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Expanding varieties by monoids  
of  endomorphisms 

STANLEY BURRIS* and MATITqEW VALERIOTE~ 

The purpose of this paper is to start a general investigation of the varieties 
"P'(M) obtained by expanding a variety T" by a monoid of endomorphisms M. This 
construction was used in [3] to manufacture the first example of a variety with a 
decidable theory and not of the form (discriminator)| It also plays a 
key role in Baur's papers [1], [2] on the first-order theory of Abelian groups with 
distinguished subgroups. 

In the first section a few basic results are presented. In the second section we 
describe exactly when 7/'(M) is a discriminator variety, generalizing the treatment 
of Nsg(G) given in [3]. The final section is devoted to Abelian varieties and the 
corresponding varieties of modules. 

w Definitions and basic results 

Given a variety J/" of type ~ and a monoid M = (M,. ,  1) the variety ~V(M) is of 
type ff  U M, where each r n s M  is a unary function symbol, and "F(M) is 
axiomatized by 

(i) the identities of T" 
(ii) l ( x ) ~ x  

(iii) rnl(m2(x))~-(rnl" rn~)(x) for ml, m 2 ~ M  
(iv) rn(f(xl . . . .  , x k ) )= f (m(x l ) , . . . ,m(xk ) )  for m e M ,  f s~ ; .  

We use the notion of equivalent varieties as defined in w of Taylor [7]. For 
&a~V(M) let A l v  be the reduct of A to the language of /P; and for ~t'___ T'(M) let 
NI~ ={A% :As:X'}. 
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T H E O R E M  1.1. 7/" is equivalent to a subvariety of 72(M), and ~" is a reduct of 

72(M). 

Proof. Let  72* be the subvariety of 72(M) defined by m ( x ) ~ - x  for m ~ M .  

Clearly 7/ and 7/* are equivalent varieties. Then 7/=7/ '1-~___7/(M)1~._ 7/, so 

7/= 7/(M)l-v. [ ]  

C O R O L L A R Y  1.2. 72 and 72(M) have the same MaI'cev properties. 

Proof. Certainly any Mal 'cev proper ty  of 72 is also a Mal 'cev proper ty  of 72(M) 
(using the same identities); and any Mal 'cev proper ty  of 72(M) is one of 7/'* (as 
defined in the proof  of Theorem 1.1), and hence it is also a Mal 'cev proper ty  of 

72. [ ]  

One  particular construction, which we describe now, transforms an algebra in 
72 into an algebra in 72(M). For A e72 let A M be the algebra obtained by 
expanding A M by defining, for m, n c M and a e A M, 

(m(a)) (n)  = a(n  . m). 

L E M M A  1.3. For A a 72, A m ~ 72(M). 

Proof. Certainly A M e 72, and for a e Ara, n c M, 

( l ( a ) ) ( n ) =  a(n. 1) 

= a(n)  

SO 

l ( a ) = a .  

Next  if ml, m2, n e M and a e A M then 

(ml(m2(a)))(n)  = (mz(a))(n " mO 

= a ( n  . m 1 .  m 2 )  

= ((ml" m2)(a))(n), 

SO 

ml(m2(a)) = (ml �9 mz)(a). 
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Now if f ~ ~ ,  m, n e M,  and al  . . . .  , ak e A M then 

( m f f ( a l ,  . . . , aD))(n)=  f f ( a ~ , . . . ,  a D ) ( n  " m )  

=f (a l (n "  m) . . . .  , ak(n" m)) 

= f ( ( m ( a l ) ) ( n ) , . . . ,  (m(ak))(n)) 

= ( f (m(al ) ,  . . . .  m ( a k ) ) ) ( n ) ,  

SO 

m ( f ( a l , .  . . , a k ) ) = f ( m ( a l )  . . . . .  m(ak ) ) .  []  

A term p ( x a , . . . ,  xk) in the language of F(M)  is reduced if p ( x l  . . . . .  xk)  is 
p * ( m l ( x l )  . . . . .  ml (Xk)  . . . . .  mz(x l ) ,  . .~. , m, (xk) ) ,  for  suitable m l ,  . . . ml ~ M and  

for p * ( x u , . . . ,  xxk . . . . .  x~ . . . . .  xzk) a term in the language of ~ .  

L E M M A  1.4. For every term p(x~ . . . .  , xk) in the language  o f  ~(M)  there is a 

reduced term p , (x l  . . . . .  xk)  such  that  

~(M) ~ p ( x l  . . . . .  Xk)  ~ p , ( X l  . . . .  , Xk) .  

Proof. After  replacing Xl . . . .  , xk by l ( x ~ ) , . . . ,  l(xk) one just repeatedly uses 
properties (iii) and (iv) of the definition of T'(M) to push the m's  occurring in 
p ( x l , . . . , x k )  down to the variables. [ ]  

For  X_qA, A ~ ( M ) ,  let M ( X ) = { m ( x ) : m ~ M , x ~ X } ;  and SgA(X) is the 
subuniverse  of A generated by X. Let  T~ be the set of terms in the language of ~ .  

L E M M A  1.5. For A~T ' (M)  and X c_ A ,  

SgA(X) = SgAt~(M(X)). 

Proof. We have 

SgA(X) ={p(a l  . . . .  , ak) :p e T~. (~ ,  a l  . . . .  , ak ~ X }  

= { p * ( m l ( a O , . . . ,  m l ( a k ) )  :p* ~ T~, 

m l ,  . . . , mz ~ M ,  a l  . . . .  , a~ ~ X }  

= SgAt~.(M(x)) .  []  



Vol 17, 1983 Expanding varieties by monoids of endomorphisms 153 

If a variety T" is trivial then of course so is ~(MD. This gives a degenerate case 
in many of the following results. 

T H E O R E M  1.6. I f  7/" is a nontrivial variety then 7/(M) is locally finite iff T" is 
locally finite and M is finite. 

Proof. Suppose 7/(hi) is locally finite. As T" is a reduct of 7/'(M) it follows that 
7/" is locally finite. Let  A c T "  be an algebra with [AI>-[M[, and choose a 
one- to-one  function a ~ A M. Then  for rn~, m2~ M, we have the following holding 
in AM: 

ml(a) = mz(a) ~ (ml(a))(1) = (m2(a))(1) 

a(mx) = a(rn2) 

/ T / 1  ~--- F n  2 . 

This says that ISgAM({a})l - [ M I .  As ~(M),  and hence A M, is locally finite, M must 
be a finite monoid. 

For  the converse suppose ~ is locally finite and M is finite. Then  for A ~ 7/(M) 
and X a finite subset of A, the set M ( X )  is finite, so by Lemma 1.5 SgA(X) is 
finite. Thus ~(b l )  is locally finite. [ ]  

L E M M A  1.7. Suppose 7/" is a nontrivial variety and M is a monoid. I f  
ml, m 2 e M  then 

T ' (M)~ m l ( x )~m2(x )  if[ r n l = m  2. 

Proof. (The proof of this is contained in the first paragraph of the proof of 
Theorem 1.6.) [ ]  

A variety generated by finitely many finite algebras, or equivalently by a single 
finite algebra, is finitely generated. 

T H E O R E M  1.8. Suppose T" is a nontrivial variety. I f  7/'(M) is finitely gener- 
ated then M is finite and ~" is finitely generated. 

Proof. Let  A be a finite member  of T'(M) such that 7 / (M)=HSP(A) .  Then 
7/" = HSP(A) r~ - HSP(A Jr) - ~ ,  so ~ = HSP(A r~-), and hence T" is finitely gener- 
ated. Next ,  since the free algebra Fr0~(~)  is finite (as ~(MD is locally finite), the 
set M({~}) must be finite, and then by Lemma 1.7 M is a finite monoid. [ ]  

When we are working with elements a, b in a direct product  I-Ii~,A~ we use 
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the notation 

[a = b]]= {i e I : a(i) = b(i)} 

[[a # b]] = {i e I:  a(i) ~ b(i)}. 

L E M M A  1.9. Suppose A ~ ?/'. 
(a) I f  A m is a simple algebra then either A is a trivial algebra or one can  

conclude that M is a finite group and A is a simple algebra. 
(b) Suppose S is a simple algebra, G is a finite group. I f  the variety generated by 

S is distributive then SG is a simple algebra. 

Proof. (a) If A is a trivial algebra then this part  is obvious, so suppose A is 
nontrivial. Let  Ur be the set of elements in M with a right inverse, i.e., 

U , = { m e M : m . m * = l  for some m * e M } ,  

and let the binary relation 0 be defined on A M by 

0 ={(a, b ) e A M •  M :Ha:fi bit_ U,}. 

Then 0 is an equivalence relation since, for a, b, c ~ A M, 

[a# a]~_ U. 

[ a ~  b]]c_ Ur ~ [ [ b # a ] ~ _  U,, 

and 

[a--/: b]c_ U ,  Ilb-~ c]c_ U~ ~ l[a r c]~_ U, 

as 

~a~ c]~ ~[a=/: b l u r b  ~ cl. 

Next 0 is compatible with all fundamental operations f of A M since if 

(al ,  bl) . . . . .  (ak, bk)~ 0 then 

If(a1 . . . . .  ak) ~ f (bl ,  . . . , bk)]c--[[al ~ bl]t.J- . .  tA[ak 7 ~ bk]]c_ Ur. 
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Now if m e M and (a, b) s 0 then for n ~ lira(a) ~ m(b)]  we have 

155 

(m(a)) (n)  ~ (m(b))(n) ,  

i.e., 

a(n . m) --fi b(n . m). 

This leads to n . m ~ [ a ~ b l ] ~ _ U , ,  so n~Ur .  Thus [[m(a)~:m(b)]~_U,, so 
(m(a) ,  m(b)}~O. Thus we have proved 0 is a congruence on A M. Now z~<0  as 

~ [Jr, and as A M is a simple algebra we must have 0 = V; hence (Jr = M. This 
guarantees that M is a group. 

Now define a binary relation 0 on A M by 

={(a,  b)~ A ~ x A M :[a--/: b]l is finite}. 

Then 0 is a well-known congruence on A M, and A < ~. For rn ~ M and (a, b)~ 0, 

I ra (a)  ~ m (b)]l = {n e M :  (m(a)) (n)  ~ (m(b) ) (n )}  

= {n ~ M :  a ( n .  m)  :/: b (n .  m)} 

={n e M : n . m ~ [ a ~  b]} 

= o~l ( [a :P  b]~, 

where a m : M - - ~ M  is defined by  o~m(n)=n'rn .  As a,~ is a bijecti0n (M is a 
group), it follows that  Jim(a) ~ m(b)] is finite, so (a, b )~  0 implies (re(a), m(b)}~ O. 
Thus 0 is also a congruence on A M, and as A M is a simple algebra we must have 

= V. But  this can happen only if M is finite. 

Next if (h is a congruence on A let 4~* be the binary relation on A M defined b y  

a ~ * = { ( a , b ) ~ A M x A M : ( a ( n ) , b ( n ) ) s 4 )  for n ~ M } .  

Again q~* is a well-known congruence on A M. Now for m, n ~ M  and (a, b )~  q~* 
we have 

((m(a))(n) ,  ( m ( b ) ) ( n ) ) = ( a ( n  . m), b(n . m))~  4~; 

hence (re(a), m ( b ) ) ~ * .  Consequently ~b* is a congruence on A M. As A M is 
simple this forces th to be A a or  VA; hence A is a simple algebra. 
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(b) Again the interesting case is when S is nontrivial. From the congruence- 
distributive assumption and the finiteness of G we know (see IV w of [5]) 
that all congruences on S G are of the form, for J ~ G, 

Oj ={(a, b)~ S G :[[a~ b]~_J}. 

Now if 0 is a congruence on sG and 0 ~ d then there must exist (a, b) ~ 0 and 
g ~ G Such that a(g) ~ b(g). Then, for h ~ G, 

SO 

a(h .  h -1. g ) ~  b(h.  h - I .  g), 

((h -~. g)(a))(h) ~ ((h -~- g)(b))(h). 

As 

((h -1- g)(a), (h -1- g)(b))~ 0 

and 

h ~[[(h -1 .  g)(a) ~ (h -1.  g)(b)]] 

it follows that the J___ G for which 0 = Oj must be J = G. Thus 0 = V, so sG is 
indeeds imple .  [ ]  

w  D i s u r ; m l n a t o r  v a r i e t i e s  �9 

Most of the background information on discriminator varieties can be found in 
IV w of [5] or in w of [6]. Given a variety ~ let 7/" s be the class of simple 
algebras in 7/', and let 7/'DX be the class of directly indecomposable members  of 7/'. 
The  notation A---bpl-L,xAx means A is a Boolean product  of the indexed family 
of algebras (Ax),Ex, i.e., (i) A is a subdirect product of the family (A.) ,~x,  and X 
can be endowed with a Boolean space topology such that (ii) [a = b] is clopen for 
all a, b e A, and (iii) for a, b e A and N a clopen subset of X~ a fly U b lx-~re A. 
F'~(~ r) denotes the class o f  all Boolean products of members of Y/. A variety 7/" is 
a discriminator variety if 7/" is generated by 7/'s and there is a discriminator term 
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t(x, y, z) for ~V s, i.e., T's satisfies 

[ x = y  --, t(x, y, z ) ~ z ] &  [ x C y  ~ t(x, y, z )~x] .  

We summarize the basic results on discriminator varieties that we will need in the 
following theorem: 

T H E O R E M  2.1. Let 72 be a discriminator variety, and let t(x, y, z) be a 
discriminator term for 7/'s. 

(a) ~oz  = 7Ps 
(b) 7/" = I/'~("//'s) 
(c) For S~ ~'s, the factor congruences on S r are of the form, for J c_ I, Oj = 

{(a ,  b )~ S~ x SI :l[a# b]]~ J}. 
(d) Every A ~'F" is isomorphic to a Boolean product A* of Simple algebras, i.e., 

A <--bp I-L,~x S~, S. ~ ~" for x ~ X, such that at most one S~ is a trivial algebra. 
For A a nontrivial algebra we can furthermore require that x be a noniso- 
lated point of X if S~ is indeed trivial. 

Let A- -<bp l~xS . ,  S. simple, in (e)-(h). 
(e) For a, b, c, d ~ A,  

[a:/:b]c_[c:/:d] if[ t ( c , d , a ) = t ( c , d , b ) ,  

and 

[a~ b]U[c~ d]]= It(a, b, c) ~ t(b, a, d)]]. 

(f) Every congruence 0 on A is of the form 

0u={(a ,  b}~A2:  ~a~b]~_ U}, 

(g) 

(h) 

for U an open subset of X. The factor congruences on A are precisely those 
of the form ON for N a clopen subset of X.  
Al l  finitely generated congruences on A are principal, and indeed for 
a, b ~ A we have O(a, b) = Oi,eb~. A clopen subset N of X is of the form 
[a 7 ~ b]] iff Sx is nontrivial for x ~ N. 
The set of principal congruences on A forms a sublattice of the congruence 
lattice of A which embeds into the lattice of clopen subsets of X under the 
mapping O(a, b)--->[a7 ~ hi; this is a Boolean lattice if no Sx is trivial. 
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Now we are ready to prove our  main result in this section. 

T H E O R E M  2.2. For T" a nontrivial variety and M a monoid, 7P(M) is a 
discriminator variety iff T" is a discriminator variety and M is a finite group. 

Proof. ( ~ )  Since ~ is equivalent to a subvariety of the discriminator variety 

7:(M) by Theorem 1.1, it follows that ~ must be a discriminator variety. Next let 
S be  a nontrivial simple algebra in 7/'. We  claim that S ~ is a directly indecomposa-  
ble algebra. To  see this we note that factor congruences on S M must be of the 
form 

Oj = {(a, b>~ S M • S u : [ a #  b i g  J}, 

for Jc_ M, by 2.1(c). So suppose Os, OM-j is a pair of factor congruences on S M. We 
can assume I e J. If  J #  M choose an e lement  m e M - J ,  and then choose a, b e S M 
with [[a # b]] = {m}. Then 

[ a # b ] c _ M - J ,  

SO, 

(a, b> e 0M-j. 

This implies 

(re(a), m(b) )e  OM-j, 

SO 

[ re(a)  ~ m ( b ) ] _  M - J ,  

i . e . ,  

J c_[m(a) = m(b)].  

But  this is impossible as I a J and re(a)(1) ~ re(b)(1) (since a(m) # b(m)). Thus 
J = M, and hence S M is directly indecomposable.  This forces S M to be  simple by 

2.1(a), so by L e m m a  1.9(a) it follows that  M is a finite group. 
( ~ )  Let  T" be a nontrivial discriminator variety and let G be a finite group. 

Let  A be a nontrivial directly indecomposable  m e m b e r  of 7/'(G). As every algebra 
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in a discriminator variety can be represented as a Boolean product of simple 
algebras by 2.1(b), we can assume 

A]'v----- ]1  S~,S~ ~7/'s. 
bp x ~ X  

Furthermore by 2.1(d) we can assume that at most one S~ is trivial, and if there is 
a trivial S~ then x is not an isolated point of the Boolean space X. 

For a, b, c, d ~ A we have 

[a r b~__q ~c ~ d~ iff t(c, d, a) = t(c, d,b), 

where t(x, y, z) is a discriminator term for 7/'s (by 2.1(e)). Consequently, for g ~ G 
we have 

~a ~ b]__q ~c ~ d]] iff [g(a) ~ g(b)]___ I[g(c) ~ g(d)]]. 

Thus each g induces an automorphism ~ on the lattice L of all clopen subsets of X 
of the form [a ~ b], namely 

: [ a ~  b] ~ [[g(a) ~ g(b)]]. 

For U an open subset of X, 0u is a congruence on A I ~  by 2.1(f); hence 0u is a 
congruence on A iff [a ~ b]]___ U implies [ g ( a ) ~  g(b)]c  U, for a, b ~ A, g ~ G. 

Suppose now that N is a clopen subset of X such that ON is a congruence of A. 
For a, b ~ A, if 

N n~a~b]]=Q but nn[g(a)~g(b)]~f2) 

for some g ~ G, then for some c, d ~ A, 

~c ~ d~ = N n [g(a) ~ g(b)] 

by 2.1(g). But then 

Q ~ ~g- l (c)~  g-~(d)]_ [ a ~  b], 

and 

[g-l(c) ~ g- '(d)]]_ N 
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(as 0n is a congruence on A), contradicting the fact that NNl[aCb]= Q. Thus 
Ox-r~ is also a congruence on A. As A is directly indecomposable this says N = O 
or N = X are the only possibilities. 

Now if N is a clopen subset of X of the form t[a r b]] then 

o(N) = & e( 0 

is also a clopen subset of X as G is a finite group; and fur thermore if I[cCd]lc_ 
G(N)  then 

~0Icr d])~_ gd(N) 

= g(hUo/7t(N)) 

so 0day) is a congruence on A. Thus 

a r b implies G(~a ~ bl]) = X. 

Consequently there are no trivial algebras Sx, for x ~ X. Thus the clopen subsets of 
the form [a  7 ~ b]l form a subfield B of the Boolean algebra of all subsets of X by 
2.1(g), and furthermore the g's are automorphisms of B, for g~G, with the 
property that G(N)  = U ~ ~(N) is X for N ~  0 .  Such Boolean algebras with a 
group of automorphisms were studied in [3], and for G finite we proved that the 
above condition involving G forces tBI<--2 tGI. Thus X must be a finite discrete 
space (indeed IX[---IGI). Consequently A is a simple algebra as all congruences on 
A are of the form Ou with U open, and now we know that all open subsets of X 
are actually clopen sets N (we've already proved that if ON is a congruence then 
N =  O or X). At this point we know that ~ (G )  is a semisimple variety as 

7/(G)o~__ ~'(G)s. 
Before continuing let us note that the switching term 

s(x, y, u, v) = t(t(x, y, u), t(x, y, v), v) 
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is such that  T" s satisfies 

[x -~ y ---, s(x, y, u, v)  ~ u] & [ x ~  y ~ s(x, y, u, v) ~ v]. 

By repea ted ly  applying the identi ty 

[a 7 ~ b]] U I[c 7 ~ d~ = lit(a, b, c) ~: t(b, a, d)ll 

we can find terms p(x~ . . . . .  x,,, y~ . . . .  , y , ) ,  q(xt . . . .  , x,,, yt  . . . . .  y,,) whe re  
{g~ , . . . , g~} ,  such that  for  a, b e A  (and using the  
p (g l (a )  . . . .  , g~(a), gx(b) . . . . .  g,(b)) ,  etc.) we have 

G(Ua ~ b]) = ~ c  ~g(a) ~ g(b)]  

= [[p(~(a), ~(b)) r q(~(a), ~,(b))]]. 

T h e n  let 

t*(x, y, z)  = s(pf f , (x) ,  ~(y)),  qff ,(x) ,  ~(y)), z, x). 

W e  see that  for  a, b, c e A (A as above),  

[p(~(a), ~,(b))-fiq(~,(a), ~(b))]]= if a ~ b  

as G ( [ a ~  hi) takes these values. Consequent ly  

t * ( a , b , c ) = { :  if a = b  
if a--/: b, 

so t*(x, y, z)  is a 
cr iminator  variety.  

161 

G ~ 

nota t ion  p(~(a) ,  ~,(b)) for  

discriminator term for ~'(G)s. Thus ~ ( G )  is indeed a dis- 
[] 

w Abelian variet ies 

A var ie ty  ~ is Abel ian  if it satisfies, for  all terms t, 

VxVyV~Vg[t(x ,  ~) ~ t(x, ~) <---> t(y, tT) ~ t(y, g)]. (1) 
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The background for this section can be found in [4]. 

T H E O R E M  3.1. ~(M)  is Abelian iff ~" is Abelian. 

Proof. ( ~ )  If ~'(M) is Abelian then so is every subvariety of F(M).  But then 
by Theorem 1.1 ~ is Abelian. 

( & )  Given a term t(x, yl . . . . .  y,) in the language of ~ (M)  let 
t * ( m l ( x ) , . . . ,  rnl(y,) . . . . .  rnt(x) . . . . .  rnl(y~)) be an equivalent reduced term (as 
guaranteed by Lemma 1.4). Then for a, b, cl . . . . .  c~, d l , . . . ,  d~ e A, where A.~ 
~(lVl), we have, by repeated use of the property (1), which holds for F ,  using the 
abbreviations m~(g) for  mt(c~ ) , . . . ,  m~(c~), etc., 

t(a, ~) = t(a, d) 

r ml(C), m2(a), rn2(~) . . . . .  mz(a), mz(~)) 

= t*(ml(a), ml(d),  m2(a), rn2(d) . . . . .  ml(a), rnz(d)) 

r t*(ml(b), ml(g), ma(a), m2(g) . . . . .  mz(a), ml(5)) 

= t*(ml(b), ml(d),  m2(a), m2(d) . . . . .  m~(a), ml(d)) 

r ml(~), m2(b), m2(g) . . . . .  ml(a), ml(g)) 

= t*(ml(b), ml(d),  m2(b), m2(d), �9 �9 . , mz(a), mz(d)) 

r ml(~), m2(b), m2(~) . . . . .  ml(b), mz(g)) 

= t*(ml(b), ml(d),  mz(b), rn2(d) . . . .  , m~(b), m~(d)). 

r 5) = t(b, d). 

Thus (1) holds for ~'(M), so ~(M)  is Abelian. [ ]  

Associated with each congruence-modular  Abelian variety is a variety of 
modules R(.~M, where 11(~r is a ring with unit. Indeed the varieties sr and R(~lVl 
are in many respects equivalent. Our  main result in this section is to establish a 
simple connection between R(sr and R(sg(M)). First let us sketch the details of 
the basic results on modular Abelian varieties. 

A modular Abelian variety ~/is  congruence-permutable,  so there is a Mal'cev 



Vol 17, 1983 Expanding varieties by monoids of endomorphisms 163 

term p(x, y, z)  for sg. Let  R ={r(a ,  15) c F~(~, 1 3 ) : ~ r ( v ,  v)~-v} .  Then define the 

operat ions + , - ,  - ,  0, 1 on R by 

r(a, e)+s(a, ~) = p(r(a, ~), ~, s(a, ~)) 

r(a, ~) . s(a, ~) = r(s(ft, ~7), ~7) 

- r ( a ,  ~) = p07, r(a, ~5), ~5) 

0 = ~  

1 = ~ .  

This gives us the ring R associated with .~, i.e., R(sr Terms r(u, v) such that 
"F ~ r( v, v) ~ v are called binary idempotent terms. 

In the following, when working with the function associated with a term 
p(x~ . . . . .  x , )  on an algebra A we will write pA(x 1 . . . . .  Xn) with the exception of 

A =F~(~( t i ,  ~), in which case we omit  the superscript. Also we will write F for 

F~(a, ~). 

Next, given A c ~r and a c A  we can construct on the set A a left ll(sC)- 

module  M(A, a )  = (A, + ,  - ,  a,  (r)reR(.a)) by defining, for a, b c A, 

a + b = pA(a, a, b) 

--a = pA(ot, a, a )  

0 = ~  

r -  a = rA(a, a) .  

Fur thermore ,  for each te rm p(xl  . . . . .  x~) in the language of sr one can find a term 
pM(xl . . . . .  x ~ ) = ~ , ~ , , r i - a h  in the language of R(s i ) -modules  such that  for 
A c . ~ /  and c~ c A ,  

p * ( x ,  . . . . .  x~ )  = p ~ ( A . " ) ( x ,  . . . .  , x~ )  + p * ( , ~  . . . .  , ~ ) .  

i.e., for ax . . . . .  an c A we have 

p*(al . . . . .  o~)= Y~ r i - ~ + p A ( ~  . . . .  , ~ ) ,  
l ~ i ~ n  
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where the module .operations on the right are those of M(A, ~). This also can be 
written as 

pA(al . . . . .  a~) = Y~ r,*(o~, ~ ) + p * ( ~  . . . . .  ~). 
l ~ i ~ n  

Given a monoid M and a ring R we define R[M] to be the set of all functions 
F~ R ~t such that rm = 0 for all but finitely many m ~ M(rm being the value of F at 
m). Then we define the monoid-ring R[M] with universe R [ M ]  by 

6 ( m ) = o  

l ( 1 ) = l , l ( m ) = O  if m ~ l  

(~+  g)(m) = r,. + s ~  

( ~ - ~ ) ( m ) =  Y~ 
r r~l . r t t2~tr t  

Fro1 �9 Sine. 

If ar is an Abelian variety then we can use the same Mal'cev term for N and 
ag(M). Then we can easily see that we have a natural embedding 4, :R(ar 
R(ai(M)) defined by ~b(rr(~, 4))= r(~, ,3), where r(u, v) is a binary idempotent 
term in the language of A. The image of R(ar under q~ will be called R*; thus R* 
is the subring of R(ae(M)) whose universe consists of all r(a, ~) where r(u, v) is a 
binary idempotent term in the language of A. 

We would like to know what new binary idempotent terms we have in the 
language of ~(M). The most obvious candidates are of the form r e ( u ) - r e ( v ) ,  

properly expressed in the language o5 at(M). As it turns out these, along with the 
original binary idempotent terms of a/, generate R(ai(M)) in a simple fashion. We 
give this fundamental decomposition in the next lemma. 

LEMMA 3.2. Given an idempotent term r(u, v) in the language of s/(M) there 

is a unique ~ R * [ M ]  such that 

r(a, e) = Y. rm(a, ~)- ( r e ( a ) -  re(e)) 

where the module operations on the right side are those Of M(F~tM~(~, 15), ,3). (The 
sum is ~ if  each rm(ft, ~) = O; otherwise it is defined to be the finite sum over all m for 
which r,,,(~, ~)7 ~ ~.) The mapping r(a, ~),--+~ described above is a bijection from 

R(s~) to R*[M]. 
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Proof. First we find a reduced term (by Lemma !.4) r*(m1(u), m x ( v ) , . . . ,  
m,(u), m,(v)) which is equivalent to r(u, v). We assume the ~ ' s  are distinct. As 
~t(M) ~r(v, v) ~ v  we have 

~(1VI) kr*(ml(v), m l ( V ) , .  . . , r a n ( v ) ,  nan(v) )  ~ 1). (2) 

Since r*(xl, yl . . . . .  x~, Yn) is in the language of ~t we can find idempotent  terms 
r~(u, v), s~(u, v) in the language of ~, l<--i <-n, such that for A ~ J  and a c A  (with 
module operations in M(A, a))  

r*A(Xl, yl . . . . .  X,,yn) = ~. r~(xi, ot)+ ~ S~'(yl, a)+r*A(ot  . . . . .  o~). (3) 
l ~ i ~ n  l ~ i ~ n  

This equation will also hold for A ~ ~(M) since the addition operation of M(A, a)  
is the same as that of M(A I~, ct). 

From (2) we have 

~ ( M )  Cr*(v, v . . . . .  v)~v; 

thus from (3) 

rA(u, V)= ~, ~(m~(u), ct)+ ~, s~(m'~(v), a). (4) 
l ~ i ~ n  l s i ~ n  

Now let A = Fm. Then for a, a ~ A we have from (4) 

a=rA(a,a) = ~ r)(m~(a),a)+ ~, s~(m)(a),a). 
l ~ i a n  l ~ i ~ n  

With module operations in M(F, a(1)) we have, by evaluating at 1, 

a ( 1 ) =  ~ ~ ( a ( ~ ) , a ( 1 ) ) +  ~ s~(a(~),a(1)). 
l ~ i ~ n  l ~ i ~ n  

For a fixed j, if rni~ 1 let us choose a such that a(m)= a for m = rnj, a ( m ) =  ~7 
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otherwise; and let a(m)= ~3 for all m. Then 

= r~(a, ~) + s~(a, ~). 

But then 

= rj(a, ~) + si(a, ~), 

i.e., 

si(a, ~) = -r,.(a, ~) if mi ~ 1. 

Thus, noting that l ( f i ) -  l(fi) = fi, we have from (4) 

r(a, 0)= ~.. ri(~t, ~) . m,(a)+ ~ s,(O, ~) . m~(~) 
l ~ i ~ n  l ~ i ~ n  

= ~ r,(a, ~) .  ( ,~(a)-m~(,~)) .  
l ~ i ~ n  

To show that this representation is unique suppose F, gE R*[M]  and 

V r,~(a, ~). (re(a)-m(~))= ~ s,,,(a, ~). (re(a)-m(~)). 

Then 

rm(m(~)-m(~), ~)= ~ s,~(m(ffQ- m(~), ~). 

Now given any A~sg(M) and a, b c A  the homomorphism )t :F~(~(zi, ~5)-~ A 
defined by ;t(li) = a, ;t(75) = b, is also a homomorphism from M(F~c~0(~, ~5), ~5)-~ 
M(A, b); hence for A ~ ( M )  and a, b ~ A  

A~ ~ rA(mA(a) - mA(b), b )=  ~ s~(mA(a) - mA(b), b). 

Now let A = F M, and evaluate both sides at 1 to obtain 

r~(a(m)-b(m), b(1))= ~. s~(a(m)-b(m), b(1)). 

Letting b(m)= v for all m we have 
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For n ~ M let a(n) = ~, a(m) = ,3 otherwise. This yields 

r*.(a, ~) = s~.(~, ~), 

SO 

r . (a ,  ~) = s~(a, *3). 

Thus for r(0, ~)~FA(m(O, ~7), the associated F~R*[M]  is unique. [] 
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r(a, .3) + s(~, *3) = ~.. (r~(fi, .3)+ s,.~(fi, *3))- (m(f i ) -  m(*3)), 

so ~(r(a, *3)+s(a, e))=4,(r(a, ~))+4~(s(a, *3)). Also ~(~)=6 and , ( a ) = i ,  and 
then ,b( -r(a ,  ~)) = -4, (r(a,  *3)). 

Finally to show that ~b preserves multiplication we make use o f  the fact that 
the Mal'cev term p(x, y, z) permutes with other terms in the language of M(M), 
and that for A ~ M(M) and a ~ A, 

pA(x, y, z ) = x - y  +z,  

where the calculations on the right are done in M(A, a). 
First note that for m, n ~ M, 

( m ( ~ )  - m(*3))  . ( n ( r O  - n ( F ) )  = m ( n ( ~ )  - n ( ~ ) ) -  m(*3)  

= m ( p ( n ( r O ,  n(F), F))- m(F) 

= p ( ( m .  n)(~) ,  ( m .  n)(F), r e ( F ) ) -  m(*3) 

= ( m  �9 n ) ( a ) - ( m  �9 n ) ( ~ ) + m ( ~ ) - m ( F )  

= (m �9 n ) ( ~ ) - ( m  �9 n)(*3): 

T H E O R E M  3.3. R(M(M)) ~(R(M))[M]. 

Proof. Let 4):R(M(M))--> R*[M] be the bijection described in Lemma 3.2. 
Then for r(u, v), s(u, v) idempotent terms in the language of M(M) we have 
$(r(fi, *3)) = F, d)(s(fi, ,3)) = ~" where 

r(t~, ~3) = X rm( t~, ~)" (m(l~)- m(O)) 

s(a, ~) = Y. sin(a, ~)- ( re (a ) -  m(*3)). 

As rm(fi, ~), s~(a, ~) and re(a)- m(5) ~ R(~t(M)), for m ~ M, we can think of the 
above operations of addition and multiplication as being r/ng operations of 
R(M(M)). But then 
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Next, if t(u, v) is an idemp0tent term in the language of ~,  and if m ~ M, then 

( rn( fO-  re(e)) ,  t(a, ~) = m(t(a,  ~ ) ) -  m(~) 

= t(m(~), m(~))-  m(~3) 

= t(m(fi), m(~))- t (m(~7) ,  m(~7))+ t(5, ~) 

= p(t (m(~) ,  m(13)), t(m03), m(~)), t(~, ~)) 

= t(p(m(fO, m(~), ~), p(m(5), m(~7), ~7)) 

= t(m(fi)- m07), ~3) 

= t(a, e ) .  ( m ( ~ ) -  m(~)). 

Thus elements of R* commute with elements of R(~(M)) of the form m(~) -  
m(~3). 

Consequently we have 

~(r(~, ~). s(a, ~)) 

= 4~((~ rm (a, ~) �9 (m(fi)-  m (~7)))+ ( ~  s,, (t~, 73) �9 (m(a ) -  m (~7))) 

rrt, r~ 

\ rrl, rl / 

= 6(r(a, ~))- 6(s(a, e)). 

This completes the proof. [] 
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