean Constraint Isomor-
phism. arXiv:cs/0306134v2.

9. E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence and Isomorphism for Boolean Con-
straint Satisfaction. In Proceedings of the 16th International Workshop on Computer Science Logic (CSL),
2002.

10. R. Boppana, J. Hastad, and S. Zachos. Does co-NP have Short Interactive Proofs? Information Processing
Letters, 25(2):127–132, 1987.

11. A. Bulatov and P. Jeavons. Algebraic Structures in Combinatorial Problems. Technical Report MATH-
AL-4-2001, Technische Universitat Dresden, 2001.

12. A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the Complexity of Constraints using Finite Algebras.
SIAM Journal on Computing, 34(3):720–742, 2005.

13. N. Creignou, S. Khanna, and M. Sudan. Complexity Classification of Boolean Constraint Satisfaction Prob-
lems. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics, 2001.

14. D. Geiger. Closed Systems of Functions and Predicates. Pacific Journal of Mathematics, 27:95–100, 1968.
15. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but their Validity or all Languages

in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, 38(3):690–728, 1991.
16. S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems. In Proceed-

ings of the 18th Annual ACM Symposium on Theory of Computing (STOC), 1986.
17. D. Hobby and R. McKenzie. The Structure of Finite Algebras, volume 76 of Contemporary Mathematics.

American Mathematical Society, 1988.
18. P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Tractability and Learnability Arising

from Algebras with Few Subpowers. In Proceedings of the 22nd Annual IEEE Symposium on Logic in
Computer Science (LICS), 2007.

19. P. Jeavons, D. Cohen, and M. Cooper. Constraints, Consistency, and Closure. Articial Intelligence,
101(1-2):251–265, 1998.

20. J. Kobler, U. Schöning, and J. Toran. The Graph Isomorphism Problem: Its Structural Complexity.
Birkhäuser, 1993.

21. P. Kolaitis and M. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. Journal of Com-
puter and System Sciences, 61:302–332, 2000.

22. R. Ladner. On the Structure of Polynomial Time Reducibility. Journal of the ACM, 22(1):155–171, 1975.
23. B. Larose and P. Tesson. Universal Algebra and Hardness Results for Constraint Satisfaction Problems.

To appear in Theoretical Computer Science.
24. G. Nordh. The Complexity of Equivalence and Isomorphism of Systems of Equations over Finite Groups.

Theoretical Computer Science, 345(2-3):406–424, 2005.
25. C. Papadimitriou and M. Yannakakis. On the Complexity of Database Queries. Journal of Computer and

System Sciences, 58(3):407–427, 1999.
26. T. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th Annual ACM Symposium

on Theory of Computing (STOC), 1978.
27. U. Schoning. Graph Isomorphism is in the Low Hierarchy. Journal of Computer and System Sciences,

37(3):312–323, 1988.

19

28. A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de Mathematiques Superieures. Uni-
versity of Montreal, 1986.

29. A. Szendrei. A Survey on Strictly Simple Algebras and Minimal Varieties, volume 19 of Research and
Exposition in Mathematics, pages 209–239. Heldermann Verlag, 1992.

30. J. Toran. On the Hardness of Graph Isomorphism. SIAM Journal on Computing, 33(5):1093–1108, 2004.
31. M. Valeriote. A Subalgebra Intersection Property for Congruence Distributive Varieties. To appear in

Canadian Journal of Mathematics.
32. M. Vardi. The Complexity of Relational Query Languages. In Proceedings of the 18th Annual ACM

Symposium on Theory of Computing (STOC), 1982.

20

