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Deciding the Existence of Minority Terms

Alexandr Kazda, Jakub Opršal, Matt Valeriote, and Dmitriy Zhuk

Abstract. hispaper investigates the computational complexity of deciding if a given ûnite idempotent
algebra has a ternary term operationm that satisûes theminority equations m(y, x , x) ≈ m(x , y, x) ≈
m(x , x , y) ≈ y. We show that a common polynomial-time approach to testing for this type of condi-
tion will not work in this case and that this decision problem lies in the class NP.

1 Introduction

It is not diõcult to see that for the 2-element group Z2 = ⟨{0, 1},+⟩, the term opera-
tion m(x , y, z) = x + y + z satisûes the equations

(1.1) m(y, x , x) ≈ m(x , y, x) ≈ m(x , x , y) ≈ y.

A slightly more challenging exercise is to show that a ûnite Abelian group will have
such a term operation if and only if it is isomorphic to a Cartesian power of Z2.
A ternary operation m(x , y, z) on a set A is called a minority operation on A if it

satisûes the identities (1.1). A ternary term t(x , y, z) of an algebraA is aminority term
of A if its interpretation as an operation on A, tA(x , y, z), is a minority operation on
A. Given a ûnite algebra A, one can decide if it has a minority term by constructing
all of its ternary term operations and checking to see if any of them satisfy the equa-
tions (1.1). Since the set of ternary term operations of A can be as big as ∣A∣∣A∣3 , this
procedure will have a runtime that in the worst case will be exponential in the size
of A.

In this paper we consider the computational complexity of testing for the existence
of a minority term for ûnite algebras that are idempotent. An n-ary operation f on
a set A is idempotent if it satisûes the equation f (x , x , . . . , x) ≈ x, and an algebra is
idempotent if all of its basic operations are. We observe that every minority operation
is idempotent. While idempotent algebras are rather special, one can always form one
by taking the idempotent reduct of a given algebraA. his is the algebra with universe
A whose basic operations are all of the idempotent term operations of A. It turns
out that many important properties of an algebra and the variety that it generates are
governed by its idempotent reduct [9].

he condition of an algebra having aminority term is an example of amore general
existential condition on the set of term operations of an algebra called a strongMaltsev
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condition. Such a condition consists of a ûnite set of operation symbols along with
a ûnite set of equations involving them. An algebra is said to satisfy the condition
if for each k-ary operation symbol from the condition, there is a corresponding k-
ary term operation of the algebra so that under this correspondence, the equations of
the condition hold. For a more careful and complete presentation of this notion and
related ones, we refer the reader to [6].

Given a strong Maltsev condition Σ, the problem of determining if a ûnite algebra
satisûes Σ is decidable and lies in the complexity class EXPTIME. As in the minority
term case, one can construct all term operations of an algebra up to the largest arity of
an operation symbol in Σ and then check to see if any of them can be used to witness
the satisfaction of the equations of Σ. In general, we cannot do any better than this,
since for some strongMaltsev conditions, it is known that the corresponding decision
problem is EXPTIME-complete [5].

he situation for ûnite idempotent algebras appears to be better than in the gen-
eral case, since there are a number of strong Maltsev conditions for which there are
polynomial-time procedures to decide if a ûnite idempotent algebra satisûes them [5,
7, 8]. At present, there is no known characterization of these strong Maltsev condi-
tions, and we hope that the results of this paper help to lead to a better understanding
of them. We refer the reader to [3] or to [1] for background on the basic algebraic
notions and results used in this work.

2 Formulation of the Problem

In this section, we formally introduce the considered problem. In all the problems
mentioned in the introduction, we assume that the input algebra is given as a list of
tables of its basic operations. In particular, this implies that the input algebra has
ûnitely many operations. We also assume that the input algebra has at least one op-
eration (i.e., the input is non-empty) and we forbid nullary operations on the input.
he main concern of this paper is the following decision problem.

Deûnition 2.1 DeûneMinorityId to be the following decision problem:
● INPUT: A list of tables of basic operations of an idempotent algebra A.
● QUESTION: Does A have a minority term?

he size of an input is measured by the following formula. For a ûnite algebra A,
let

∥A∥ =
∞

∑
i=1

k i ∣A∣i ,

where k i is the number of i-ary basic operations of A. Since we assume that A has
only ûnitely many operations, the sum is ûnite. Also note that ∥A∥ ≥ ∣A∣, since we
assumed that A has a non-nullary operation.

3 Minority is a Join of Two Weaker Conditions

One approach to understanding the minority term condition is to see if maybe there
exist two weaker Maltsev conditions Σ1 and Σ2 such that a ûnite algebra A has a
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minority term if and only if A satisûes both Σ1 and Σ2. In this situation, we would
say that the minority term condition is the join of Σ1 and Σ2. Were this the case, we
could decide if A has a minority term by deciding Σ1 and Σ2.

On the surface, the minority term condition is already quite concise and natural; it
is not clear if having a minority term can be expressed as a join of weaker conditions.
In this section, we show that it is a join of having a Maltsev term with a condition
which we call having a minority-majority term (not to be confused with the “gen-
eralized minority-majority” terms from [4]). Maltsev terms are a classical object of
study in universal algebra; deciding if an algebra has them is in P for ûnite idempotent
algebras. he minority-majority terms are much less understood.

Deûnition 3.1 A ternary term p(x , y, z) of an algebra A is aMaltsev term for A if
it satisûes the equations

p(x , x , y) ≈ p(y, x , x) ≈ y,

and a 6-ary term t(x1 , . . . , x6) is aminority-majority term of A if it satisûes the equa-
tions

t(y, x , x , z, y, y) ≈ y,
t(x , y, x , y, z, y) ≈ y,
t(x , x , y, y, y, z) ≈ y.

We point out that if an algebra has aminority term, then it also, trivially, has aMalt-
sev term, but that the converse does not hold (as witnessed by the cyclic group Z4).
Our deûnition of a minority-majority term is a strengthening of the term condition
found byOlšák in [12]. Olšák has shown that his terms are aweakest non-trivial strong
Maltsev condition whose terms are all idempotent.

We observe that by padding variables, any algebra that has aminority termor ama-
jority term (just replace the ûnal occurrence of the variable y in the equations (1.1) by
the variable x to deûne such a term) also has a minority-majority term. Since the
2-element lattice has a majority term but no minority term, it follows that having
a minority-majority term is strictly weaker than having a minority term.

heorem 3.2 An algebra has a minority term if and only if it has a Maltsev term and
a minority-majority term.

Proof he discussion preceding this theorem establishes one direction of this theo-
rem. For the other we need to show that if an algebraA has a Maltsev term p(x , y, z),
and a minority-majority term t(x1 , . . . , x6), then A has a minority term. Given such
an algebra A, deûne

m(x , y, z) = t(x , y, z, p(z, x , y), p(x , y, z), p(y, z, x)).
Verifying that m(x , y, z) is a minority term for A is straightforward; we show one of
the three required equalities here as an example:

m(x , x , y) ≈ t(x , x , y, p(y, x , x), p(x , x , y), p(x , y, x))
≈ t(x , x , y, y, y, p(x , y, x)) ≈ y. ∎
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Corollary 3.3 he problem of deciding if a ûnite algebra has a minority term can be
reduced to the problems of deciding if it has a Maltsev term and if it has a minority-
majority term.

Aswas demonstrated in [5,7], there is a polynomial-time algorithm to decide if a û-
nite idempotent algebra has a Maltsev term. herefore, should testing for a minority-
majority term for ûnite idempotent algebras prove to be tractable, then this would
lead to a fast algorithm for testing for a minority term, at least for ûnite idempotent
algebras. From the hardness results found in [5], it follows that, in general, the prob-
lem of deciding if a ûnite algebra has aminority-majority term is EXPTIME-complete;
the complexity of this problem restricted to idempotent algebras is unknown.

4 Local Maltsev Terms

In [5,7,8,13] polynomial-time algorithms are presented for deciding if certainMaltsev
conditions hold in the variety generated by a given ûnite idempotent algebra. One
particular Maltsev condition that is addressed by all of these papers is that of having
a Maltsev term. In all but [5], the polynomial-time algorithm produced is based on
testing for the presence of enough “local” Maltsev terms in the given algebra.

Deûnition 4.1 Let A be an algebra and S ⊆ A2 × {0, 1}. A term operation t(x , y, z)
of A is a local Maltsev term operation for S if:

● whenever ((a, b), 0) ∈ S, t(a, b, b) = a, and
● whenever ((a, b), 1) ∈ S, t(a, a, b) = b.

Clearly, if A has a Maltsev term, then it has a local Maltsev term operation for
every subset S of A2 × {0, 1}, and conversely, if A has a local Maltsev term operation
for S = A2 × {0, 1}, then it has a Maltsev term. In [7, 8, 13] it is shown that if a ûnite
idempotent algebra A has local Maltsev term operations for all two element subsets
of A2 × {0, 1}, then A will have a Maltsev term. his fact is then used as the basis for
a polynomial-time test to decide if a given ûnite idempotent algebra has a Maltsev
term.

In this section, we extract an additional piece of information from this approach
to testing for a Maltsev term, namely, that if a ûnite idempotent algebra has a Maltsev
term, thenwe can produce an operation table or a circuit for aMaltsev term operation
in time polynomial in the size of the algebra. We will ûrst prove that there is an algo-
rithm for producing circuits for a Maltsev function; the algorithm for producing the
operation table will then be given as a corollary. However, for the reduction presented
in Section 6, we need only the algorithm for producing a function table.

Let us ûrst brie�y describe how to get a global Maltsev operation from local ones.
Assume we know (circuits of) a local Maltsev term operation ta ,b ,c ,d(x , y, z) for each
two element subset

{((a, b), 0), ((c, d), 1)}
of A2 ×{0, 1}. hese are required forA to have aMaltsev term. A global Maltsev term
can be constructed from them in two stages. First, we construct, for each a, b ∈ A,
an operation ta ,b such that ta ,b(a, b, b) = a and ta ,b(x , x , y) = y for all x , y ∈ A.
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his is done by ûxing an enumeration (a1 , b1), (a2 , b2), . . . , (an2 , bn2) of A2 and then
deûning, for 1 ≤ j ≤ n2, the operation t ja ,b(x , y, z) on A inductively as follows:

● t1a ,b(x , y, z) = ta ,b ,a1 ,b1(x , y, z);
● for 1 ≤ j < n2, t j+1

a ,b(x , y, z) = ta ,b ,u ,v(t ja ,b(x , y, z), t
j
a ,b(y, y, z), z), where u =

t ja ,b(a j+1 , a j+1 , b j+1) and v = b j+1.

An easy inductive argument shows that t ja ,b(a, b, b) = a and t ja ,b(a i , a i , b i) = b i for
all i ≤ j ≤ n2, and so setting ta ,b(x , y, z) = tn

2

a ,b(x , y, z) works.
In the second stage, we construct a term t j(x , y, z) such that t j(a, a, b) = b for all

a, b ∈ A and t j(a i , b i , b i) = a i for all i ≤ j. We deûne this sequence of operations
inductively again:

● t1(x , y, z) = ta1 ,b1(x , y, z);
● for 1 ≤ j < n2, t j+1(x , y, z) = tu ,v(x , t j(x , y, y), t j(x , y, z)), where u = a j+1 and
v = t j(a j+1 , b j+1 , b j+1).

Again, it can be shown that for 1 ≤ j ≤ n2, the operation t j(x , y, z) satisûes the claimed
properties and so tn2(x , y, z) will be a Maltsev term operation for A.
From the above construction, one can obtain a term that represents aMaltsev term

operation of the algebra A, starting with terms representing the operations ta ,b ,c ,d .
But there is an eõciency problemwith this approach: the term is extended by one layer
in each step, which results in a term of exponential size. herefore, the bookkeeping
of this term would increase the running time of the algorithm beyond polynomial.
Nevertheless, this can be circumvented by constructing a succint representation of
the term operations, namely by considering circuits instead of terms.

Informally, a circuit over an algebraic language (as a generalization of logical cir-
cuits) is a collection of gates labeled by operation symbols, where the number of inputs
of each gate corresponds to the arity of the operation symbol. he inputs are either
connected to outputs of some other gate, or designated as inputs of the circuit; an
output of one of the gates is designated as an output of the circuit. Furthermore, these
connections allow for straightforward evaluation; i.e., there are no oriented cycles.
Formally, we deûne an n-ary circuit in the language of an algebra A as a directed

acyclic graph with possibly multiple edges that has two kinds of vertices: inputs and
gates. here are exactly n inputs, labeled by variables x1 , . . . , xn , and each of them is
a source, and a ûnite number of gates. Each gate is labeled by an operation symbol
of A; the in-degree corresponds to the arity of the operation, and the in-edges are
ordered. One of the vertices is designated as the output of the circuit. We deûne the
size of the circuit to be the number of its vertices.

he value of a circuit given an input tuple a1 , . . . , an is deûned by the following
recursive computation: he value on an input vertex labeled by x i is a i ; the value
on a gate labeled by g is the value of the operation gA applied to the values of its in-
neighbours in the speciûed order. Finally, the output value of the circuit is the value
of the output vertex. It is easy to see that the value of a circuit on a given tuple can be
computed in linear time (in the size of the circuit) in a straightforwardway. For a ûxed
circuit, the function that maps the input tuple to the output is a term function of A.
Indeed, to ûnd such a term it is enough to evaluate the circuit in the free (term) algebra
on the tuple x1 , . . . , xn . he converse is also true, since any term can be represented
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Figure 1: A succinct circuit representation of the term f (g(x , y, y), g(x , y, y), z).

as a “tree” circuit (it is an oriented tree if we omit all input vertices). Many terms can
be expressed by considerably smaller circuits. We give one such example in Figure 1.

In the proof of the theorem below, we will also use circuits with multiple outputs.
he only diòerence in the deûnition is that several vertices are designated as outputs.
Any such circuit then computes a tuple of term functions.

heorem 4.2 Let A be a ûnite idempotent algebra. here is an algorithm whose run-
time can be bounded by a polynomial in the size of A that will either (correctly) output
that A has no Maltsev term operation, or output a circuit for some Maltsev term oper-
ation of A.

Proof Let n = ∣A∣. Recall thatA has at least one basic operation of positive arity and
hence ∥A∥ ≥ n. Let m ≥ 1 be the maximal arity of an operation of A.

We construct a circuit representing a Maltsev operation in three steps: he ûrst
step produces, for each a, b, c, d from A, a circuit that computes a local Maltsev
term operation ta ,b ,c ,d as deûned near the beginning of this section; the second step
produces circuits that compute ta ,b , and the ûnal step produces a circuit for aMaltsev
operation t. We note that the algorithm can fail only in the ûrst step.
Step 1: Circuits for ta ,b ,c ,d . For each a, b, c, d, we aim to produce a circuit that com-
putes a local Maltsev term operation ta ,b ,c ,d . To do this, we consider the subuniverse
R of A2 generated by {(a, c), (b, c), (b, d)}. According to [5, Proposition 6.1] R can
be generated in time O(∥A∥2m). It is clear that A has a local Maltsev term opera-
tion ta ,b ,c ,d if and only if (a, d) ∈ R. Our algorithm produces a circuit for ta ,b ,c ,d by
generating elements of R one at a time and keeping track of circuits that witness the
membership of these elements.

More precisely, we employ a subuniverse generating algorithm to produce a se-
quence r1 = (a, c), r2 = (b, c), r3 = (b, d), r4 , . . . of elements ofR (in timeO(∥A∥2m))
such that each rk+1, for k ≥ 3, is obtained from r1 , . . . , rk by a single application of an
operation f of A2. Our algorithm will also produce a sequence of ternary circuits
C3
a ,b ,c ,d ⊆ C4

a ,b ,c ,d ⊆ ⋅ ⋅ ⋅ such that each Ck
a ,b ,c ,d has k outputs, and the values of Ck

a ,b ,c ,d
on r1 , r2 , r3 give r1 , . . . , rk . We deûne C3

a ,b ,c ,d to be the circuit with no gates, and out-
puts x1 , x2 , x3. he circuit Ck+1

a ,b ,c ,d is deûned inductively from Ck
a ,b ,c ,d : Consider an

operation f and r i1 , . . . , r ip with i j ≤ k such that rk+1 = f (r i1 , . . . , r ip); add a gate
labeled f to Ck

a ,b ,c ,d connecting its inputs with the outputs of Ck
a ,b ,c ,d numbered by i j

for j = 1, . . . , p. We designate the output of this gate as the (k+1)-st output of Ck+1
a ,b ,c ,d .

It is straightforward to check that the circuits Ck
a ,b ,c ,d satisfy the requirements. We

also note that the size of Ck
a ,b ,c ,d is exactly k. We stop this inductive construction at
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Figure 2: Recursive deûnition of circuit C j+1
a ,b .

some step k if rk = (a, d), in which case we produce the circuit Ca ,b ,c ,d from Ck
a ,b ,c ,d

by indicating a single output to be the k-th output of Ck
a ,b ,c ,d . If, on the other hand,

we have generated all of R without producing (a, d) at any step then the algorithm
halts and outputs that A does not have a Maltsev term operation. he soundness of
our algorithm follows from the fact thatA has a local Maltsev term ta ,b ,c ,d if and only
if (a, d) ∈ R and that A has a Maltsev term if and only if it has local Maltsev terms
ta ,b ,c ,d for all a, b, c, d ∈ A. he algorithm produces circuits of size O(n2) and spends
most of its time generating new elements of R; generating each Ca ,b ,c ,d takes time
O(∥A∥2m), making the total time complexity of Step 1 to be O(∥A∥2mn4).

Step 2: Circuits for ta ,b . At this point we assume that the functions ta ,b ,c ,d are part of
the signature. It is clear that the full circuit can be obtained by substituting the circuits
Ca ,b ,c ,d for gates labeled by ta ,b ,c ,d , and this can still be done in polynomial time.

Our task is to obtain a circuit for ta ,b . We do this by inductively constructing
circuits C j

a ,b that compute two values of the terms t ja ,b , namely t ja ,b(x , y, z) and t ja ,b
(y, y, z). Starting with j = 0 and t0(x , y, z) = x, we deûne C0

a ,b to be the circuit with
no gates and outputs x , y. Further, we deûne circuit C j+1

a ,b inductively from C j
a ,b by

adding two gates labeled by ta ,b ,u ,v , where u = t ja ,b(a j+1 , a j+1 , b j+1) and v = b j+1: the
ûrst gate has as inputs the two outputs of C j

a ,b and z; the second gate has as inputs two
copies of the second output of C j

a ,b and z. See Figure 2 for a graphical representation.
Again, it is straightforward to check that these circuits have the required properties.
Also note that the size of C j

a ,b is bounded by 2 j + 3, which is a polynomial. he ûnal
circuit Ca ,b computing ta ,b is obtained from Cn2

a ,b by designating the ûrst output of
Cn2

a ,b to be the only output of Ca ,b . Once we have ta ,b ,c ,d in the signature, this process
will run in time O(n2).
Step 3: Circuit for aMaltsev term. Again, we assume that ta ,b are basic operations, and
construct circuitsC j computing two values t j(x , y, y) and t j(x , y, z) of t j inductively.
he proof is analogous to Step 2, with the only diòerence being that we use Figure 3
for the inductive deûnition. Again, the time complexity is O(n2).
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Figure 3: Recursive deûnition of circuit C j+1 .

Each step runs in time polynomial in ∥A∥ (the time complexity is dominated by
Step 1) and outputs a polynomial size circuit. his also implies that expanding the
gates according to their deûnitions in Steps 2 and 3 can be done in polynomial time;
the ûnal size of the output circuit will be bounded by O(n6). ∎

Corollary 4.3 Let A be a ûnite idempotent algebra. here is an algorithm whose
runtime can be bounded by a polynomial in the size of A that will produce the table of
some Maltsev term operation of A, should one exist.

Proof he polynomial-time algorithm is as follows. First, generate a polynomial
size circuit for some Maltsev term operation of A. his can be done in polynomial
time by the above theorem. Second, evaluate this circuit at all ∣A∣3 possible inputs.
he second step runs in polynomial time, since evaluation of a circuit is linear in the
size of the circuit. ∎

We note that there is also a more straightforward algorithm for producing the op-
eration table of a Maltsev term, which follows the circuit construction but instead of
circuits, it remembers the tables for each of the relevant term operations.

5 Local Minority Terms

In contrast to the situation for Maltsev terms highlighted in the previous section, we
will show that having plenty of “local” minority terms does not guarantee that a ûnite
idempotent algebra will have a minority term. One consequence of this is that an
approach along the lines in [7,8,13] to ûnding an eõcient algorithm to decide if a ûnite
idempotent algebra has a minority term will not work.

In this section, we will construct for each odd natural number n > 2 a ûnite idem-
potent algebra An with the following properties: he universe of An has size 4n, and
An does not have a minority term, but for every subset E of An of size n − 1, there is
a term of An that acts as a minority term on the elements of E.

We start our construction by ûxing some odd n > 2 and some minority operation
m on the set [n] = {1, 2, . . . , n}. To make things concrete, we set
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m(x , y, z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x y = z,
y x = z,
z else,

but note that any minority operation on [n] will do.
Since there are two nonisomorphic groups of order 4, we have two diòerent natural

group operations on {0, 1, 2, 3}: addition modulo 4, which we will denote by “+” (its
inverse is “−”), and bitwise XOR, which we denote by “⊕”; we view each element as
a 2-bit number including leading zeros, i.e., 1 as 01, and hence 1⊕ 3 = 2. hroughout
this section, we will use arithmetic modulo 4, e.g., 6x = x + x, for all expressions
except those in indices.

he construction relies on similarities and subtle diòerences of the two group struc-
tures, and the derivedMaltsev operations, x−y+z and x⊕y⊕z. Both these operations
share a congruence ≡2 that is given by taking the remainder modulo 2. We note that
x ≡2 y if and only if 2x = 2y if and only if the second bits of x and y agree.

Observation 5.1 Let x , y, z ∈ {0, 1, 2, 3}. hen

(x ⊕ y ⊕ z) − (x − y + z) ∈ {0, 2},
and moreover, the result depends only on the classes of x, y, and z in the congruence ≡2
(i.e., the second bits of x, y, and z).

Proof Both Maltsev operations agree modulo ≡2, hence the diòerence lies in the
≡2-class of 0.

To see the second part, it is enough to observe that x ⊕ 2 = x + 2 = x − 2 for all x.
Hence changing, say x to x′ = x ⊕ 2 simply �ips the ûrst bits of both x ⊕ y ⊕ z and
x − y + z, keeping the diòerence the same. ∎

Deûnition 5.2 Let An = [n] × [4]. For i ∈ [n], we deûne t i(x , y, z) to be the
following operation on An :

t i((a1 , b1), (a2 , b2), (a3 , b3)) =
⎧⎪⎪⎨⎪⎪⎩

(i , b1 − b2 + b3) if a1 = a2 = a3 = i,
(m(a1 , a2 , a3), b1 ⊕ b2 ⊕ b3) otherwise.

he algebra An is deûned to be the algebra with universe An and basic operations
t1 , . . . , tn .

By construction, the following is true.

Claim 5.3 For every (n − 1)-element subset E of An , there is a term operation of An
that satisûes the minority term equations when restricted to elements from E.

Proof Pick i ∈ [n] such that no element of E has its ûrst coordinate equal to i; the
operation t i is a local minority term operation for this E. ∎

Proposition 5.4 For n > 1 and odd, the algebra An does not have a minority term.
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Proof Given some (i , a) ∈ An , we will refer to a as the arithmetic part of (i , a). his
is to avoid talking about “second coordinates” in the confusing situation when (i , a)
itself is a part of a tuple of elements of An .

To prove the proposition, wewill deûne a certain subuniverse R of (An)3n and then
show that R is not closed under any minority operation on An (applied coordinate-
wise). We will write 3n-tuples of elements of An as 3n × 2 matrices, where the arith-
metic parts of the elements make up the second column.

Let R ⊆ (An)3n be the set of all 3n-tuples of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 x1
2 x2
⋮
n xn
1 xn+1
2 xn+2
⋮
n x2n
1 x2n+1
2 x2n+2
⋮
n x3n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

such that
xkn+1 ≡2 xkn+2 ≡2 ⋅ ⋅ ⋅ ≡2 xkn+n , for k = 0, 1, 2, and(5.1)
3n

∑
i=1

x i = 2.(5.2)

he three equations from (5.1) mean that the second bits of the arithmetic parts of the
ûrst n entries agree and similarly for the second and the last n entries; equation (5.2)
can be viewed as a combined parity check on all involved bits.

Claim 5.5 he relation R is a subuniverse of (An)3n .

Proof By the symmetry of the t i ’s and R, it is enough to show that t1 preserves R.
Let us take three arbitrary members of R,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 x1,1
2 x1,2
⋮
n x1,n
1 x1,n+1
2 x1,n+2
⋮
n x1,2n
1 x1,2n+1
2 x1,2n+2
⋮
n x1,3n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 x2,1
2 x2,2
⋮
n x2,n
1 x2,n+1
2 x2,n+2
⋮
n x2,2n
1 x2,2n+1
2 x2,2n+2
⋮
n x2,3n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 x3,1
2 x3,2
⋮
n x3,n
1 x3,n+1
2 x3,n+2
⋮
n x3,2n
1 x3,2n+1
2 x3,2n+2
⋮
n x3,3n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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and apply t1 to them to get

(5.3) r⃗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 x1,1 − x2,1 + x3,1
2 x1,2 ⊕ x2,2 ⊕ x3,2

⋮
n x1,n ⊕ x2,n ⊕ x3,n
1 x1,n+1 − x2,n+1 + x3,n+1
2 x1,n+2 ⊕ x2,n+2 ⊕ x3,n+2

⋮
n x1,2n ⊕ x2,2n ⊕ x3,2n
1 x1,2n+1 − x2,2n+1 + x3,2n+1
2 x1,2n+2 ⊕ x2,2n+2 ⊕ x3,2n+2

⋮
n x1,3n ⊕ x2,3n ⊕ x3,3n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We want to verify that r⃗ ∈ R. First note that (5.1) is satisûed: his follows from the fact
that x − y + z and x ⊕ y ⊕ z give the same result modulo 2, and the assumption that
the original three tuples satisûed (5.1).

What remains is to verify property (5.2). If in equality (5.3) we replace the opera-
tions ⊕ by − and +, verifying (5.2) is easy; the sum of the arithmetic parts of such a
modiûed tuple is

(5.4)
3n

∑
j=1

(x1, j − x2, j + x3, j) =
3n

∑
j=1

x1, j −
3n

∑
j=1

x2, j +
3n

∑
j=1

x3, j = 2 − 2 + 2 = 2.

his is whywe need to examine the diòerence between the⊕-based and+-basedMalt-
sev operations. For k ∈ {0, 1, 2} and i ∈ {1, . . . , n} we let

ck , i = (x1,kn+i ⊕ x2,kn+i ⊕ x3,kn+i) − (x1,kn+i − x2,kn+i + x3,kn+i).

By the second part of Observation 5.1, ck , i does not depend on i (changing i does not
change the x j ,kn+i ’s modulo ≡2 by condition (5.1) in the deûnition of R). Hence, we
can write just ck instead of ck , i .

Using c0, c1, and c2 to adjust for the diòerences between the two Maltsev opera-
tions, we can express the sum of the arithmetic parts of the tuple r⃗ as

3n

∑
j=1

(x1, j − x2, j + x3, j) +
n

∑
i=2
c0 +

n

∑
i=2
c1 +

n

∑
i=2
c2 = 2 + (n − 1)(c0 + c1 + c2),

where we used (5.4) to get the right-hand side. We chose n odd; hence, n − 1 is even
and each ck is even by Observation 5.1, so (n− 1)ck = 0 for any k = 0, 1, 2. We see that
the sum of the arithmetic parts of r⃗ is equal to 2 which concludes the proof of (5.2)
for the tuple r⃗ and we are done. ∎
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It is easy to see that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
2 0
⋮
n 0
1 1
2 1
⋮
n 1
1 1
2 1
⋮
n 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1
2 1
⋮
n 1
1 0
2 0
⋮
n 0
1 1
2 1
⋮
n 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1
2 1
⋮
n 1
1 1
2 1
⋮
n 1
1 0
2 0
⋮
n 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ R and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
2 0
⋮
n 0
1 0
2 0
⋮
n 0
1 0
2 0
⋮
n 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∉ R.

However, the last tuple can be obtained from the ûrst three by applying any minority
operation on the set An coordinate-wise. From this we conclude that An does not
have a minority term. ∎

Wenote that the above construction ofAn makes sense for n even as well and claim
that these algebras also have the same key features, namely, by construction, they have
plenty of “local” minority term operations, but they do not have minority terms. he
veriûcation of this last fact for n even is similar, but slightly more technical than for n
odd, and we omit the proof here.

he algebras An can also be used to witness that having a lot of local minority-
majority terms does not guarantee the presence of an actual minority-majority term.
By padding with dummy variables, any local minority term of an algebra An is also
a term that locally satisûes the minority-majority term equations. But since each An
has a Maltsev term but not a minority term, then by heorem 3.2, it follows that An
cannot have a minority-majority term.

6 Deciding Minority in Idempotent Algebras is in NP

he results from the previous section imply that one cannot base an eõcient test for
the presence of a minority term in a ûnite idempotent algebra on checking if it has
enough local minority terms. his does not rule out that the problem is in the class P,
but to date no other approach to showing this has worked. As an intermediate result,
we show, at least, that this decision problem is in NP and so cannot be EXPTIME-
complete (unless NP = EXPTIME).

We ûrst show that an instance A of the decision problem MinorityId can be ex-
pressed as a particular instance of the subpower membership problem for A.

Deûnition 6.1 Given a ûnite algebra A, the subpower membership problem for A,
denoted by SMP(A), is the following decision problem:

● INPUT: a⃗1 , . . . , a⃗k , b⃗ ∈ An

● QUESTION: Is b⃗ in the subalgebra of An generated by {a⃗1 , . . . , a⃗k}?
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To build an instance of SMP(A) expressing that A has a minority term, let I =
{(a, b, c) ∣ a, b, c ∈ A and ∣{a, b, c}∣ ≤ 2}. So ∣I∣ = 3∣A∣2 − 2∣A∣. For (a, b, c) ∈ I, let
min(a, b, c) be the minority element of this triple. So

min(a, b, b) = min(b, a, b) = min(b, b, a) = min(a, a, a) = a.

For 1 ≤ i ≤ 3, let π⃗ i ∈ AI be deûned by π⃗ i(a1 , a2 , a3) = a i and deûne µ⃗A ∈ AI by
µ⃗A(a1 , a2 , a3) = min(a1 , a2 , a3), for all (a1 , a2 , a3) ∈ I. Denote the instance π⃗1, π⃗2,
π⃗3, and µ⃗A of SMP(A) by min(A).

Proposition 6.2 An algebraA has aminority term if and only if µ⃗A is amember of the
subpower of AI generated by {π⃗1 , π⃗2 , π⃗3}, i.e., if and only ifmin(A) is a “yes” instance
of SMP(A) when A is ûnite.

Proof Ifm(x , y, z) is a minority term for A, then applying m coordinatewise to the
generators π⃗1, π⃗2, π⃗3 will produce the element µ⃗A. Conversely, any term that produces
µ⃗A from these generators will be a minority term for A. ∎

Examining the deûnition of min(A), we see that the parameters from Deûni-
tion 6.1 are k = 3 and n = 3∣A∣2 − 2∣A∣, which is (for algebras with at least one at
least unary basic operation) polynomial in ∥A∥. ForA idempotent, we can in fact im-
prove n to 3∣A∣2 − 3∣A∣, since we do not then need to include in I entries of the form
(a, a, a).

In general, it is known that for some ûnite algebras the subpower membership
problem can be EXPTIME-complete [10] and that for some others; e.g., for any al-
gebra that has only trivial or constant basic operations, it lies in the class P. In [11],
P. Mayr shows that when A has a Maltsev term, SMP(A) is in NP. We claim that a
careful reading of Mayr’s proof reveals that, in fact, the following uniform version of
the subpower membership problem, where the algebra A is considered as part of the
input, is also in NP.

Deûnition 6.3 Deûne SMPUn to be the following decision problem:
● INPUT:A list of tables of basic operations of an algebraA that includes aMaltsev

operation, and a⃗1 , . . . , a⃗k , b⃗ ∈ An .
● QUESTION: Is b⃗ in the subalgebra of An generated by {a⃗1 , . . . , a⃗k}?

We base the main result of this section on the following theorem.

heorem 6.4 (see [11]) he decision problem SMPUn is in the classNP.

While this theorem is not explicitly stated in [11], it can be seen that the runtime
of the veriûer that Mayr constructs for the problem SMP(A), when A has a Maltsev
term, has polynomial dependence on the size of A in addition to the size of the input
to SMP(A). We stress that Mayr’s veriûer requires that the table for a Maltsev term
of A is given as part of the description of A.

heorem 6.5 he decision problem MinorityId is in the classNP.
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Proof To prove this theorem, we provide a polynomial reduction f of MinorityId

to SMPUn. By heorem 6.4, this will suõce. Let A be an instance ofMinorityId, i.e.,
a ûnite idempotent algebra that has at least one operation.

We ûrst check, using the polynomial-time algorithm from Corollary 4.3, to see
if A has a Maltsev term. If it does not, then A will not have a minority term, and
in this case we set f (A) to be some ûxed “no” instance of SMPUn. Otherwise, we
augment the list of basic operations of A by adding the Maltsev operation on A that
the algorithm produced. Denote the resulting (idempotent) algebra by A′ and note
that A′ can be constructed from A by a polynomial-time algorithm. Also, note that
A′ is term equivalent toA, and so the subpower membership problem is the same for
both algebras.

If we set f (A) to be the instance of SMPUn that consists of the list of tables of basic
operations of A′ along with min(A), then we have, by Proposition 6.2, that f (A) is a
“yes” instance of SMPUn if and only if A has a minority term. Since the construction
of f (A) can be carried out by a procedure whose runtime can be bounded by a poly-
nomial in ∥A∥, we have produced a polynomial reduction ofMinorityId to SMPUn, as
required. ∎

7 Conclusion

While heorem 6.5 establishes that testing for a minority term for ûnite idempotent
algebras is not as hard as it could be, the true complexity of this decision problem
is still open. Our proof of this theorem closely ties the complexity of MinorityId to
the complexity of the subpower membership problem for ûnite Maltsev algebras and
speciûcally to the problem SMPUn. hus, any progress on determining the complex-
ity of SMP(A) for ûnite Maltsev algebras may have a bearing on the complexity of
MinorityId. here has certainly been progress on the algorithmic side of SMP; a ma-
jor recent paper has shown in particular that SMP(A) is tractable forAwith cube term
operations (of which aMaltsev term operation is a special case) as long asA generates
a residually small variety [2] (the statement from the paper is actually stronger than
this, allowing multiple algebras in place of A).

In Section 3we introduced the notion of aminority-majority term and showed that
if testing for such a term for ûnite idempotent algebras could be done by a polynomial-
time algorithm, then MinorityId would lie in the complexity class P. his is why we
conclude our paper with a question about deciding minority-majority terms.

Open problem What is the complexity of deciding if a ûnite idempotent algebra
has a minority-majority term?
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