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Abstract. This paper investigates the computational complexity
of deciding if a given finite algebra is an expansion of a semilattice.
In general this problem is known to be EXP-TIME complete, and
we show that even for idempotent algebras, this problem remains
hard. This result is in contrast to a series of results that show that
similar decision problems turn out to be tractable.

1. Introduction

In this paper we investigate the computational complexity of decid-
ing if a given finite algebra is an expansion of a semilattice. That is,
the problem of deciding if an algebra has a binary term operation x∧y
such that the following equations hold:

x ∧ x ≈ x,

x ∧ y ≈ y ∧ x,
x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z.

This type of existential condition on the set of term operations of an
algebra is known as a strong Maltsev condition. Maltsev conditions
play a central role in the classification of algebraic structures and the
equational classes that they determine, and have been studied inten-
sively over the past several decades [8, 12]. More recently, attention has
been given to computational issues related to Maltsev conditions and
deep connections with well-studied combinatorial problems have been
developed [2]. In some instances, efficient polynomial-time algorithms
for deciding if a given Maltsev condition is satisfied by a finite algebra
have been found and implemented [6, 7, 14].

To simplify the exposition, we will use the following as a working
definition of a strong Maltsev condition.
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Definition 1.1. A strong Maltsev condition Σ consists of a finite se-
quence of function symbols d1, . . . , dk and a finite set of equations in-
volving them. An algebra A satisfies Σ if it has a sequence of term
operations f1, . . . , fk, with the arity of fi equal to the arity of di, for
1 ≤ i ≤ k, such that the given equations are satisfied by A after
substituting fi for di, for 1 ≤ i ≤ k.

So the property of having a binary term that satisfies the semilattice
equations is an example of a strong Maltsev condition.

Example 1.2. The strong Maltsev condition CD(4) consists of three
ternary function symbols d1, d2, d3 along with the equations:

d1(x, x, y) ≈ x,

d1(x, y, y) ≈ d2(x, y, y),

d2(x, x, y) ≈ d3(x, x, y),

d3(x, y, y) ≈ y,

di(x, y, x) ≈ x, for i = 1, 2, 3

In [1] it is shown that if L = 〈L,∧,∨〉 is a lattice, then the algebra
〈L, x∧ (y∨ z)〉 satisfies CD(4). In [10] Jónsson shows that if an algebra
A satisfies this condition then it generates a variety that is congruence
distributive. In [7] it is shown that deciding if a given finite algebra
satisfies CD(4) is EXP-TIME complete, while in [11] it is shown that
for finite idempotent algebras, there is a polynomial-time algorithm to
decide it.

This example is typical in that it turns out that for many familiar
strong Maltsev conditions, deciding if a finite algebra satisfies it is an
EXP-TIME complete problem [7, 9]. On the other hand when restricted
to finite idempotent algebras the decision problems become tractable
[7, 9, 11].

Note that if Σ is a strong Maltsev condition, then there will always
be an EXP-TIME algorithm to decide if a given finite algebra A satisfies
it. One need only construct the set of at most n-ary term operations
of A, where n is the largest arity of the function symbols that appear
in Σ, and check to see if there are term operations in this set that
can be used to witness Σ. For a fixed n, this set of operations can be
constructed by an algorithm whose run time can be bounded by an
exponential function in the size of A.

The types of strong Maltsev conditions for which complexity results
have been obtained satisfy two additional conditions: idempotency and
linearity. An operation f(x̄) on a set A is idempotent if f(a, a, . . . , a) =
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a for all a ∈ A. An algebra is idempotent if all of its term operations
are, and a strong Maltsev condition Σ is idempotent if its equations
imply that all of the associated operations are idempotent. A strong
Maltsev condition is linear if its equations do not involve compositions
of operations. So, the strong Maltsev condition of having a semilattice
term operation is idempotent but not linear, while the condition CD(4)
is both idempotent and linear.

It is natural to wonder whether the condition of having a semilat-
tice term operation is equivalent to a linear strong Maltsev condition.
Using the criterion from Theorem 2.1 of [13] it can be shown, with-
out too much effort, that it is not. We note that this result has been
independently observed by several researchers.

In [11] it is conjectured that if Σ is a strong, idempotent, linear
Maltsev condition then there is a polynomial time algorithm to decide
if a finite idempotent algebra satisfies it. In that paper, and also in [14],
the polynomial-time algorithms produced involve checking if there are
enough “local versions” of the terms from Σ. It is shown that for certain
types of Maltsev conditions, this will imply the satisfaction of Σ.

Example 1.3. A Maltsev term operation for an algebra A is a term
operation p(x, y, z) that satisfies the equations

p(y, x, x) ≈ y and p(x, x, y) ≈ y.

In [9] it is shown that a finite idempotent algebra A will have a Maltsev
term operation if and only if for every set of elements S = {a, b, c, d} ⊆
A there is a term operation pS(x, y, z) such that a = pS(a, b, b) and
pS(c, c, d) = d. So, to decide if A has a Maltsev term operation, one
need only check, for each 4 element subset S of A, if a term operation
pS as above exists. This is equivalent to checking if the pair (a, d) is
in the subuniverse of A2 generated by {(a, c), (b, c), (b, d)}. By [7], this
test can be carried out by an algorithm whose run-time can be bounded
by a polynomial in the size of A.

In the next section we will show that no such local term testing
algorithm can exist for deciding if a finite idempotent algebra has a
semilattice term operation, while in Section 3 we show that testing for
a flat semilattice term operation can be accomplished in this manner.
In Section 4, we prove that there is no polynomial-time algorithm of
any type to decide if a finite idempotent algebra has a semilattice term
operation, and in fact show that this problem is EXP-TIME complete.

For background on the basic algebraic notions mentioned in this
work, the reader may consult [5] or [3].
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2. Local semilattice term operations

In this section we show that it is not sufficient for a finite idempotent
algebra to have enough term operations that act locally as semilattice
operations in order to conclude that it has an actual semilattice term
operation. For each n > 2 we present a finite idempotent algebra An

that does not have a semilattice term operation but such that for each
subset of size n − 1 there is a term operation that when restricted to
the subset satisfies the semilattice equations.

The existence of such a family of finite idempotent algebras rules out
the possibility of there being a polynomial time algorithm for deciding
if a finite idempotent algebra has a semilattice term operation that is
based on checking for enough local semilattice term operations. This is
in contrast to the situation for many strong, idempotent, linear Maltsev
conditions [7, 11].

For integers n and i with 0 ≤ i < n, define bi(x, y) to be the following
operation on the set {0, 1, 2, . . . , n− 1}:

bi(x, y) =

{
i if {x, y} = {i− 1, i}
maxi(x, y) otherwise

where the operation maxi(x, y) selects the largest of the two elements
x and y with respect to the linear order

i < i+ 1 < · · · < n− 1 < 0 < 1 · · · < i− 1.

In the case i = 0, i − 1 is set to n − 1 in the above. Note that bi is a
commutative idempotent operation. In fact it is conservative: bi(x, y) ∈
{x, y} for all x, y. Further, the restriction of bi to {0, 1, . . . , n−1}\{i}
(or to {0, 1, . . . , n− 1}\{i− 1}) is a semilattice operation with respect
to the maxi linear order.

For n > 2, define An to be the algebra with universe {0, 1, 2, . . . , n−
1} with basic operations b0, b1, . . . , bn−1. Then by construction An is
an idempotent algebra such that for every subset S of size n− 1 there
is a binary term operation of An whose restriction to S is a semilattice
operation.

In fact An is a conservative algebra: if f(x1, . . . , xk) is a term oper-
ation of An then f(a1, . . . , ak) ∈ {a1, . . . , ak} for all ai ∈ A.

We show that in spite of having plenty of “local” semilattice term
operations, the algebra An does not have a semilattice term operation.
This result is a consequence of the following lemma.

Lemma 2.1. Let n > 2 and b(x, y) a binary term of An. If bAn(x, y)
is not equal to one of the binary projection maps π1(x, y) or π2(x, y)
then bAn(i, i+ 1) = i+ 1 mod n for all 0 ≤ i < n.
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Proof. We prove this by induction on the length of the term b(x, y).
If b is just a projection term, there is nothing to prove. So, we may
assume that b(x, y) = bi(s1(x, y), s2(x, y)) for some i and some shorter
binary terms s1 and s2. By symmetry, we may assume that i = 0. If
sAn
1 and sAn

2 are both projection operations, then bAn(x, y) is equal to
one of the operations b0(x, x) = x, b0(y, y) = y, which are both binary
projection operations, or to b0(x, y). In the latter case, it can be readily
seen that b0(i, i+ 1) = i+ 1 mod n for all i.

If one of sAn
1 (x, y) or sAn

2 (x, y) is not a projection operation, then
since b0 is commutative, we may assume that sAn

2 (x, y) is not a pro-
jection. Then by induction, for any i, sAn

2 (i, i + 1) = i + 1 mod n
and so bAn(i, i + 1) is equal to b0(i, i + 1) = i + 1 mod n, or to
b0(i + 1, i + 1) = i + 1 mod n (since sAn

i is a conservative operation).
Thus, in all cases we have shown that bAn(i, i+ 1) = i+ 1. �

Theorem 2.2. For any n > 2, the algebra An does not have a semi-
lattice term operation.

Proof. If x ∧ y is a semilattice term operation of An, then it is not a
projection operation and so from the previous lemma we know that
i∧ (i+ 1) = i+ 1 mod n for all i. In terms of the semilattice ordering
determined by the operation ∧, this translates to i > i + 1 mod n.
Applying transitivity and using that we are operating modulo n, we
reach the contradiction that 0 > 0. �

3. Flat semilattices

In this section we show that there is a polynomial-time algorithm
to determine if a given finite idempotent algebra has a flat semilattice
term operation, i.e., a binary term operation b(x0, x1) and an element
0 ∈ A such that b(a, a) = a for all a ∈ A and b(a, a′) = 0 for all a,
a′ ∈ A with a 6= a′. The element 0 is called an absorbing element for
the operation b. This is in contrast to the non-idempotent case. In [7]
it is shown that in general, testing for such a binary term in a finite
algebra is an EXP-TIME complete problem.

We first show that there is a polynomial-time algorithm to determine,
given a finite idempotent algebra A and an element 0 ∈ A, if there is
a binary term operation b(x0, x1) of A such that b(0, a) = b(a, 0) = 0
for all a ∈ A.

Definition 3.1. Let A be a finite idempotent algebra and let 0, u,
v ∈ A. For any S ⊆ A× {0,1}, we say that a term operation b(x0, x1)
of A is local for S and (u, v) if:

• b(a, 0) = 0 whenever (a,0) ∈ S,



6 RALPH FREESE, J.B. NATION, AND MATT VALERIOTE

• b(0, a) = 0 whenever (a,1) ∈ S, and
• b(u, v) = 0.

Lemma 3.2. Let A be a finite idempotent algebra and let 0 ∈ A. Then
for all (u, v) ∈ A2 with u 6= v, A has a binary term operation b(u,v)(x, y)
such that for all a ∈ A,

b(u,v)(0, a) = b(u,v)(a, 0) = b(u,v)(u, v) = 0

if and only if for each (a0, a1), (c, d) ∈ A2 with c 6= d, A has a term
operation b(x0, x1) that is local for {(a0,0), (a1,1)} and (c, d).

Proof. Suppose that for all (u, v) ∈ A2 with u 6= v, A has a binary
term operation b(u,v)(x, y) such that for all a ∈ A,

b(u,v)(0, a) = b(u,v)(a, 0) = b(u,v)(u, v) = 0.

Then for any (a0, a1), (c, d) ∈ A2 with c 6= d, the term b(c,d)(x0, x1) is
local for {(a0,0), (a1,1)} and (c, d) since it is local for A× {0,1} and
(c, d).

Conversely, suppose that for each (a0, a1), (c, d) ∈ A2 with c 6= d,
A has a term operation b(x0, x1) that is local for {(a0,0), (a1,1)} and
(c, d). We will prove by induction on the size of S ⊆ A× {0,1}, that

for any (c, d) ∈ A2, with c 6= d, A has a term operation
that is local for S and (c, d).

By assumption, this condition holds when |S| = 1.
Suppose that |S| > 1 and assume that the condition holds for all

sets that are smaller in size than S. If S is of the form {(a0,0), (a1,1)}
for some elements a0, a1 ∈ A then by assumption the condition holds
for S. Otherwise, there must be elements a, a′ ∈ A such that a 6= a′

and either {(a,0), (a′,0)} ⊆ S or {(a,1), (a′,1)} ⊆ S. Without loss of
generality, we may assume that the former holds. Let S ′ = S \ {(a,0)}
and let b′(x0, x1) be a term operation of A that is local for S ′ and (c, d).
Let b(x0, x1) be a term operation of A that is local for the set

{(w,1) | (w,1) ∈ S} ∪ {(b′(a, 0),0)}
and the pair (0, d). By our induction hypothesis, the term operations
b′ and b are guaranteed to exist.

Let t(x0, x1) = b(b′(x0, x1), x1). We claim that t is local for S and
(c, d). To see this, let (w,1) ∈ S. Then

t(0, w) = b(b′(0, w), w) = b(0, w) = 0,

since both b and b′ are local for {(w,1)}. If (w,0) ∈ S with w 6= a,
then

t(w, 0) = b(b′(w, 0), 0) = b(0, 0) = 0,
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since b′ is local for {(w,0)} and b is idempotent. Finally,

t(a, 0) = b(b′(a, 0), 0) = 0

and
t(c, d) = b(b′(c, d), d) = b(0, d) = 0,

since b′ is local for (c, d) and b is local for {(b′(a, 0),0)} and (0, d).
By induction, we can conclude that for any (u, v) ∈ A2 with u 6= v,

A has a binary term operation b(u,v)(x0, x1) that is local for A×{0,1},
i.e., that for all a ∈ A,

b(u,v)(0, a) = b(u,v)(a, 0) = b(u,v)(u, v) = 0.

�

Corollary 3.3. The problem of deciding, given a finite idempotent
algebra A and an element 0 ∈ A, if for all (u, v) ∈ A2 with u 6= v, A
has a binary term operation b(u,v)(x, y) such that for all a ∈ A,

b(u,v)(0, a) = b(u,v)(a, 0) = b(u,v)(u, v) = 0

is in the complexity class P.

Proof. Given idempotent A and 0 ∈ A, to determine if such term
operations exist we need only verify the local condition of the previous
Lemma. That is, we need to check, given two elements (a0,0) and
(a1,1) from A × {0,1} and some pair (c, d) from A2 with c 6= d, that
there is a binary term operation b(x0, x1) of A such that b(a0, 0) = 0,
b(0, a1) = 0, and b(c, d) = 0. This amounts to checking, for each a0, a1,
c, d ∈ A that the tuple (0, 0, 0) lies in the subuniverse of A3 generated
by {(a0, 0, c), (0, a1, d)}. By [7] we know that this can be carried out
via an algorithm that runs in time bounded by a polynomial in the size
of A. �

Theorem 3.4. The problem of deciding, given a finite idempotent al-
gebra A, whether or not it has a flat semilattice term operation, is in
P.

Proof. We will show that A will have such a term operation, with 0 ∈ A
as its absorbing element, if and only if for each (u, v) ∈ A2 with u 6= v
there is a term operation b(u,v)(x0, x1) of A such that for all a ∈ A,

b(u,v)(0, a) = b(u,v)(a, 0) = b(u,v)(u, v) = 0.

Of course, if A has a flat semilattice term operation b(x0, x1) with
absorbing element 0 then this condition can be seen to hold by setting
b(u,v)(x0, x1) = b(x0, x1) for all (u, v) ∈ A2 with u 6= v.

Conversely, assuming that the above condition holds, we will show
by induction on the size of S ⊆ A2 \ {(a, a) | a ∈ A} that A has a term
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operation bS(x0, x1) such that bS(0, a) = bS(a, 0) = 0 for all a ∈ A and
bS(u, v) = 0 for all (u, v) ∈ S.

By assumption this condition holds for any S with |S| = 1. Suppose
that |S| > 1 and assume that the condition holds for all sets that are
smaller in size than S. We can write S as S ′∪{(u, v)} for some S ′ ⊂ S
and u 6= v ∈ A with (u, v) /∈ S ′.

Let bS′(x0, x1) be a term operation of A that satisfies the condition
for the set S ′ and let b(u,v)(x0, x1) be a term operation that satisfies the
condition for the set {(u, v)}. By the induction hypothesis bS′ exists
and by assumption b(u,v) exists. Let

b(x0, x1) = bS′(bS′(x0, x1), b(u,v)(x0, x1)).

Then for (c, d) ∈ S ′,
b(c, d) = bS′(bS′(c, d), b(u,v)(c, d)) = bS′(0, b(u,v)(c, d)) = 0,

and

b(u, v) = bS′(bS′(u, v), b(u,v)(u, v)) = bS′(bS′(u, v), 0) = 0.

Finally, for a ∈ A,

b(0, a) = bS′(bS′(0, a), b(u,v)(0, a)) = bS′(0, 0) = 0

and
b(a, 0) = bS′(bS′(a, 0), b(u,v)(a, 0)) = bS′(0, 0) = 0.

By induction we can conclude that A will have a binary term oper-
ation that satisfies the condition for S = A2 \ {(a, a) | a ∈ A}. Such an
operation is a flat semilattice operation on A with absorbing element
0.

We can now use Corollary 3.3 to show that there is a polynomial time
algorithm to determine, for a given 0 ∈ A, if A has a flat semilattice
term operation with absorbing element 0. To determine if A has such
an operation for some 0 ∈ A, we need only run this algorithm at most
|A| times. �

4. A hardness result

In this section we show that the problem of deciding if a finite idem-
potent algebra has a semilattice term operation is EXP-TIME complete.
We first show that the following decision problem is EXP-TIME com-
plete:

BOUNDED-SEMILATTICE: Given a finite idempotent algebra A and
element 1 ∈ A, is there a binary term operation x ∧ y of A such
that 〈A,∧, 1〉 is a bounded semilattice, i.e., 〈A,∧〉 is a semilattice and
a ∧ 1 = 1 ∧ a = a for all a ∈ A?
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Our proof of the hardness of BOUNDED-SEMILATTICE will actually
show that the problem of deciding whether a given finite idempotent
algebra has an element 1 and a binary term operation b(x, y) such that
b(x, 1) = b(1, x) = x holds for all elements x is an EXP-TIME complete
problem.

To obtain our result, we reduce the clone membership problem to
BOUNDED-SEMILATTICE. From [4] and [7] we know that the following
version of clone membership is EXP-TIME complete.

GEN-CLO′: Given a finite set A, a finite set of operations F on A and
a unary operation h on A, is h in the clone on A generated by F?

Theorem 4.1. The problem BOUNDED-SEMILATTICE is EXP-TIME
complete.

Proof. We prove this theorem by reducing GEN-CLO′ to BOUNDED-
SEMILATTICE. Let 〈A,F , h(x)〉 be an instance of GEN-CLO′ and let
A′ = A∪{0, 1} for two distinct elements 0, 1 that are not in A. Without
loss of generality, we may assume that F contains the unary identity
function on A. Let ≤ be the partial order on A′ with 0 < a < 1 for
all a ∈ A and such that any two elements of A are incomparable. Let
x ∧ y be the bounded meet semilattice operation with respect to this
ordering.

For g(x1, . . . , xk) a k-ary operation on A, define g′(x1, . . . , xk, y) to
be the following (k + 1)-ary operation on A′:

g′(x1, . . . , xk, y) =


g(x1, . . . , xk) if {x1, . . . , xk} ⊆ A and y = 1;

y if xi = y for all 1 ≤ i ≤ k;

0 otherwise.

Define th(x, y, z) on A′ as follows:

th(x, y, z) =

{
x ∧ y, if z = h′(x, y);

0, otherwise.

Note that th can be described as the ternary idempotent operation
on A′ such that for a ∈ A, th(a, 1, h(a)) = th(1, a, 0) = a and is equal
to 0 in all other cases not covered by idempotency.

Let A′ be the algebra with universe A′ and with basic operations
th(x, y, z) and f ′, for all f ∈ F . Note that A′ is an idempotent algebra,
and it can be constructed from the given instance of GEN-CLO′ by an
algorithm whose run time can be bounded by a polynomial in the size
of the instance. Observe that the basic operations of A′ depend on all
of their variables. We will show that 〈A,F , h(x)〉 is a “yes” instance
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of GEN-CLO′ if and only if A′ and 1 is a “yes” instance of BOUNDED-
SEMILATTICE.

Claim 4.2. Let t(x1, . . . , xk) be a term operation of A′ and let ui ∈ A′
for 1 ≤ i ≤ k.

(1) A ∪ {0} and {0, 1} are subuniverses of A′ and the element 0 is
an absorbing element in both of these subuniverses (but not in
A′).

(2) If t depends on all of its variables and t(u1, . . . , uk) = 1 then
ui = 1 for all i.

(3) If t(a1, . . . , ak−1, 1) ∈ A for all ai ∈ A then the restriction of the
operation t(x1, . . . , xk−1, 1) to A is a member of the clone on A
generated by F .

(4) If g(x) is in the clone on A generated by F then the operation
g′(x, y) is in the clone of A′.

Statement (1) can be verified by examining the basic operations of
A′. Statement (2) can be proved by induction on the length of a term
that defines the operation t, but it suffices to note that the basic opera-
tions of A′ have this property and it is preserved under the composition
of functions.

Statement (3) can be proved by induction on the length of a term
that defines the operation t. If t is a projection operation then by our
assumption, it follows that it projects onto xi for some i < k and in
this case, the statement holds. If t is not a projection operation then
it can be written as

f ′(s1(~x), . . . , sm(~x), r(~x)) or th(s1(~x), s2(~x), r(~x))

for some term operations si and r of A′ that have shorter definitions
than t does and some f ∈ F . If the former holds, then it follows that
sj(a1, . . . , ak−1, 1) ∈ A and r(a1, . . . , ak−1, 1) = 1 for all j and all ai ∈ A.
By induction, we can apply the claim to the sj’s and then compose
their restrictions to A with the operation f to establish the claim for t.
Note: this part of the argument uses part (2) of the claim. We need to
consider the possible values for r(a1, . . . , ak−1, 1). If it ever takes on the
value 1, then it can only depend on its last variable, by (2), in which
case, we apply the induction hypothesis to the sj. If r(a1, . . . , ak−1, 1)
never takes on the value 1, then it must always take on values in A
(or else t(a1, . . . , ak−1, 1) would be equal to 0 for some ai). But then
all of the values sj(a1, . . . , ak−1, 1) must equal r(a1, . . . , ak−1, 1) for all
ai ∈ A, implying that t(a1, . . . , ak−1, 1) = r(a1, . . . , ak−1, 1). Since r
has a shorter definition than t, the claim follows in this case.
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For the latter case, from t(a1, . . . , ak−1, 1) ∈ A we can deduce that
both of s1(a1, . . . , ak−1, 1) and s2(a1, . . . , ak−1, 1) must belong to A ∪
{1}. There are two subcases to consider. If these two values always
lie in A (and so never take on the value 1) then we can apply our
induction hypothesis to both s1 and s2. The fact that the value of t
is always in A implies that s1(a1, . . . , ak−1, 1) = s2(a1, . . . , ak−1, 1) and
that t(a1, . . . , ak−1, 1) is equal to this value, for all ai ∈ A. But then
the restriction of t(x1, . . . , xk−1, 1) to A is equal to the restriction of
s1(x1, . . . , xk−1, 1) to A, which, by induction, we know lies in the clone
generated by F .

On the other hand, if for some ai ∈ A and some j = 1 or 2,
sj(a1, . . . , ak−1, 1) is equal to 1 then using (2) we can conclude that this
term operation is equal to its projection onto the variable xk. It follows
that for all ai ∈ A, sp(a1, . . . , ak−1, 1) ∈ A (where {j, p} = {1, 2}) and
that t(a1, . . . , ak−1, 1) is equal to this value. By induction, we conclude
that the restriction of sp(x1, . . . , xk−1, 1) to A and hence the restriction
of t(x1, . . . , xk−1, 1) to A, lies in the clone generated by F .

The last part of this claim can be proved by induction on the con-
struction of g from the operations in F . Just replace every occurrence
of a function from f ∈ F by f ′. For the base of the induction, when
g(x) = x, recall that we are assuming that F contains g and so, by
construction, g′(x, y) is in the clone of A′.

Claim 4.3. There is a binary term operation b(x, y) of A′ such that
b(a, 1), b(1, a) ∈ A for all a ∈ A if and only if h(x) is in the clone on
A generated by F .

One direction of this claim follows by construction. Namely, if h(x)
is in the clone generated by F then by part (4) of Claim 4.2, the
operation h′(x, y) is in the clone of A′. Then the term operation
b(x, y) = th(x, y, h′(x, y)) is the semilattice operation x ∧ y on A′ and
so satisfies the conditions of this claim.

Conversely, if A′ has such a term operation b(x, y) then select one
that has the shortest possible definition. Clearly it cannot be a projec-
tion operation and so must be of the form

f ′(b1(x, y), . . . , bm(x, y), r(x, y)) or th(b1(x, y), b2(x, y), r(x, y))

for some term operations bi and r of A′ that have shorter definitions
than b does and some f ∈ F . In the former case, because we are
assuming that b(1, a) and b(a, 1) to belong to A for all a ∈ A, it follows
from the definition of f ′ that b1(1, a) and b1(a, 1) ∈ A for all a ∈ A.
This contradicts our assumption on the minimality of the length of a
term defining b.
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Thus we have that b(x, y) = th(b1(x, y), b2(x, y), r(x, y)). In this case,
the only way for b(a, 1) and b(1, a) to belong to A for all a ∈ A is for
each i = 1, 2 to have bi(a, 1) and bi(1, a) belonging to A ∪ {1}. If
for some i, bi(a, 1) and bi(1, a) both belong to A for all a ∈ A, then
we could have used bi in place of b, contradicting the selection of b as
having the shortest definition amongst such term operations.

So, we may assume that for some a ∈ A, b1(a, 1) = 1 or b1(1, a) =
1. Using part (2) of Claim 4.2, it follows that one of the equations
b1(x, y) ≈ x or b1(x, y) ≈ y holds and we can draw a similar con-
clusion for b2(x, y). Thus, we can conclude that b(x, y) is equal to
th(x, y, r(x, y)) (or to th(y, x, r(x, y))) for all x, y ∈ A′. From b(a, 1) ∈ A
we get that th(a, 1, r(a, 1)) ∈ A and hence that r(a, 1) = h′(a, 1) = h(a)
for all a ∈ A. Using part (3) of Claim 4.2, it follows that the operation
h(x) is in the clone generated by F . This concludes the proof of this
claim.

As noted in the proof of the previous claim, if h(x) is in the clone
generated by F then the semilattice operation x ∧ y on A′ is a term
operation of A′ and has 1 as the largest element. Conversely, if A′ has
a semilattice term operation xf y with largest element 1, then for all
a ∈ A we have that 1fa = af1 = a ∈ A and so by the previous claim,
h(x) is in the clone generated by F . Thus our instance of GEN-CLO′

is a “yes” instance if and only if the algebra A′ with the element 1 is
a “yes” instance of BOUNDED-SEMILATTICE. �

Corollary 4.4. The problem of deciding if a given finite idempotent
algebra A has a binary term b(x, y) and an element 1 such that b(x, 1) =
b(1, x) = x holds for all x ∈ A is EXP-TIME complete.

In contrast to this result, we note that from the previous section we
can conclude that testing for the presence in a finite idempotent algebra
of a binary term b(x, y) and an element 0 such that b(x, 0) = b(0, x) = 0
is in the class P.

The main result of this section follows from Theorem 4.1.

Theorem 4.5. The problem of deciding if a given finite idempotent
algebra has a semilattice operation is EXP-TIME complete.

Proof. We reduce BOUNDED-SEMILATTICE to this problem. Let A =
〈A, f1, . . . , fm〉 be a finite idempotent algebra with 1 ∈ A, and let � be
some element that isn’t in A. For f(x1, . . . , xk) an operation on A, let
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f � be the extension of it to A� = A ∪ {�}, defined by:

f �(x1, . . . , xk) =


f(x1, . . . , xk) if {x1, . . . , xk} ⊆ A;

a if {x1, . . . , xk} = {a, �} and a 6= 1;

� if {x1, . . . , xk} = {1, �} or {�};
1 otherwise.

We observe that if f is idempotent, then so is f � and that for each
a ∈ A, the subset {a, �} is closed under f �. The set A is also closed
under f �. We also note that f � depends on each of its variables.

Let A� = 〈A�, f �1 , . . . , f �m〉. We will show that A� has a semilattice
term operation if and only if A has a semilattice term operation with
largest element 1.

Claim 4.6. Let b(x, y) be a binary term operation of A� that depends
on the variable x. Then for a ∈ A \ {1}, b(a, �) = a and b(�, 1) = �.

We prove this claim by induction on the length of a term that defines
the operation b. Clearly if b(x, y) is a projection operation, then it is
equal to the first projection and the claim is true. Otherwise, b(x, y)
can be written as f �j (b1(x, y), . . . , bk(x, y)) for some j ≤ m and for some
binary term operations bi of A� that have shorter definitions than b,
where f �j is k-ary.

Since b depends on x, then for at least one i, bi(x, y) also depends
on x, and then by induction we have that bi(a, �) = a when a 6= 1, and
bi(�, 1) = �. As noted earlier, {a, �} and {1, �} are subuniverses of A�

and so for any l ≤ k, bl(a, �) ∈ {a, �} and bl(�, 1) ∈ {1, �}. So b(a, �)
is equal to f �j applied to some sequence of elements from {a, �} with
at least one of them equal to a. From the definition of f �j we conclude
that b(a, �) = a. A similar argument shows that b(�, 1) = �.

The following claim follows from the fact that A is a subalgebra of
A�.

Claim 4.7. If b(x, y) is a term operation of A�, then its restriction to
A is a term operation of A. Furthermore, if s(x, y) is a term operation
of A, then it is the restriction to A of some binary term operation of
A�.

Now, suppose that A� has a semilattice term operation x ∧ y. By
the previous claim, its restriction to A is a semilattice term operation
xf y of A. Since x∧ y depends on both x and y then by Claim 4.6 we
have that for every a ∈ A \ {1},

1f a = 1 ∧ a = 1 ∧ (� ∧ a) = (1 ∧ �) ∧ a = � ∧ a = a.



14 RALPH FREESE, J.B. NATION, AND MATT VALERIOTE

This establishes that 〈A,f, 1〉, is a bounded semilattice.
Conversely, suppose that A has a binary term operation xf y such

that 〈A,f, 1〉, is a bounded semilattice. Then by the previous claim,
there is a binary term operation x ∧ y of A� whose restriction to A is
x f y. From Claim 4.6 we have that 1 ∧ � = � ∧ 1 = � and for any
a ∈ A \ {1}, a ∧ � = � ∧ a = a. It follows that ∧ is a semilattice
operation on A� that extends f such that the element � lies below the
element 1 and above all of the other elements from A. �

5. Conclusion

The hardness result from the previous section demonstrates that
testing for a rather simple, strong, idempotent, non-linear Maltsev
condition can be difficult, even for idempotent algebras. It would be
interesting to find a strong, idempotent Maltsev condition that is not
equivalent to a linear one, but which can be tested in polynomial time
for idempotent algebras. A possible candidate is the 2-semilattice con-
dition: a binary function that satisfies all of the 2-variable equations
satisfied in the variety of semilattices. This is the strong idempotent
Maltsev condition of having a binary term x∧y that satisfies the equa-
tions: x ∧ x ≈ x, x ∧ y ≈ y ∧ x, and x ∧ (x ∧ y) ≈ x ∧ y.

Should it turn out that this condition is EXP-TIME hard to decide for
finite idempotent algebras, then one would be led to consider the fol-
lowing problem that complements the conjecture that deciding strong,
idempotent, linear Maltsev conditions for finite idempotent algebras
can be done with polynomial-time algorithms.

Problem 5.1. Is it the case that if Σ is a strong idempotent Maltsev
condition that is not equivalent to a strong idempotent linear Maltsev
condition, then the problem of deciding if a finite idempotent algebra
satisfies Σ is EXP-TIME complete?
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