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Abstract

In this paper we determine those locally finite varieties that gen-
erate decidable discriminator varieties when augmented by a ternary
discriminator term.

1 Introduction

The work of Burris, McKenzie and Valeriote on the decidability of varieties
has pointed out the importance of understanding the structure of the decid-
able locally finite discriminator varieties. It is shown in [10] that if a locally
finite variety V has a decidable theory then it must decompose as the vari-
etal product of three special kinds of varieties: strongly Abelian; affine; and
discriminator. This decomposition effectively reduces the overall problem of
characterizing the decidable locally finite varieties down to the above three
special cases.

In this paper we apply some recent results on discriminator varieties to
arrive at a description of those locally finite varieties that generate decidable
discriminator varieties when a ternary discriminator term is adjoined. Before
we can state our result we will need to give some definitions and state some
known results.

Definition 1.1 A variety V in the language L is said to be decidable if
Th(V), the set of all first-order sentences satisfied by all members of V , is
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recursive (under a suitable encoding of the language). A variety is heredi-
tarily undecidable if every subtheory of Th(V) is undecidable.

For an explanation of general methods of establishing decidability and
undecidability please consult [4] or [10]. We will not make direct reference
to these techniques in this paper although the main lemmas are derived
(elsewhere) using them.

Discriminator varieties are very specialized varieties that can be regarded
as generalizations of the variety of Boolean algebras. On any set A we can
define the operation tA(x, y, z) as follows:

tA(x, y, z) =

{
z if x = y
x otherwise

.

The operation tA is called the ternary discriminator on A.

Definition 1.2 A variety V is called a discriminator variety iff there
exists a term t(x, y, z) in the language of V such that V is V(K), the variety
generated by K, for some class K such that for all A ∈ K, tA = tA (i.e.,
the term t defines the discriminator on the universe of A). Such a term t is
called a discriminator term for V .

Clearly any variety generated by a primal algebra, in particular the variety
of Boolean algebras, is a discriminator variety. Any variety of rings generated
by a finite set of finite fields is also a discriminator variety.

An important theorem of S. Bulman-Fleming and H. Werner describes
the structure of the members of a discriminator variety. The theorem and
its proof may be found in [4]; however, we do not need it in this paper. All
that we need is the following observation.

PROPOSITION 1.3 Let V be a discriminator variety with discriminator
term t(x, y, z). Let K be the class of all A ∈ V for which tA = tA. Clearly
V = V(K). Moreover, K is a universal class (i.e., it is defined by a set of
universal first order sentences).

It follows from the above proposition that every discriminator variety is
term equivalent to a variety of the form V(Kt), where K is a universal class
of algebras (in some language L), and Kt is the class obtained by adjoining
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a new ternary function symbol t to L and interpreting it as the discrimina-
tor operation in all members of K. The variety V(Kt) that we form in this
way is said to have been obtained by discriminating the class K. These
comments suggest that in principle one can reach an understanding of the
decidable locally finite discriminator varieties in terms of the universal classes
that give rise to them upon discriminating. This is the approach that sev-
eral authors have been following and the one that we adopt in this paper.
Actually, we shall have little to say about universal classes in general. Our
main contribution in this paper is a complete description of the locally finite
varieties V such that V(V t) is decidable.

The reader interested in some of the history of this problem will find the
articles [2], [3] and [5] useful.

2 Tools

In this section we will state, without proof, the lemmas that are used to
establish the main result of this paper. We will also describe the structure of
the locally finite strongly Abelian varieties S that when discriminated pro-
duce decidable discriminator varieties, since this description will be needed
later on. The first two lemmas were proved in [3].

LEMMA 2.1 Let A be an L-algebra with an infinite subset M. Let S be
the subalgebra of A generated by M . Suppose the following holds:

(i) In A there is a first order definable relation, Equiv(x, y), whose restric-
tion to S defines an equivalence relation ≡ such that

a) no 2 elements from M are related under ≡,

b) ≡ is invariant under automorphisms of S.

(ii) any bijection between two finite subsets of M extends to an automor-
phism of S.

(iii) for J ⊆ M finite, the only elements from M that are ≡-related to an
element from the subalgebra of A generated by J belong to J .

(iv) there is a first order formula, µ(x), such that for a ∈ S, A |= µ(a) if
and only if a ≡ m for some m ∈ M .
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(v) there is a first order formula, τ(x), such that A |= τ(a) for at least two
elements from M and A |= ¬τ(b) for κ many elements from M , where
κ is some infinite cardinal.

(vi) the subsets of A defined by µ and τ are closed under ≡.

Then the class of all graphs of size at most κ can be semantically embedded
into the class Ps(A

t), and hence this class is hereditarily undecidable.

Definition 2.2 A finite algebra is said to be homogeneous if every isomor-
phism between subalgebras extends to an automorphism of the algebra. For
K a class of algebras, we say that K is homogeneous if every finite member
of K is.

LEMMA 2.3 Let K be a homogeneous, locally finite, finitely axiomatizable
universal class of algebras with a finite language. Then the variety V(Kt) is
decidable.

We now embark on a brief description of the locally finite strongly Abelian
varieties V such that V(V t) is decidable.

Definition 2.4 An algebra is called strongly Abelian if for all terms
t(x, ȳ), for all a, b, c̄, d̄ and ē,

t(a, c̄) = t(b, d̄) −→ t(a, ē) = t(b, ē).

A variety is called strongly Abelian if each of its members is.

Strongly Abelian algebras can be viewed as generalizations of unary alge-
bras. They were first introduced by Ralph McKenzie in [9]. The significance
of these algebras, especially in the role they play in the classification of finite
algebras and locally finite varieties has been demonstrated in [7, 9, 10].

The following construction produces strongly Abelian algebras and vari-
eties that are not essentially unary. Let L be a language for k-sorted unary
algebras. We construct a language Lk of (one-sorted) algebras as follows: for
each sequence f1, . . . , fk of function symbols or unary projections of L, where
the sort of the codomain of fi is i, we include in Lk the k-ary function symbol
[f1, . . . , fk]. Note that if L is finite, then so is Lk.
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For A an L algebra with universes A1, . . . , Ak, we define an Lk algebra
A[k] in the following way: the universe of A[k] is A1× · · · ×Ak and for each
[f1, . . . , fk] from Lk, define

[f1, . . . , fk]
A[k](~a1, . . . ,~ak) = 〈fA

1 (ai1
1 ), . . . , fA

k (aik
k )〉,

where ~ai = 〈a1
i , . . . , a

k
i 〉 for all i ≤ k and for all j ≤ k, the sort of the domain

of fA
j is ij.
If V is a variety of k-sorted algebras of type L then it can be shown

that the class V [k] = {B : B is isomorphic to A[k] for some A from V} is a
strongly Abelian variety of Lk algebras.

The proof of the next theorem can be found in [3].

THEOREM 2.5 Let V be a locally finite strongly Abelian variety of finite
type. Then V(V t) is decidable if and only if V is term equivalent to a variety
W [k], whereW is a k-sorted unary variety such that every term ofW is either
constant or left invertible (i.e., for every term t(x), either W |= t(x) = t(y) or
there is some term h(y) of the appropriate sort such that W |= h(t(x)) = x).

We would like to point out that every locally finite strongly Abelian va-
riety of finite type is finitely axiomatizable [10, Theorem 0.17]; and if such a
variety satisfies the conditions of the above theorem then it is homogeneous.
(We leave the verification of this to the reader.) Thus Lemma 2.3 proves
the sufficiency of these conditions. Their necessity can be established using
Lemma 2.1; see [3]. We will use Lemma 2.3 in the next section where we con-
sider affine varieties. Unfortunately Lemma 2.1 turned out to be inadequate
for the study of affine varieties. The following lemma, a slight simplification
of a result proved by Willard in [12], is used in its place.

LEMMA 2.6 Let A be an algebra of type L, and S a subalgebra of A.
Suppose there exist first-order L-formulas µ(x̄), τ(x̄), and ψ(z̄) such that,
setting M = µA|S, T = M ∩ τA|S, and AutMS = {σ ∈ AutS : σ(M) = M},

(i) M is infinite while T is finite;

(ii) M =
⋃{σ(T ) : σ ∈ AutMS};

(iii) ψA 6= ∅ but ψA|S = ∅.
Then the class Ps({S,A}t) is hereditarily undecidable.

5



3 Affine Varieties

Definition 3.1 A variety V is called affine if every algebra in V is polyno-
mially equivalent to a unitary module over some ring.

It turns out that if V is affine then in fact there is a single ring R =
R(V) such that every algebra in V is polynomially equivalent to a unitary
left R-module and conversely, every unitary left R-module is polynomially
equivalent to some algebra from V . It is important for us to note that in
the case that V is a locally finite affine variety then the ring R(V) associated
with V is finite. The details of this equivalence can be found in [2], Chapter
10 or in [6].

In this section we will prove the following theorem.

THEOREM 3.2 Let A be a locally finite affine variety in a finite language
L. Let R be the ring R(A) associated with A. Then V(At) is decidable (not
hereditarily undecidable) if and only if R is semi-simple.

Before we prove this theorem we will need to prove some preliminary
lemmas. The next result was pointed out to us by E. Kiss and W. Hodges.
Any of the standard references on ring theory (e.g. [8]) will contain the
necessary background.

LEMMA 3.3 Let R be a finite ring with unit. Then MR, the variety of
all unitary left R-modules, is homogeneous if and only if R is semi-simple.

Proof. Suppose that R is semi-simple. Then using the well known
structure theorem for finitely generated modules over a semi-simple artinian
ring, one can easily prove that MR is homogeneous.

For the converse, suppose that MR is homogeneous. To prove that R is
semi-simple, it will suffice to prove that every left ideal, I, of R is generated
by an idempotent element e. Let I be a left ideal of R and consider the left
R-module R × I. The two submodules I × {0} and {0} × I are isomorphic
via the map γ that sends (i, 0) to (0, i). By the homogeneity of R × I, it
follows that γ extends to an automorphism Γ of R× I. Let Γ(1, 0) = (e, f).
Then for i ∈ I,

(ie, if) = iΓ(1, 0) = Γ(i, 0) = (0, i),

and so if = i for all i ∈ I. From this it follows that ff = f (since f ∈ I)
and I is generated by f .
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LEMMA 3.4 Let A be an affine variety with ring R. Then MR is homo-
geneous if and only if A is.

Proof. Let MR be homogeneous and suppose that A ∈ A is finite and B
and C are two subalgebras of A that are isomorphic via the map γ. Choose a
point 0 from B and let 0′ = γ(0). Then, using the notation of Chapter 10 of
[2], we have that the R-modules M(A, 0) and M(A, 0′) are isomorphic and
that the sets B and C are submodules of M(A, 0) and M(A, 0′), respectively.
It also follows that as modules, B and C are isomorphic via the map γ.

Now, by the homogeneity of MR, it follows that we can extend the map
γ to an isomorphism Γ between M(A, 0) and M(A, 0′). This map will also
be an automorphism of the algebra A, and since Γ extends γ, we are done.

For the converse, suppose thatA is homogeneous and let M be a finite left
R-module with isomorphic submodules B and C. Let γ be an isomorphism
between them. Again using the notation of [2], let A = A(M, η), where η is
the zero map from the module N(A) into M. Then by Theorem 10.1 of [2],
we have that A belongs to A. It also follows that B and C are subuniverses
of A and that γ is an isomorphism between B and C when viewed as A-
algebras. By the homogeneity of A, γ extends to an automorphism Γ of A.
It is easy to see that Γ is also an automorphism of M and so we have proved
that MR is homogeneous.

One also learns from Chapter 10 of [2] that every locally finite affine
variety of finite type is finitely axiomatizable, and so we have the following
result.

COROLLARY 3.5 Let A be a locally finite affine variety of finite type
such that its associated ring is semi-simple. Then V(At) is decidable.

To conclude this section we prove the following lemma. Theorem 3.2 will
follow from this, and the previous corollary.

LEMMA 3.6 LetA be a locally finite affine variety of finite type. If the ring
R = R(A) associated with A is not semi-simple, then V(At) is hereditarily
undecidable.

Proof. It will suffice to prove this lemma in the case where the affine
variety is in fact the variety MR of all unitary left R-modules, since, by
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Chapter 10 of [2], MR is interpretable into A and V(Mt
R) is interpretable

into V(At).
So suppose that R is a finite ring that is not semi-simple. Let J be the

Jacobson radical of R. Since R is not semi-simple, J 6= {0} and so J contains
some minimal, nontrivial left ideal I. We note that J annihilates the ideal
I, so in particular, I2 = {0}.

Let A be the left R-module R ⊕ ⊕
i∈ω I and let S be the submodule

I ⊕⊕
i∈ω I of A. We will use Lemma 2.6 to prove that V(At) is hereditarily

undecidable.
Let 〈a0, a1, . . . , ak〉 be a listing of the elements of I, with a0 = 0 and let

µ(x0, x1, . . . , xk) be a quantifier free formula in the language of R-modules
that describes the quantifier free type of the string 〈a0, a1, . . . , ak〉. Then
〈b0, b1, . . . , bk〉 ∈ M = µA|S if and only if the bi belong to S and the set
{bi : 0 ≤ i ≤ k} forms a submodule of A isomorphic to I via the map that
sends bi to ai for 0 ≤ i ≤ k.

Let τ(x̄) be the formula

µ(x̄) ∧ ∃z(
k∧

i=0

xi = ai · z).

Then 〈b0, . . . , bk〉 ∈ T = τA|S if and only if {b0, . . . , bk} = I ⊕⊕
i∈ω{0} and

the map that sends bi to ai is an isomorphism of R-modules.
By construction we have that M is infinite and T is a finite subset of M .

Furthermore, given any b̄ from T and c̄ from M , there is an automorphism γ
of S that maps b̄ onto c̄. This is because the ring R/J is semi-simple and we
can regard S as an R/J-module (since J annihilates S). The homogeneity of
the class of R/J-modules is enough to guarantee the existence of γ. Note also
that since M is defined by a quantifier free formula then it is automatically
preserved by γ.

To complete the proof we must find a formula ψ(z) such that A |= ψ(a)
for some a, but A |= ¬ψ(b) for all b ∈ S. Setting ψ(z) to be the formula

z 6= 0 ∧ ∃y(z = a1 · y)

works, since
A |= 〈a1, 0, 0, . . .〉 = a1 · 〈1, 0, 0, . . .〉

and
0 = a1 · α

8



for all α from S.

4 The Main Result

Definition 4.1 Let V be a variety with subvarieties U and W . We say that
V is the varietal product of U and W and write V = U ⊗ W if V is the
join of the varieties U and W and there is a term b(x, y) of V such that
U |= b(x, y) = x and W |= b(x, y) = y.

An important consequence of the above definition is that every algebra
in V is isomorphic to a direct product of an algebra from U with one from
W .

Putting together the results from the last two sections we have the fol-
lowing theorem.

THEOREM 4.2 Let V be a locally finite variety in a finite language. Then
the following are equivalent:

(i) V(V t) is decidable.

(ii) V(V t) is not hereditarily undecidable.

(iii) V is the varietal product of a strongly Abelian variety S and an affine
variety A such that S satisfies the conditions of Theorem 2.5 and the
ring associated with A is semi-simple.

(iv) V is a finitely axiomatizable, homogeneous variety.

Proof. From Lemma 2.3 we know that if V is finitely axiomatizable
and homogeneous then V(V t) is decidable. Clearly, if a variety is decidable
then it is not hereditarily undecidable. Also, if (iii) holds then V is easily seen
to be homogeneous since it is the varietal product of homogeneous varieties.
The finite axiomatizability follows from Corollary 14.1 of [10], since in this
case V is decidable and finitely generated. (One can also prove this directly,
since each of the factors S and A is finitely axiomatizable.)

Finally, suppose that V(V t) is not hereditarily undecidable. Then V is
not hereditarily undecidable, as V is a reduct of a subclass of V(V t). Then
by Theorem 13.10 of [10], V is of the form S ⊗ A ⊗ D where S is strongly

9



Abelian, A is affine and D is a discriminator variety. By a theorem of Burris
in [1] the variety D must be trivial, since he proves that V(Dt) is hereditarily
undecidable whenever D is a nontrivial discriminator variety. Theorems 2.5
and Theorems 3.2 can now be used to finish the proof.

5 Other Results

In closing, we would like to describe the few results known concerning the
decidability of V(Kt) when K is not a variety, and illustrate them by consid-
ering their application to universal classes of lattices. The best result prior
to 1989 was the theorem of H. Werner [5, 11], building on the work of S.
Comer.

THEOREM 5.1 Suppose K = I(K0) for some finite set K0 of finite algebras
of finite type. Then V(Kt) is decidable.

We can apply this theorem and Lemma 2.6 to prove the following.

PROPOSITION 5.2 Let K be a universal class of distributive lattices.
Then V(Kt) is decidable iff K = I(K0) for some finite set K0 of finite lattices.

Proof. The sufficiency of the condition follows from Theorem 5.1. To
establish its necessity, suppose K is not of the specified form. Since K is
locally finite and universal, K must contain finite lattices of arbitrarily large
cardinality, and hence of arbitrarily large height (by distributivity). Thus K
contains all finite chains, and hence all chains (by compactness).

Now let A be the chain {x ∈ QQ : x ≤ 0 or x ≥ 1} under the usual ordering
of the rational numbers, and let S = A \ {1}. Clearly 0 is definable in A by
a formula τ(x) (since 0 is the unique element of A having an upper cover),
while {σ(0) : σ ∈ AutS} = S. Thus if we let µ(x) be x = x and ψ(z)
be a formula asserting that z has a lower cover, then all the conditions of
Lemma 2.6 are met. So V(Kt) is undecidable.

This proof actually shows that if K is any universal class of lattices of
unbounded height, then V(Kt) is hereditarily undecidable. Here is another
application of Lemma 2.6.
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PROPOSITION 5.3 Let Lat3 be the class of all lattices of height at most
3. Then V(Lat3

t) is hereditarily undecidable.

Proof. Let A be the countably infinite lattice of height 3 having exactly
one 4-element chain 0 ≺ a ≺ b ≺ 1, and let S = A \ {b}. Let µ(x), τ(x) and
ψ(z) be formulas asserting respectively that x has height 1, x belongs to a
4-element chain, and z has height 2 and belongs to a 4-element chain. Then
µ, τ and ψ witness the hypotheses of Lemma 2.6.

We remark that it is only a little harder to produce a modular lattice A
in Lat3 which witnesses the conditions of Lemma 2.6.

What about the class Lat2 of all (modular) lattices of height at most 2?
Lat2 is not homogeneous (for example, the 3-element chain is rigid, yet all
of its 1-element sublattices are isomorphic). But intuitively, at least, Lat2 is
nearly homogeneous. Willard [12] has formulated a notion of “almost local
homogeneity” which is strong enough to ensure decidability, yet weak enough
to encompass Lat2. We reproduce the definitions and result here.

Definition 5.4

(1) Suppose D is a finite algebra and D0 is a subuniverse. D is homoge-
neous over D0 if for all subalgebras B,B′ of D satisfying B ∩ D0 =
B′∩D0, every isomorphism σ : B ∼= B′ satisfying σ|B∩D0 = idB∩B0 can
be extended to an automorphism σ̂ of D satisfying σ̂|D0 = idD0 .

(2) If A is a locally finite algebra and A0 is a finite subuniverse, then A
is locally homogeneous over A0 if every finite subalgebra D of A is
homogeneous over D ∩ A0.

Definition 5.5 Suppose K0 is a finite set of finite algebras and A is an
algebra of the same type. A maximal K0-subuniverse of A is a subuniverse
A0 such that (i) either A0 = ∅ or A0 is isomorphic to some member of K0,
and (ii) A0 is maximal (among subuniverses of A ordered by inclusion) with
respect to property (i).

Definition 5.6 Suppose K is a locally finite universal class of algebras of
finite type. We shall say that K is almost locally homogeneous if there is a
finite set K0 of finite members of K satisfying:
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(1) S(K0) ⊆ I(K0);

(2) (If the type of K contains constant symbols): Every 0-generated mem-
ber of K is in I(K0);

(3) If A ∈ K and A0 is a maximal K0-subuniverse of A, then A is locally
homogeneous over A0.

LEMMA 5.7 Suppose K is a finitely axiomatizable, locally finite, univer-
sal class of finite type. If K is almost locally homogeneous, then V(Kt) is
decidable.

Let us return to the example of Lat2. Let K0 be the set consisting of a
3-element chain and its subchains. Clearly if L is any lattice of height at
most 1 and L0 is a maximal K0-subuniverse of L, then L0 = L and so L
is automatically locally homogeneous over L0. On the other hand, if L is a
lattice of height 2, say L ∼= Mλ, and L0 is a maximal K0-subuniverse of L,
then L0 is a 3-element chain consisting of the bottom and top elements of L
and one atom a. Therefore, in verifying that L is locally homogeneous over
L0, one need only consider height-preserving isomorphisms between finite
sublattices of L, and these can always be extended as required. Hence Lat2

is almost locally homogeneous; so by Lemma 5.7, V(Lat2
t) is decidable.

Using Lemmas 2.6 and 5.7, Willard was able to characterize those locally
finite universal classes K of unary algebras of finite type such that V(Kt) is
decidable. He found that for such classes K, V(Kt) is decidable iff K is almost
locally homogeneous. Thus we pose the following two problems.
Problem 1. Which locally finite universal classes K of lattices are almost
locally homogeneous?
Problem 2. Is it true that if K is a locally finite universal class of lattices
for which V(Kt) is decidable, then K is almost locally homogeneous?
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