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By a variety, we mean a class of structures in some language L containing
only function symbols which is equationally defined or equivalently is closed
under homomorphisms, submodels and products.

If K is a class of L-structures then I(K,λ) denotes the number of non-
isomorphic models in K of cardinality λ. To say that K has few models, we
mean that I(K, λ) < 2λ for some λ > |L|. If I(K,λ) = 2λ for all λ > |L|
then we say K has many models. In [9, 10], Shelah has shown that for an
elementary class K, having few models is a strong structural condition.

Before we give the definition of strongly abelian, let us motivate how it
arises in this context. A variety V is locally finite if every finitely generated
algebra in V is finite. If A and B are subvarieties of V then V = A⊗B means
that V is the variety generated by A and B and moreover there is a term
τ(x, y) so that τ(x, y) = x holds in A and τ(x, y) = y holds in B. V is called
the varietal product of A and B. As a consequence, if V = A ⊗ B then for
every M ∈ V there is a unique up to isomorphism A ∈ A and B ∈ B so that
M ∼= A×B.

In [4], McKenzie and Valeriote proved the following theorem

Theorem 0.1 If V is a locally finite decidable variety then there are three
subvarieties of V, A, S and D so that V = A ⊗ S ⊗ D and A is an affine
variety, S is a strongly abelian variety and D is a discriminator variety.

For the exact definitions of the terms affine and discriminator one can
see [4], however for us here it is important to know that an affine variety is
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polynomially equivalent to a variety of left R-modules over some ring R and
that any nontrivial discriminator variety contains an algebra whose complete
theory is unstable.

The proof in [4] of Theorem 0.1 shows as well if V is locally finite and is
not the varietal product of a strongly abelian variety, an affine variety and
a discriminator variety then V has many models. Moreover, from [9], we
know that the class of models of an unstable theory has many models so we
conclude

Theorem 0.2 If V is a locally finite variety with few models then there are
two subvarieties of V, A and S, which are respectively affine and strongly
abelian so that V = A⊗ S.

It is time now to give the definition of strongly abelian.

Definition 0.3 An algebra A is said to be strongly abelian if for every term
τ of L and tuples a, b, c, d and e from A so that length(a) = length(c) and
length(b) = length(d) = length(e) then

if τ(a, b) = τ(c, d) then τ(a, e) = τ(c, e).

A variety is said to be strongly abelian if all its algebras are.

Saying that an algebra A is strongly abelian places very strong restrici-
tions on the polynomials of A. If τ(x, y) is a term in L then let τa be the
polynomial τ(a, y). To say that A is strongly abelian means that for all
terms τ and all a, b, if the ranges of the polynomials τa and τb intersect then
τa = τb.

In [11], Valeriote gives an algebraic characterization of the locally finite
decidable strongly abelian varieties. This characterization is also a descrip-
tion of such varieties which have few models. In [1], Baldwin and McKenzie
give a reasonable description of the affine varieties which have few models. In
some sense then the problem of giving an algebraic description of the locally
finite varieties with few models has been “solved”.

We have conjectured that if V is a variety with few models then there is an
affine subvariety A and a strongly abelian subvariety S so that V = A⊗ S.
In the locally finite case, Valeriote’s description of the decidable strongly
abelian varieties was necessary to achieve the decomposition in Theorem 0.1.
We decided to begin by trying to achieve a similar description in the general
case. The main theorem in this paper is
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Theorem 0.4 If V is a strongly abelian variety with few models then it is
equivalent to a multi-sorted unary variety.

In section 1, we show how to convert a strongly abelian variety with few
models into a special type of multi-sorted variety. The main difference here
between the locally finite case and the case with few models is that local
finiteness is replaced by superstability.

In section 2, we finish the proof of Theorem 0.4 and give a complete
description of the strongly abelian varieties with few models.

In section 3, we consider the spectrum function for both locally finite
varieties and strongly abelian varieties. In [6, 7], Palyutin, Starchenko and
Saffe calculate the spectrum functions for any Horn theory. The approach
taken is much different than the one taken here. Instead of obtaining an
algebraic characterization for the class in question, they apply the techniques
of Shelah’s classification theory to obtain a characterization of the algebras
in terms of “independent trees of subalgebras”. Although they obtain a
complete list of spectrum functions, it is difficult to determine which of these
is possible when one imposes some algebraic condition like local finiteness.

The notation we use is, for the most part, standard. One convention not
used everywhere is that when no confusion can arise or the meaning is clear
from context, we often treat tuples like elements. For example, if we write
a ∈ A and don’t say otherwise, a is a tuple all of whose elements belong
to A. Similarly, unless it matters we don’t explicitly mention the arity of
functions or the length of tuples. If the length does matter (usually when a
is a singleton) we will explicitly say so.

At the end of section 1 we deal with multi-sorted algebras. We include
here a few words about them and some notation.

A multi-sorted language L is a collection of sorts {Ui : 1 ≤ i ≤ n} and
function symbols where the variables of the function symbols are assigned a
particular sort. We assume that the syntax of L is understood.

A multi-sorted algebra A for the language L is an assignment of non-
empty sets Ai for each sort Ui together with an interpretation for each func-
tion symbol consistent with the designated sorts for its variables. Without
loss, we may assume that the sorts are disjoint. Throughout the paper, if
A is a multi-sorted algebra then we use the notation Ai to stand for the
underlying set of the ith sort. Also if a ∈ A (here a singleton) then we write
sort(a) = i to mean that a ∈ Ai. If τ is a term of L, we also use sort(τ) = i
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to mean that the range of τ is the ith sort.
If A is a multi-sorted algebra then a subuniverse of A is a subset of A

which is closed under the functions. A subalgebra is a subuniverse which has
non-empty intersection with every sort. We use the notation 〈X〉 to mean
the subuniverse generated by the set X. A product of multi-sorted algebras
in a language L is done sort by sort with the usual interpretation for the
functions. The definition of homomorphism is standard.

A congruence on a multi-sorted algebra A is a collection of equivalence
relations θi on Ai which respect the functions on A. If Ci ⊆ Ai × Ai then
Cg〈C1, . . . , Cn〉 is the least congruence on A which contains each Ci.

A variety for a multi-sorted language L is a class of multi-sorted algebras
which is closed under homomorphisms, subalgebras and products. The the-
ory of such a class is equational; that is, it is axiomatized by a collection of
universally quantified atomic formulas of the form η = ν where η and ν are
terms in L of the same sort.

We want to include some illustrative examples for the reader to refer to
throughout the paper.

Example 0.5 The simplest example of a strongly abelian algebra is any
algebra in a language L which contains only constant symbols and unary
function symbols.

Example 0.6 Suppose L = {τ}, a single binary function symbol. Let Ai

have universe {0, 1} for i = 0, 1. Let τ(x0, x1) = xi be the interpretation of τ
in Ai. Both A0 and A1 are strongly abelian since they are essentially unary
however strong abelianness is preserved under products (and submodels) so
A = A0 ×A1 is also strongly abelian. A is not essentially unary but is built
up from unary algebras. It is easy to see that the variety generated by A has
few models.

Example 0.7 Let A and L be as in the previous example. Define an algebra
B with the same universe as A together with a single new element, a. Let
τ be defined the same as on A except τ(x, a) = τ(x, (0, 0)) and τ(a, x) =
τ((0, 0), x) for all x ∈ A and τ(a, a) = (0, 0). Although this example is only a
minor variant of the previous example, the variety generated by B has many
models. In fact, Bω is unstable. To see this, let’s make a couple of definitions.
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Definition 0.8 1. ϕ is said to be a product-factor formula if whenever
Ai is an L-structure for each i ∈ I then

∏

i∈I

Ai |= ϕ(a) iff Ai |= ϕ(a(i)) for each i ∈ I.

2. A formula ϕ(x, y) is normal in A if whenever ϕ(A, a)∩ϕ(A, b) 6= ∅ for
a, b ∈ A then ϕ(A, a) = ϕ(A, b).

Proposition 0.9 If ϕ(x, y) is a product-factor formula which is not normal
for A then Aω is unstable.

Proof: Suppose we have c, d ∈ A so that ϕ(A, c) ∩ ϕ(A, d) 6= ∅ and
ϕ(A, c) 6= ϕ(A, d). Without loss, we may assume that there is a, b ∈ A with

A |= ϕ(a, c) ∧ ¬ϕ(a, d) ∧ ϕ(b, c) ∧ ϕ(b, d).

Let en, fn ∈ Aω be defined by en(i) is a if i ≤ n and b otherwise and fn(i) is
c if i ≤ n and d otherwise. Easily,

Aω |= ϕ(em, fn) iff m ≤ n.

This says ϕ has the order property in Aω so Aω is unstable. 2

Now let us return to the B of the example. Define the formulas

x ∼ y :=: ∀z(τ(x, z) = τ(y, z) ∧ τ(z, x) = τ(z, y))

θ(x, y, z) :=: z ∼ τ(x, y)

ψ(x, y, z) :=: z = τ(x, y)

In general, if θ and ψ are product-factor formulas then

χ(x, y) :=: ∃zθ ∧ ∀z(θ → ψ)

is as well. Consider χ for our particular θ and ψ. Noticing that B |= (0, 0) ∼ a
it is easy to see that

B |= ∀xχ(x, (0, 1))

but
B |= χ((1, 0), (0, 0)) ∧ ¬χ((0, 0), (0, 0))

This says that χ is not normal and hence Bω is unstable.
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Example 0.10 Let L = {dn : n ≥ 2} where dn is an n-ary function symbol.
Let M = 〈2ω, dn〉n≥2 where we define

dn(x0, . . . , xn−1)(i) =

{
xi(i) if i < n− 1

xn−1(i) if i ≥ n− 1

The variety generated byM has many models. To see why, see the comments
after the statement of Theorem 1.7.

The next three examples give the different unary possibilities.

Example 0.11 Let L = {f, g} where f and g are both unary. The axioms
for the variety are f 2(x) = f(x) and g2(x) = g(x). This variety has many
models (see section 2.2).

Example 0.12 Let L = {f} where f is a unary function symbol. The
variety of all algebras in this language has many models (see section 2.3).

Example 0.13 Let α > 0 be an ordinal. Let L = {fβ : β < α} be a
collection of unary function symbols. The axioms for the variety Vα are

fβfγ(x) = fmax{β,γ}(x) for β, γ < α.

It is not hard to show that

I(Vα,ℵβ) =

{
min{2ℵβ , α(|β + ω|)} if α < ω

min{2ℵβ , α+2(|β + ω|)} if α ≥ ω

so these examples are examples with few models.

1 Some introductory lemmas

The notion of a theory being unsuperstable has many equivalent definitions.
We use the following here (note this definition doesn’t demand that T is
complete.)

Definition 1.1 T is unsuperstable if for every κ there is λ > κ and M |= T ,
A ⊆ M , |A| ≤ λ and {pi : i < µ} where the pi’s are pairwise contradictory
partial types over A consistent with Th(M) and µ > λ.

M is said to be unsuperstable if Th(M) is unsuperstable. A class, K, of
structures is unsuperstable if it contains an unsuperstable model. Any one of
T , M or K is said to be superstable if it is not unsuperstable.
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The main consequence of unsuperstability we use is the following theorem
which can be found in [9].

Theorem 1.2 If T is unsuperstable then I(T, λ) = 2λ for all λ > |T |.
The following Theorem is analogous to the case of modules where if M is

a module which is not ω-stable then Mω is not superstable. (See for example
[8].)

Theorem 1.3 Suppose A is an L-structure and for every i ∈ ω,

1. Ei(x, y) is a product formula and length(x) = length(y),

2. Ei is an equivalence relation on A and

3. Ei+1 properly refines Ei on A

then Aω is unsuperstable.

Remark: Note that the fact that Ei+1 refines Ei implies that there is an
n > 0 so that Ej is an equivalence relation on An for all j.

Proof: Suppose ai
0, a

i
1 ∈ A so that

A |= Ei(a
i
0, a

i
1) ∧ ¬Ei+1(a

i
0, a

i
1).

We’ll prove that Aω×ω is unsuperstable.
For f : ω × ω → 2 define bf ∈ Aω×ω by

bf (m,n) = an
f(m,n).

It is not hard to show

Aω×ω |= Ei(bf , bg) iff f ω×i= g ω×i .

Let λ be a cardinal so that λω > λ. Choose constants cη for each η ∈ λ<ω

and consider the set

Th(Aω×ω) ∪ {Ei(cη, cµ) : η i= µ i, i < ω} ∪ {¬Ei(cη, cµ) : η i 6= µ i, i < ω}.
Using the bf ’s, we see that this set is consistent. If B is a model of this

set then consider the types pη for η ∈ λω over the set {cν : ν ∈ λ<ω} ⊆ B
where

pη = {Ei(x, cηi
) : i < ω}.
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These types are pairwise contradictory and this suffices to show that
Th(Aω×ω) is unsuperstable. 2

From now on assume that V is multi-sorted strongly abelian and T is the
theory of V .

Definition 1.4 1. A term τ(x, z̄) depends on x in the variety V if the
equation

τ(x, z̄) = τ(y, z̄)

does not hold in V.

2. A term d(x1, . . . , xn, ȳ) where x1, . . . , xn are all singletons of the same
sort is said to be diagonal if it depends exactly on the variables
x1, . . . , xn and

T |= d(x, x, . . . , x, ȳ) = x.

We usually suppress the mention of the ȳ.

Comment: Note that if τ(x1, . . . , xm) is a term so that

T |= τ(x, . . . , x) = x

then τ is a diagonal term in the variables that it depends on.

Lemma 1.5 1. If d is diagonal then

T |= d(d(x1
1, . . . , x

1
n), . . . , d(xn

1 , . . . , x
n
n)) = d(x1

1, . . . , x
n
n).

2. If d(x, y, z̄) is diagonal then d(x, x, z̄) is diagonal.

Proof:

1. Since d is diagonal, we have

T |= d(d(y1, . . . , yn), . . . , d(y1, . . . , yn)) = d(y1, . . . , yn).

Since V is strongly abelian, we have

T |= d(ū, d(y1, . . . , yn)
↑
i

, v̄) = d(ū, yi, v̄)
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for any ū and v̄. Hence the following equations hold in any A ∈ V :

d(d(x1
1, . . . , x

1
n), . . . , d(xn

1 , . . . , x
n
n)) = d(x1

1, . . . , d(xn
1 , . . . , x

n
n))

= d(x1
1, x

2
2, . . . , d(xn

1 , . . . , x
n
n))

= . . .

= d(x1
1, . . . , x

n
n).

2. Easy using the strongly abelian property. 2

Now suppose V is a multi-sorted strongly abelian variety and d(x1, . . . , xk)
is a diagonal term in V . We will define another multi-sorted strongly abelian
variety V [d] as follows:

First, if L is the language of V then we define L[d], the language of V [d].
Suppose U1, . . . , Un are the sorts of L and U1 is the sort of the xi’s. L[d] will
have n + k − 1 sorts V1, . . . , Vk, U2, . . . , Un.

Now if f ∈ L is m-ary then without loss, assume that the variables of f ,
y1, . . . , ym are arranged so that the sort of yi is U1 iff i ≤ j for some fixed
j ≥ 0. There are now two cases.

Case 1: If the sort of f is not U1 then let f̄ ∈ L[d] where f̄ has jk +m− j
arguments written

f̄(y1
1, . . . , y

1
k, . . . , y

j
1, . . . , y

j
k, yj+1, . . . , ym).

The sort of f̄ is the same as f , the sort of yi
l is Vl and the sort of yl for l > j

is the same.
Case 2: If the sort of f is U1 then there are k new symbols f1, . . . , fk ∈

L[d]. The sort of fi is Vi and fi has jk + m− j arguments exactly as above.
Now if A ∈ V then we define A[d], an algebra in the language L[d] as

follows:
Let ∼i be the equivalence relation defined on U1(A) by a ∼i b for a, b ∈ A

iff for all x̄, ȳ ∈ A
d(x̄, a

↑
i

, ȳ) = d(x̄, b
↑
i

, ȳ).

Let Vi(A[d]) = U1(A)/∼i and Ui(A[d]) = Ui(A) for i > 1.
Now if g ∈ L[d] then there are two possibilities. First, g = f̄ for some

f ∈ L where the sort of f is not U1. In this case, interpret g as
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g(a1
1/∼1, . . . , a

1
k/∼k, . . . , a

j
1/∼1, . . . , a

j
k/∼k, aj+1, . . . , am) =

f(d(a1
1, . . . , a

1
k), . . . , d(aj

1, . . . , a
j
k), aj+1, . . . , am).

Second, g = fi for some f ∈ L where the sort of f is U1. In this case

g(a1
1/∼1, . . . , a

1
k/∼k, . . . , a

j
1/∼1, . . . , a

j
k/∼k, aj+1, . . . , am) =

f(d(a1
1, . . . , a

1
k), . . . , d(aj

1, . . . , a
j
k), aj+1, . . . , am)/∼i .

If we let V [d] be the closure of the class containingA[d] for allA ∈ V under
isomorphism then V [d] is a multi-sorted strongly abelian variety. Moreover,
V [d] is bi-interpretable with V via d and the ∼i’s.

To be more precise, if A ∈ V then if a ∈ Ui(A) and i > 1 then a is
interpreted as itself in A[d]. If a ∈ U1(A) then a is interpreted as the tuple
〈a/∼1, . . . , a/∼k〉.

Consider example 0.6. There τ is a binary diagonal term. If one con-
structs A[τ ] from A it is easy to see that each sort is essentially one of the
algebras Ai from which A was built.

Definition 1.6 A term s(x1, . . . , xs) is called essentially unary if for some
i ≤ s and some variables y1, . . . , ys distinct and different from the x’s, the
equation

s(x1, . . . , xi−1, xi, xi+1, . . . , xs) = s(y1, . . . , yi−1, xi, yi+1, . . . , ys)

holds in V.

Theorem 1.7 If V is a strongly abelian variety with few models then it is
bi-interpretable with a multi-sorted strongly abelian variety V ′ so that the only
diagonal terms in V ′ are essentially unary.

Comment: To see how this could fail, consider example 0.10. Here each
dn is a diagonal term but none is “maximal”. That is, if you use dn to form
V [dn] then dn+1 will be converted into a diagonal term which is not unary in
V [dn]. By considering the equivalence relations En formed by the kernels of
the terms dn in the first n − 1 variables, it is easy to see that they satisfy
Theorem 1.3 and so V is not superstable. The proof essentially follows this
example.

Proof: We define a sequence of multi-sorted strongly abelian varieties Vi

and binary diagonal terms di so that Vi+1 = Vi[di]. The sorts will be indexed
by finite sequences of 0’s and 1’s. We think of V as one-sorted with sort U〈〉.
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Let V0 = V . Suppose we have defined Vi for all i ≤ n and di for all i < n.
There are now two cases.

Case 1: There is no diagonal term. In this case, let V ′ = Vn and we are
done.

Case 2: There is a diagonal term d for Vn which is not essentially unary.
By lemma 1.5, we may assume d is binary. Suppose that the sort of d is Uη.
Let Vn+1 = Vn[d] and let the sorts of Vn+1 be the same as those of Vn except
that Uη is replaced by Uη0 and Uη1. We label d by both dn and dη.

If this process never stops then by König’s lemma there is η ∈ 2ω so that
Uηn is defined for all n ∈ ω.

Without loss of generality, we may assume η is the identically 1 sequence.
By omitting steps in the construction, we can assume that dn = dηn for all
n.

Now suppose F is the free algebra on countably many generators in V . If
x ∈ F then by tracing the interpretation of V to Vn, we see x is interpreted
as a tuple 〈xn

0 , . . . , x
n
n〉. Moreover, by our assumptions about dn, xl

i = xm
i if

i < l, m.
Define En(x, y) iff xn

i = yn
i for all i < n. By our observation, En+1 refines

En and this refinement is proper since dn depends on both of its variables.
One can show that En is definable in the language of V by a product formula.
As a consequence then V has many models by Theorem 1.3 which contradicts
the assumption that V has few models. 2

Corollary 1.8 If V is a strongly abelian variety in a countable language and
I(V ,ℵ0) < 2ℵ0 then V is bi-interpretable with a multi-sorted strongly abelian
variety with only essentially unary diagonal terms.

Proof: This is more a corollary to the proof of Theorem 1.7. Follow the
steps in the proof until we have constructed Vn for all n ∈ ω. Suppose that
F is the free algebra on the two generators a and b.

For x ∈ F , let 〈xn
0 , . . . , x

n
n〉 be the interpretation of x traced to Vn. Define

the equivalence relations Sn(x, y) iff xn+1
n = yn+1

n . These are definable in the
language of V .

Using the fact that a and b are free generators and the dn’s are diagonal
terms, it is not hard to show that for every U ⊆ ω,

pU(x) = {Sn(x, a) : n ∈ U} ∪ {Sn(x, b) : n ∈ ω \ U}
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is a consistent set of partial types over the parameters {a, b}. Hence there
are 2ω consistent types over a finite subset of F so I(V ,ℵ0) = 2ℵ0 which is a
contradiction. 2

2 The main construction

In this section we assume that V is a multi-sorted strongly abelian variety
with k sorts which satisfies the condition:

∗ if for some term τ(x1, x2, ȳ) the equation τ(x, x, ȳ) = x holds
then τ does not depend on one of x1 or x2.

The main results of this section are patterned after similar results in [4]
(and [11]) where the same conclusions are reached assuming V is a strongly
abelian locally finite decidable variety. The subsection titles for this section
indicate what is proved about V in that section.

2.1 V is unary

Definition 2.1 1. If t(x1, . . . xn) is a term we will say that t is left in-
vertible at the variable xj if there is a term s(y1, . . . , ym) such that the
variables y1, . . . , ym are distinct and different from the x’s, and

s(t(x̄), y2, . . . , ym) = xj

holds in V.

2. A term s(x1, . . . , xn) will be called right invertible if there are terms
sj(y, z̄) such that

s(s1(y, z̄), . . . , sn(y, z̄)) = y

holds in V.

Lemma 2.2 If A is a strongly abelian algebra and a polynomial τ(x, a) is
onto for some a ∈ A then τ(x, y) depends only on x in A.

Proof: Since τ(x, a) is onto, the range of τ(x, a) and τ(x, b) intersect for
any b ∈ A. By the comment after the definition of strongly abelian, this says
that τ(x, a) = τ(x, b) for all x and hence τ(x, y) does not depend on y. 2
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Lemma 2.3 If s is a right invertible term then it is essentially unary.

Proof: Suppose there are terms sj(y, z̄) so that

s(s1(y, z̄), . . . , sn(y, z̄)) = y.

Then the term
s(s1(y1, z̄), . . . , sn(yn, z̄))

must be essentially unary by condition ∗. Suppose that it depends on y1.
Then by lemma 2.2, since s(x, s2(y2, z̄), . . . , sn(yn, z̄)) is onto, it follows that
s is essentially unary. 2

Now suppose that V is not essentially unary.

Lemma 2.4 There is a term q(x1, . . . , xn) so that q depends on x1 and x2

and q is not left invertible at x1 or x2.

Proof: We begin by choosing an arbitrary term t(x1, x2, . . . , xn) that
depends on x1 and x2. Suppose that t is left invertible at x1. We can choose
a term s(y, z̄) such that

s(t(x̄), z̄) = x1.

Since s is right invertible, s depends only upon y. Let

t′(y1, x2, . . . , xn, z̄) = t(s(y1, z̄), x2, . . . , xn).

Then since t depends on x1 and x2 it is not hard to conclude that t′ depends
on y1 and x2.

We now show that the term t′ can’t be left invertible at y1. Consider the
term

p(x, y, z, w̄) = t′(t′(x, y, w̄), z, w̄).

It is not hard to show that if t′ is left invertible at y1 then the term p must
depend on the variable y. But by unraveling the definition of p and t′ it is
possible to show that p is in fact independent of y.

We can use the same argument on the second variable of t′ to finally
arrive at a term that depends on x1 and x2 and is left invertible at neither.
2
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Definition 2.5 For each i, define Ti to be the set of terms t(y1, . . . , yn) so
that sort(y1) = i, and t is not left invertible at y1. If A ∈ V and a, b ∈ Ai

then
a ∼i b iff for every t ∈ Ti and ū ∈ A, t(a, ū) = t(b, ū).

If a ∼i b then we say that a is an analogue of b.

Lemma 2.6 Let B, Dj ∈ V for j ∈ I.

1. For each i, ∼i defines an equivalence relation on Bi.

2. If s(x) is right invertible, sort(x) = i, sort(s) = j and a, b ∈ Bi then if
a ∼i b then s(a) ∼j s(b).

3. µ ∼i ν in
∏

j∈I Dj if and only if µ(j) ∼i ν(j) in Dj, for each j ∈ I.

Proof: 1 and 3 are immediate from the definition.
To prove 2, suppose that a, b ∈ Bi and a ∼i b. If t(y1, . . . , yn) ∈ Tj then

it follows that t(s(a), ū) = t(s(b), ū) for all ū of the appropriate sort, since
the term t(s(x1), . . . , yn) is in Ti. This shows that s(a) ∼j s(b). 2

When it is clear from context which sort we mean we will often leave the
subscript off of ∼.

We introduce a construction with free algebras in V that will be used
in the upcoming many models proof. Let F be the free algebra in V with
generators X = 〈X1, . . . , Xk〉 where Xi is a set of generators of sort i. Choose
some new generator z and let X ′ = 〈X1

′, X2, . . . , Xk〉 where X1
′ = X1 ∪ {z},

and let F ′ be the free algebra in V with generators X ′. Choose an element 0
in the first sort of F . The following claim is the technical heart of Theorem
2.8.

Claim 2.7 There is a congruence θ on F ′ so that

1. h : F → F ′/θ defined by h(a) = a/θ is an embedding,

2. z/θ = {z} and

3. z/θ is an analogue of 0/θ.
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Proof: For 1 ≤ i ≤ k, we define

Ci = {〈t(0, ū), t(z, ū)〉 : t(x, ȳ) is a term, sort(t) = i,

ū ∈ F and t(x, ȳ) is not left invertible at x}.
Then we define a congruence on F ′:

θ = Cg(〈C1, . . . , Ck〉).
Clearly this is the minimal congruence necessary for z/θ to be an analogue
of 0/θ.

To prove 1, it suffices to show that for a ∈ F , if sort(a) = i then a/θ =
{b ∈ F ′ : 〈a, b〉 ∈ Ci}. To see this, note that if b ∈ F is in a/θ then b = τ(z, ū)
for some τ where a = τ(0, ū). But F ′ is free with z as a free generator so we
obtain b = τ(0, ū) from the first equation which gives a = b.

So suppose we have a ∈ F with sort(a) = i. Let

S = {b ∈ F ′ : 〈a, b〉 ∈ Ci}.
Clearly, we have S ⊆ a/θ, and using the term τ defined by τ(x, y) = y, we
get a ∈ S. To prove that a/θ = S, it will suffice to prove that if 〈u, v〉 ∈ Cj

for some 1 ≤ j ≤ k and p is a unary polynomial of F ′ with p(u) or p(v) in
S, then {p(u), p(v)} ⊆ S.

There are two cases to consider, p(u) ∈ S or p(v) ∈ S. Suppose that the
former holds. Choose terms t(x, ȳ) and g(x′, y, ȳ′), and elements b̄, c̄ in F
such that

p(r) = g(r, z, b̄) for all r and

〈u, v〉 = 〈t(0, c̄), t(z, c̄)〉
where t(x, ȳ) is not left invertible at x. Since p(u) ∈ S, we can find a term
t′(x, ȳ′′), not left invertible at x, and elements d̄ in F , such that

〈t′(0, d̄), t′(z, d̄)〉 = 〈a, p(u)〉.
Thus we have

g(t(0, c̄), z, b̄) = t′(z, d̄)

in F ′. Now since F ′ is free and 0, b̄, c̄, d̄ are in F , then we have

g(t(0, c̄), q, b̄) = t′(q, d̄)
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in F ′, for any q. Thus g(t(0, c̄), 0, b̄) = t′(0, d̄) = a.
Now it follows from the above observations, and the strongly abelian

property, that since t′ is not left invertible at x, then the term

s(x1, x2, ȳ, ȳ′) = g(t(x1, ȳ), x2, ȳ
′)

is not left invertible at x2. Also, since t(x, ȳ) is not left invertible at x,
s is not left invertible at x1. Using condition ∗, it follows that the term
s′(x, ȳ, ȳ′) = s(x, x, ȳ, ȳ′) is not left invertible at x.

Therefore 〈s′(0, c̄, b̄), s′(z, c̄, b̄)〉 ∈ Ci. But we have

s′(0, c̄, b̄) = t′(0, d̄) = a and

s′(z, c̄, b̄) = g(t(z, c̄), z, b̄) = p(v).

The proof for the remaining case, when p(v) ∈ S, is similar. This shows that
a/θ = S.

To prove that z/θ = {z}, we must show that if 〈u, v〉 ∈ Cj for some
1 ≤ j ≤ k, and if p is a unary polynomial of F ′, then p(u) = z if and only if
p(v) = z. As above, we choose terms t(x, ȳ), g(x′, y, ȳ) and elements b̄, c̄ in
F such that p(r) = g(r, z, b̄) for all r, and 〈u, v〉 = 〈t(0, c̄), t(z, c̄)〉.

Now if p(u) = z, then g(t(0, c̄), z, b̄) = z. From this, using the strongly
abelian property, we see that g(t(x1, ȳ), x2, ȳ

′) = x2 in F ′ for all values of the
variables (of the appropriate sorts). Thus

z = g(t(0, c̄), z, b̄) = g(t(z, c̄), z, b̄) = p(v).

On the other hand, if p(v) = z, then g(t(z, c̄), z, b̄) = z, and so we can
conclude that g(t(x, ȳ), x, ȳ′) = x in F ′. By condition ∗ we have that the
term g(t(x1, ȳ), x2, ȳ

′) depends only on one of the two variables x1 and x2.
Since t is not left invertible, it follows that the equation g(t(x1, ȳ), x2, ȳ

′) = x2

is valid in V . Thus

z = g(t(z, c̄), z, b̄) = g(t(0, c̄), z, b̄) = p(u),

which completes the proof. 2

In example 0.7, a is an analogue of (0, 0). The only diagonal term is
the identity function. We saw that the variety generated by this example
is unstable. Unfortunately, we don’t know whether this holds in the general
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situation. Precisely, we don’t know that if V is a superstable, strongly abelian
variety then it is bi-interpretable with a multi-sorted unary variety. The proof
given below directly constructs many models. We are now ready to prove
the main theorem of this section.

Theorem 2.8 If V is not essentially unary then I(V , λ) = 2λ for all λ ≥ |L|.

Proof: A bipartite graph G = 〈V,E〉 is a set V with a symmetric binary
relation E which can be partitioned into two sets V1 and V2 so that if u, v ∈ V
and E(u, v) then exactly one of u and v is in V1 and one is in V2. We will
construct, for every bipartite graph G, an algebra BG with certain properties.
At the end of the proof we will say why this is enough to prove the theorem.

To achieve this, we use the term q(x1, x2, . . . , xn) from lemma 2.4. Let F
be the free algebra on a, a′, b, b′ and a set X where a and a′ have the same
sort as x1, b and b′ have the same sort as x2 and X contains exactly one other
generator for each sort. Let x • y denote the F -polynomial q(x, y, ū), where
each element of ū comes from X and is of the appropriate sort. Let 0 = a• b,
1 = a • b′ and 2 = a′ • b. We may assume sort(q) = 1. Choose a new element
z of sort 1 and let F ′ be the free algebra on X ∪{z}. By the previous claim,
there is a congruence θ on F ′ with the properties listed there. Let C = F ′/θ
and identify F with its image in C and z with z/θ.

The following is a critical observation.

Claim 2.9 0 ∼ z, 0 6∼ 1 and 0 6∼ 2 in C.
Proof: 0 ∼ z follows immediately from Claim 2.7. We handle the case

0 6∼ 1. The case of 0 6∼ 2 is similar.
Suppose 0 ∼ 1 in C. We must have 0 ∼ 1 in F as well. Let α = Cg(〈0, 1〉).

Let 3 = a′ • b′. We claim that 3/α = {3}. To see this we must show that if
p(x) = g(x, ū) is a unary polynomial with ū ∈ F then p(0) = 3 iff p(1) = 3.

If g(a • b, ū) = a′ • b′ then since F is free, a, b, a′, b′ are generators and F
is strongly abelian, we would immediately conclude that g(a′ • b, ū) = a′ • b′;
i. e. p(1) = 3.

If g(a• b′, ū) = a′ • b′ then there are two cases. If g is not left invertible at
x then by assumption, p(0) = p(1) so there is nothing to prove. Otherwise,
p(x) is one-to-one. But then, since F is free, a, a′, b are free generators and
F is strongly abelian, g(a′ • b′, ū) = a′ • b′; i. e. p(3) = p(1) which gives
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a • b′ = a′ • b′. This says q does not depend on its first variable which is a
contradiction.

So we have shown that 3/α = {3}. But then, in F/α, a/α • b/α =
a/α • b′/α so since F/α is strongly abelian, a′/α • b/α = a′/α • b′/α; i. e.
a′ • b = a′ • b′ which says that q does not depend on its second variable.
Contradiction. We conclude then that 0 6∼ 1. 2

Suppose that G = 〈V, E〉 is a bipartite graph and V1, V2 is a partition of
V so that E ⊆ V1 × V2 ∪ V2 × V1. Choose p1 and p2 distinct and not in V
and let Y = V ∪ {p1, p2}. Let Ê = {{u, v} : (u, v) ∈ E}.

For v ∈ V1, let fv : Y → C be defined by

fv(x) =

{
a′ if x = v
a otherwise

For v ∈ V2, let fv : Y → C be defined by

fv(x) =

{
b′ if x = v
b otherwise

For i ∈ {1, 2}, v ∈ V1, w ∈ V2 and e = {v, w} ∈ Ê let f i
e : Y → C be defined

by

f i
e(x) =





2 if x = v
1 if x = w
z if x = pi

0 otherwise

Let
V ∗

1 = {fv : v ∈ V1}, V ∗
2 = {fv : v ∈ V2} and

E∗ = {f i
e : e ∈ Ê and i ∈ {1, 2}}.

We define BG ⊆ CY as follows: BG is the subalgebra of CY generated by the
set

V ∗
1 ∪ V ∗

2 ∪ E∗ ∪ {x̂ : x ∈ X}
where for d ∈ C, d̂ denotes the constant valued function with value d. We
call elements of this generating set the generators.

We now want to recover G up to isomorphism from BG. Let

R = {b ∈ BG : b is only in the range of right invertible terms}.
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Claim 2.10 R contains the generators.

Proof: Suppose τ is some term and τ(a1, . . . , an) = fu for some u ∈ V1

where ai ∈ BG for all i. Hence there are terms µi and tuples of generators f̄i

so that µi(f̄i) = ai. We want to show that τ is right invertible. Evaluating
at u ∈ Y , we get

τ(µ1(f̄1(u)), . . . , µn(f̄n(u))) = a′.

Since F is free and a′ is one of the generators, we conclude that τ is right
invertible. A similar proof works for fv with v ∈ V2 and x̂ for x ∈ X.

Suppose τ(a1, . . . , an) = f i
e where e ∈ Ê, i ∈ {1, 2} and the other notation

is as above. Consider the value of these terms at the co-ordinate pi. We have
τ(a1(pi), . . . , an(pi)) = z. Since the θ-class of z contains only z, we have this
equality in a free algebra as well where z is a generator. This is enough to
conclude that τ is right invertible. 2

Now define a quasi-order, ≤, on R as follows: c ≤ d for c, d ∈ R if there
is an essentially unary term τ so that τ(d) = c. Let c ≡ d if c ≤ d and d ≤ c.

Claim 2.11 The maximal ≡-classes in R/ ≡ with respect to ≤ are exactly
those containing a generator and each generator is in a distinct ≡-class.

Proof: To see that every maximal ≡-class contains a generator, suppose
that a ∈ R is in a maximal ≡-class. Then a is in the range of only right
invertible terms. But by lemma 2.3, any right invertible term is essentially
unary. So for some essentially unary term τ , there is a generator, f , so
that τ(f) = a where we suppress all but the variable on which τ depends.
Therefore, f ≥ a.

Now suppose that a ∈ R. As above, we can write a = τ(f) for some
generator f and essentially unary term τ where only the variable that τ
depends on is displayed. Suppose µ is essentially unary and µ(τ(f)) = g
where g is some generator. If we show that f must equal g then we will have
shown that the generators are in distinct maximal ≡-classes. We can assume
then that τ(f) = g and f and g are generators and we want to show that
f = g.

The cases when f = fu for some u ∈ V or f = x̂ for some x ∈ X are not
hard. We do the case when f = f i

e for some i and e. The case when g = x̂
is easily seen to be impossible. Let’s see that g = fu for some u ∈ V is also
impossible. Suppose u ∈ V1. Then τ(f(u)) = a′ which means that τ(j) = a′
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where j = 0, 1 or 2 which is either directly a contradiction or contradicts that
q is not left invertible in either of its first two variables. We have a similar
situation if u ∈ V2.

So τ(f i
e) = f j

e′ for some j and e′. Using the pi’s it is not hard to conclude
that i = j. Suppose e 6= e′ and x ∈ e\e′. Further suppose that x ∈ V1. Then
by considering τ(f(x)) = g(x) we see that τ(a′ • b) = a • b which leads to
the conclusion that q is independent of its first variable. We reach a similar
contradiction if x ∈ V2. Hence, e = e′ and so f = g. 2

We want to distinguish between the vertices and the edges of G. Let P
be the set of maximal ≡-classes which do not contain x̂ for any x ∈ X. We
say C, D ∈ P are ∼-related if there are c ∈ C and d ∈ D so that c ∼ d.

Claim 2.12 If C ∈ P then C is ∼-related only to itself in P iff fu ∈ C for
some u ∈ V .

Proof: If e ∈ Ê then f 1
e ∼ f 2

e so the direction from left to right is clear.
Now suppose τ(fu) ∼ µ(f) for some u ∈ V and some generator f so that

µ(f) ≡ f and τ(fu) ≡ fu. There is ν so that νµ(f) = f and by considering
the components of f , we get the valid equation νµ(x) = x. Hence ν is right
invertible so by lemma 2.6, ντ(fu) ∼ f .

Suppose u ∈ V1. If f = fv for some v ∈ V1 with v 6= u then by lemma
2.6, ντ(a′) ∼ a which would contradict, among other things, that q depends
on its first variable. The case when f = fv for v ∈ V2 is similar.

Now suppose f = f i
e for some e ∈ Ê. If we choose v ∈ V so that v 6= u

and v 6∈ e then by lemma 2.6, we get ντ(a) ∼ 0. i. e. ντ(a) ∼ a • b in F .
From this we conclude that 0 ∼ 1 which contradicts claim 2.9.

The case when u ∈ V2 is similar and so we conclude that if τ(fu) ∼ µ(f)
then f = fu which finishes the claim. 2

Call a C ∈ P which is ∼-related only to itself in P , a vertex. We say
there is an edge between two vertices C and D if there is c ∈ C, d ∈ D and
some e ∈ E ∈ P so that E is not a vertex and c • d ∼ e.

Claim 2.13 There is an edge between fu/ ≡ and fv/ ≡ iff {u, v} ∈ Ê.

Proof: The direction from right to left is by construction.
Now suppose fu ∈ C, fv ∈ D, there is an edge between C and D but

{u, v} 6∈ Ê. We have then that

ν(τ(fu) • µ(fv)) ∼ f 1
e
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for some e ∈ Ê and essentially unary terms ν, τ and µ.
Choose x ∈ e so that x 6∈ {u, v}. Let a = ν(τ(fu) • µ(fv)). But then

a(p1) = a(x) and by lemma 2.6,

f 1
e (p1) ∼ a(p1) = a(x) ∼ f 1

e (x).

But then 0 ∼ z ∼ j where j = 1 or 2 which contradicts claim 2.9. 2

In this way, we are able to recover the isomorphism type of the graph G
from BG as long as we fix the elements x̂ for x ∈ X. Let x̄ = 〈x̂ : x ∈ X〉.
Then if G and H are two bipartite graphs we have 〈BG, x̄〉 ∼= 〈BH , x̄〉 implies
G ∼= H. Moreover, |G| ≤ |BG| ≤ |G| + |L|. Since there are the maximal
number of non-isomorphic bipartite graphs in every infinite cardinality and
we have fixed only finitely many elements x̄, we can conclude that I(V , λ) =
2λ for all λ ≥ |L|. 2

2.2 V is linear

Let V be a multi-sorted unary variety. We call a term τ constant valued if the
equation τ(x) = τ(y) holds in V . If A ∈ V then let C(A) be the subuniverse
generated by the constants and the values of the constant valued terms in
A. (This may be empty.) Define a quasi-order on A \ C(A) as follows: For
a, b ∈ A \ C(A),

a ≤ b iff there is a term τ so that τ(b) = a.

Say a ∼ b if a ≤ b and b ≤ a. 〈A \ C(A)/∼,≤〉 is a partial order.

Definition 2.14 We say V is linear if for all A ∈ V and a ∈ A \ C(A),

{b/∼: b ≤ a, b ∈ A \ C(A)}

is linearly ordered by ≤.

Comment: V is linear means that for all A ∈ V and a ∈ A \ C(A),
the subuniverses of the form 〈b〉 ∪ C(A) for b ∈ 〈a〉 are linearly ordered by
inclusion.

Theorem 2.15 If V is not linear then I(V , λ) = 2λ for all λ ≥ |L|.
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Proof: We need some preparation. If there is a failure of linearity then
it will occur in a free algebra. Let F be free on x1, y1, . . . , xk, yk where xi, yi

are of sort i. We may assume that {b/ ∼: b ≤ x1} is not linearly ordered. So
there are a′, b′ ∈ F with a′ ≤ x1, b

′ ≤ x1 but a′ 6≤ b′ and b′ 6≤ a′.
Let D = {z ∈ F : z 6≥ a′ and z 6≥ b′} and Di = Fi ∩D. Let

Ci = {〈u, yi〉 : u ∈ Di} and θ = Cg(〈C1, . . . , Ck〉).
Claim 2.16 If z ∈ F \D then z/θ = {z} and if z ∈ Di then z/θ = Di.

Proof: The second follows from the first and the definition of Ci. To
prove the first, suppose z ≥ a′.

Suppose 〈u, yi〉 ∈ Ci and there is a term τ so that τ(u) = z. Then u ≥ z
and z ≥ a′ so u ≥ a′ which is a contradiction to u ∈ Di. Suppose there is a
term τ so that τ(yi) = z. Since a′ ≤ x1, there is a term µ so that a′ = µ(x1)
and there is a term γ so that γ(z) = a′ so we have γ(τ(yi)) = µ(x1). yi and
x1 are free generators so γ(τ(u)) = a′ which contradicts u ∈ Di.

We have shown then that if 〈u, yi〉 ∈ Ci, it can never happen that there
is a term τ so that τ(u) = z or τ(yi) = z so z/θ = {z}. 2

Let B = F/θ, A = 〈y1/θ, . . . , yk/θ〉, a = a′/θ, b = b′/θ, c = x1/θ,
B1 = 〈Aa〉 and B2 = 〈Ab〉.
Claim 2.17 B1 and B2 are the only minimal proper extensions of A in B.

Proof: If d ∈ B \ A then d = d′/θ for some d ∈ F \ D. So d′ ≥ a′ or
d′ ≥ b′. That is, B1 ⊆ 〈Ad〉 or B2 ⊆ 〈Ad〉 which demonstrates what we want.
2

Now suppose G is a bipartite graph 〈N, E〉 where N is partitioned into
N1 and N2 and there is a n∗ ∈ N1 so that for every u ∈ N2, 〈n∗, u〉 ∈ E. Note
that there is the maximal number of non-isomorphic graphs of this type for
any infinite cardinal. Let

Ê = {{u, v} : 〈u, v〉 ∈ E}.
Since we are dealing with a unary variety, we can define BG ∈ V so that:

BG = A ∪ ⋃

u∈N

Bu ∪
⋃

e∈Ê

Be

where
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1. A ⊆ Bu for all u ∈ N ,

2. if e = {u, v} then Bu,Bv ⊆ Be,

3. if u ∈ N1, Bu
∼= B1 over A,

4. if u ∈ N2, Bu
∼= B2 over A,

5. if u ∈ N1, v ∈ N2 and e = {u, v} ∈ Ê then there is an isomorphism
µ : B → Be which fixes A, µ(B1) = Bu and µ(B2) = Bv,

6. if u, v ∈ N and u 6= v then Bu ∩ Bv = A and

7. if e, e′ ∈ Ê, e 6= e′ then Be ∩ Be′ = Be∩e′ where B∅ = A.

Fix this notation for the rest of the proof.
Let C be the set of minimal subalgebras extending A in BG. By claim

2.17, C = {Bu : u ∈ N}.
To recover N2, recall that n∗ ∈ N1 so if u ∈ N \{n∗} then u ∈ N2 iff there

is a c ∈ BG and terms µ and τ so that µ(c) ∈ Bu \ A and τ(c) ∈ Bn∗ \ A.
For the direction from left to right, the generator of Be corresponding

to x1/θ in B where e = {n∗, u} will suffice. For the direction from right to
left, if u ∈ N1 then if the c mentioned on the right hand side is in Be, then
there would be at least three minimal proper extensions of A in Be which
contradicts claim 2.17.

Say that D ∈ C is a 2-vertex if there is c ∈ BG and µ, τ so that µ(c) ∈
D \ A and τ(c) ∈ Bn∗ \ A.

Hence, by naming the generator of Bn∗ and using C, we can recover N2

via the 2-vertices. Say that D ∈ C is a 1-vertex if it is not a 2-vertex.
We say there is an edge between a 1-vertex D and a 2-vertex E if there is

a c ∈ BG and µ, τ so that µ(c) ∈ D \ A and τ(c) ∈ E \ A.

Claim 2.18 There is an edge between a 1-vertex Bu and a 2-vertex Bv iff
{u, v} ∈ Ê.

Proof: From right to left is by construction of BG. To go from left to
right, suppose {u, v} 6∈ Ê. Suppose c ∈ Be witnesses that there is an edge
between Bu and Bv. Then Bu and Bv are minimal proper extensions of A in
Be. If e 6= {u, v} then there is a third minimal proper extension of A in Be

which contradicts claim 2.17. 2
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To conclude then, we have shown that we can recover the isomorphism
type of G from BG as long as we fix the generators for A and the generator
for Bn∗ . Call these elements, w̄G. Hence if 〈BG, w̄G〉 ∼= 〈BH , w̄H〉 for two
appropriate bipartite graphs G and H then G ∼= H. Moreover, |G| ≤ |BG| ≤
|G|+ |L|. This is enough to conclude I(V , λ) = 2λ for all λ ≥ |L|.

2.3 V has the ascending chain condition

We now assume that V is a multi-sorted unary variety which is linear.

Definition 2.19 V has the ascending chain condition if there is no A ∈ V
and ai ∈ A for i ∈ ω so that ai < ai+1 for all i.

Comment: To say that V has the ascending chain condition means that
there is no infinite increasing chain of one-generated subuniverses in any
algebra in V . Example 0.12 is an example of a variety which does not have
the ascending chain condition.

Theorem 2.20 If V does not have the ascending chain condition then
I(V , λ) = 2λ for all λ ≥ |L|.

Proof: Suppose A ∈ V and ai ∈ A for i ∈ ω so that ai < ai+1 for all i.
〈ai : i ∈ ω〉 may not form a subalgebra of A so we must make the following
small adjustment. Let B be an isomorphic copy of A so that A ∩ B = 〈a0〉.
A ∪ B ∈ V . Choose bj ∈ Bj for 1 ≤ j ≤ k and let Ai = 〈b1, . . . , bk, ai〉 for
i ∈ ω. We use the subalgebras Ai for i ∈ ω to construct many models (with
A0 fixed).

For us, a tree will be a partial order 〈P, <〉 so that for every a ∈ P , the set
{b : b < a} is well ordered. We write L(a) for the order type of {b : b < a}. If
b is an immediate successor of a we write a / b. We say a tree is well-founded
if it has no infinite increasing sequences. For a well-founded tree, 〈P,<〉 we
define the following ordinal valued depth function, dep, for a ∈ P :

dep(a) =
⋃{dep(b) + 1 : a / b}.

Call a well-founded tree P everbranching if every η ∈ P has at least two
immediate successors if it has any. It is easy to construct an everbranching
well-founded tree P of tree depth α so that |P| ≤ |α + ω|.
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Now fix λ ≥ |L| and X ⊆ λ with |X| = λ. Let P be a well-founded tree
of cardinality λ so that the set of depths of nodes on the first level is exactly
X and P is everbranching.

Since V is a unary variety, it is easy to construct an algebra AX where

AX =
⋃

η∈P
Aη

so that

1. A〈〉 = A0,

2. Aη = 〈aη〉 for all η ∈ P , η 6= 〈〉,
3. for all η, ν ∈ P , Aη ∩ Aν = Aη∧ν and

4. for all η ∈ P , η 6= 〈〉, the map sending al(ν) to aν for all ν ≤ η generates
an isomorphism from Al(η) to Aη.

We try to recover X from the ∼-classes of AX \ A0. We call a ∼-class,
a/∼, good if a ∈ AX \ A0 and either it is maximal or whenever b/∼> a/∼
there is c/∼> a/∼ so that b/∼ and c/∼ are incomparable.

Claim 2.21 The good ∼-classes are exactly the ∼-classes of aη for
η ∈ P \ {〈〉}.

Proof: That each aη is in a good ∼-class follows from the fact that P is
everbranching. For if b > aη then η has at least two successors. Hence there
is c > aη so that b and c are incomparable.

Now suppose a ∈ AX \ A0. Let η be the least so that a ∈ Aη. Hence
aη ≥ a. If a/∼ is good and aη > a then there should be b ∈ Aµ, µ 6= η so
that b > a and aη and b are incomparable. But then a ∈ Aµ ∩ Aη which
contradicts the minimality of η. So either a ∼ aη or a/∼ is not good. 2

From the good ∼-classes, one can recover X by considering the depth of
the minimal good ∼-classes.

Hence, if we fix a0, b1, . . . , bk we have

〈AX , a0, b1, . . . , bk〉 ∼= 〈AY , a0, b1, . . . , bk〉
implies X = Y . Since |P| ≤ |AX | ≤ |P| + |L|, this is enough to imply that
I(V , λ) = 2λ for all λ ≥ |L|. 2
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We shall conclude this section with a sketch of a characterization of
strongly abelian varieties with few models. It follows in form the charac-
terization of complete countable first order theories given by Shelah which is
explained in either [2] or [3]. Any undefined terms can be found there.

Now if V is a strongly abelian variety with few models then the conclusion
one can draw from Theorems 1.7 and Theorem 2.8 is that V is bi-interpretable
with a multi-sorted unary variety. Theorems 2.15 and 2.20 allow us to con-
clude that this variety is also linear and satisfies the ascending chain condi-
tion.

Now suppose A ∈ V and V is a multi-sorted unary variety which is linear
and satisfies the ascending chain condition. A can be represented as the
union of a well-founded tree of 1-generated subuniverses. To be precise, let’s
adopt some terminology.

Say two subuniverse of A, C and D, are independent over a subuniverse
B if C ∩D ⊆ B. Given three subuniverses of A, B,C and D, say that D is
dominated by C over B if C ∩D 6⊆ B.

Note that to say that D is dominated by C over B is just to say that
C and D are not independent over B but this terminology will be more
analogous to the usage of classification theory in the tree constructed below.

Define a labelled tree of subuniverses as follows

1. The root of the tree is C(A), the constant subuniverse of A. This could
be empty.

2. On the first level, choose a maximal collection of pairwise independent
over C(A) 1-generated subuniverses of A which are not contained in
C(A).

3. Suppose we have determined that B is on the nth level and C is a suc-
cessor of B on the (n + 1)st level. For the successors of C, choose a
maximal collection of pairwise independent over C 1-generated subuni-
verses of A which are dominated by C over B and are not contained in
C.

Note that in the above construction, we demanded that the successors of
any node in the tree be only pairwise independent. They are in fact totally
“independent” since the variety is unary and this notion of independence is
trivial.
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To show that this tree exhausts all of A, one uses linearity, which is
analogous to NDOP from classification theory. To conclude that the depth
of the tree is bounded by some ordinal which depends only on V , one uses
the ascending chain condition, which is analogous to the property of being
shallow from classification theory.

It is not hard to show that if A and B are in V and give rise, via the above
construction, to isomorphic labelled trees then A and B are isomorphic.

Using standard arguments, (see [2] or [3]), one can show that if V is
a multi-sorted unary variety which is linear and has the asscending chain
condition then there is an ordinal δ so that

I(V ,ℵα) ≤ δ(|α + ω|).
Hence we have the following characterization

Theorem 2.22 If V is a strongly abelian variety then V has few models iff
V is bi-interpretable with a multi-sorted unary variety which is linear and has
the ascending chain condition.

3 The spectrum function

In this section we fulfill a promise made in [4] to enumerate all the spectrum
functions for locally finite varieties. In fact, we also list the possible spectrum
functions for all strongly abelian varieties and note that we have verified
Vaught’s conjecture in both cases.

Palyutin and Starchenko in [6] have calculated the spectrum functions
for all Horn classes in a countable language and Palyutin, [5], has listed
those which are spectrums of varieties. For completeness, we list the possible
spectrum functions for a variety and give strongly abelian examples of each
type.

Theorem 3.1 (Palyutin) If V is a variety in a countable language then
I(V ,ℵα) as a function of α for α > 0 is the minimum of 2ℵα and exactly one
of the following functions

1. some fixed finite number, ℵ0, 2ℵ0,

2. δ(|α + ω|) for some δ < ω1, δ not a limit ordinal,
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3. n(|α + ω|ℵ0) for some n < ω,

4. n(|α + ω|2ℵ0 ) for some n < ω,

5. n(|α + 2ℵ0|) for some n < ω or

6. 2ℵα.

Example 3.2 An example of the first type listed above is the variety of all
structures in a language with countably many constants.

Example 3.3 Example 0.13 provides an example of the second type.

Example 3.4 By combining example 0.13 with G-sets for particular groups
G we can obtain examples for types 3 and 4. More precisely, fix a group G
and n < ω. Let

L = {hg : g ∈ G} ∪ {fi : i < n}
where each symbol is a unary function.

The axioms for the variety will be

fifj(x) = fmax i,j(x) for all i, j < n

hgfi(x) = fihg(x) = fi(x) for all i < n and g ∈ G

he(x) = x where e is the identity of G

hghk(x) = hgk(x) for all g, k ∈ G

If A is an algebra in this variety then consider x ∈ A so that x is in the
range of f0. Let Sx = {y ∈ A : f0(y) = x and x 6= y}. The action of the
functions {hg : g ∈ G} on Sx makes Sx into a G-set. Using this fact, it is
easy to compute the spectrum for such varieties.

If G is countable and has countably many subgroups (for example, the
integers) then this is an example of type 3 listed above. If G has 2ℵ0 many
subgroups then this is an example of type 4.

Example 3.5 An example of the fifth type is obtained by looking at a vari-
ety whose associated multi-sorted variety has two sorts and in one sort you
have a copy of example 3.3 with δ = n and in the other sort you have a copy
of type 4 with the subscript n− 1.
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Example 3.6 Example 0.11 provides an example of the sixth type.

In the locally finite case, only the first possibility of case 1, only 2 with
δ < ω and 6 can occur. Baldwin and McKenzie gave a complete analysis of
the spectrum for an affine variety in [1]. Looking at their proof, in the locally
finite case we get

Theorem 3.7 (Baldwin-McKenzie) If V is a locally finite affine variety
in a countable language then I(V ,ℵα) as a function of α for α > 0 is exactly
one of the following functions

1. 1

2. |α + ω|
3. 2ℵα

Actually, in their paper, there is the possibility that I(V ,ℵα) = |α+ω|ℵ0 .
This could happen if for a ring R, every R-module was ω-stable but there
were countably many indecomposables. Mike Prest has pointed out to us
that by consulting [8] one sees that any Artin algebra all of whose right
modules are ω-stable has only finitely many indecomposables. Since a finite
ring is an Artin algebra, the extra possibility from [1] is ruled out.

Hence by Theorem 0.2,

Theorem 3.8 If V is a locally finite variety in a countable language then
I(V ,ℵα) as a function of α for α > 0 is the minimum of 2ℵα and one of

1. some finite number

2. n(|α + ω|) for some n < ω or

3. 2ℵα.

Now let’s consider Vaught’s conjecture for locally finite varieties. From
the proofs in [4], if a locally finite variety V is not the varietal product of a
strongly abelian, an affine and a discriminator variety then I(V ,ℵ0) = 2ℵ0 .
Moreover, if D is a non-trivial discriminator variety then from [1] we know
that I(D,ℵ0) = 2ℵ0 . Hence by Theorem 0.1 and what we have said, if V is
locally finite and I(V ,ℵ0) < 2ℵ0 then there are affine and strongly abelian
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subvarieties A and S respectively so that V = A ⊗ S. Hence if one proves
Vaught’s conjecture for affine and strongly abelian varieties separately then
one will have it for locally finite varieties. The affine case has been handled
in [1] so let us say a few words about the strongly abelian case.

Suppose V is strongly abelian and I(V ,ℵ0) < 2ℵ0 . Then from Corollary
1.8, we may assume condition ∗ from section 2. Since Theorem 2.8 was
proved for all λ ≥ |L|, we conclude that V is bi-interpretable with a multi-
sorted unary variety. Theorem 2.15 was also proved for λ ≥ |L| and so we
may assume that V is linear.

Lemma 3.9 If V is a linear multi-sorted unary variety with I(V ,ℵ0) < 2ℵ0

then all non-constant 1-generated subuniverses are minimal.

Proof: SupposeA ∈ V and C = 〈c〉 ⊆ A is not minimal. We may assume,
by naming finitely many constants, that C(A), the constant subuniverse,
together with C is a subalgebra of A and that there is B = 〈b〉 C and
B 6⊆ C(A).

Fix n ∈ ω and define the algebra Cn ∈ V by

Cn = C(A) ∪B ∪ ⋃

i<n

Ci
n

where Ci
n
∼= C over B and if i 6= j then Ci

n ∩ Cj
n = B.

Claim 3.10 If Cm
∼= Cn then m = n.

Proof: Consider the image under an isomorphism of the generators of
Ci

m for i < m. By linearity, no two of them can be in the same Cj
n. Hence,

m ≤ n. By symmetry, m = n. 2

For an algebra D ∈ V with C(A) ⊆ D, say that a, b ∈ D\C(A) are in the
same connected component if there is c ∈ D \C(A) so that c ≤ a and c ≤ b.
(See the definition before Claim 2.11.) Note that by linearity of V , being in
the same connected component is an equivalence relation on D \ C(A).

Let X ⊆ ω, |X| = ℵ0 and

CX = C(A) ∪ ⋃

n∈X

CX
n

where CX
n
∼= Cn over C(A) and for m,n ∈ X, m 6= n, CX

m ∩ CX
n = C(A).

Note that the connected components for CX are CX
n \ C(A) for n ∈ X.
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Claim 3.11 If CX
∼= CY then X = Y .

Proof: Any isomorphism must preserve connected components. The
above observation and claim 3.10 shows that X = Y . 2

Hence the existence of a non-minimal 1-generated subuniverse leads to
I(V ,ℵ0) = 2ℵ0 and we are done. 2

Finally, the number of constant subuniverses is either ≤ ℵ0 or 2ℵ0 . One
way to see this is that the property of being a constant subuniverse of an
algebra in V is expressible by a very low rank Scott sentence.

For any particular constant subuniverse C one can consider the number
of minimal 1-generated subuniverses in algebras containing C. If there are
infinitely many such then by varying the number of copies of each, one easily
produces 2ℵ0 many non-isomorphic countable models containing C. If instead
there are only finitely many then there are at most countably many non-
isomorphic countable models containing C.

If I(V ,ℵ0) < 2ℵ0 then there must be ≤ ℵ0 many non-isomorphic constant
subuniverses and each is contained in at most countaby many non-isomorphic
countable algebras. It easily follows that I(V ,ℵ0) ≤ ℵ0.
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