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Abstract18

We investigate the impact of modifying the constraining relations of a Constraint Satisfaction19

Problem (CSP) instance, with a fixed template, on the set of solutions of the instance. More precisely20

we investigate sensitive instances: an instance of the CSP is called sensitive, if removing any tuple21

from any constraining relation invalidates some solution of the instance. Equivalently, one could22

require that every tuple from any one of its constraints extends to a solution of the instance.23

Clearly, any non-trivial template has instances which are not sensitive. Therefore we follow the24

direction proposed (in the context of strict width) by Feder and Vardi in [13] and require that only25

the instances produced by a local consistency checking algorithm are sensitive. In the language26

of the algebraic approach to the CSP we show that a finite idempotent algebra A has a k + 227

variable near unanimity term operation if and only if any instance that results from running the28

(k, k + 1)-consistency algorithm on an instance over A2 is sensitive.29

A version of our result, without idempotency but with the sensitivity condition holding in a30

variety of algebras, settles a question posed by G. Bergman about systems of projections of algebras31

that arise from some subalgebra of a finite product of algebras.32

Our results hold for infinite (albeit in the case of A idempotent) algebras as well and exhibit a33

surprising similarity to the strict width k condition proposed by Feder and Vardi. Both conditions34

can be characterized by the existence of a near unanimity operation, but the arities of the operations35

differ by 1.36
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1 Introduction51

One important algorithmic approach to deciding if a given instance of the Constraint52

Satisfaction Problem (CSP) has a solution is to first consider whether it has a consistent set53

of local solutions. Clearly, the absence of local solutions will rule out having any (global)54

solutions, but in general having local solutions does not guarantee the presence of a solution.55

A major thrust of the recent research on the CSP has focused on coming up with suitable56

notions of local consistency and then characterizing those CSPs for which local consistency57

implies outright consistency or some stronger property. A good source for background58

material is the survey article [7].59

Early results of Feder and Vardi [13] and also Jeavons, Cooper, and Cohen [15] establish60

that when a template (i.e., a relational structure) A has a special type of polymorphism,61

called a near unanimity operation, then not only will an instance of the CSP over A that has62

a suitably consistent set of local solutions have a solution, but that any partial solution of it63

can always be extended to a solution. The notion of local consistency that we investigate64

in this paper is related to that considered by these researchers but that, as we shall see, is65

weaker.66

The following operations are central to our investigation.67

I Definition 1. An operation n(x1, . . . , xk+1) on a set A of arity k + 1 is called a near68

unanimity operation on A if it satisfies the equalities69

n(b, a, a, . . . , a) = n(a, b, a, . . . , a) = · · · = n(a, a, . . . , a, b) = a70

for all a, b ∈ A.71

Near unanimity operations have played an important role in the development of universal72

algebra and first appeared in the 1970’s in the work of Baker and Pixley [1] and Huhn [14].73

More recently they have been used in the study of the CSP [13, 15] and related questions74

[2, 12]. The main results of this paper can be expressed in terms of the CSP and also in75

algebraic terms and we start by presenting them from both perspectives. In the concluding76

section, Section 6, a translation of parts of our results into a relational language is provided,77

along with some open problems.78

1.1 CSP viewpoint79

In their seminal paper, Feder and Vardi [13] introduced the notion of bounded width for80

the class of CSP instances over a finite template A. Their definition of bounded width was81

presented in terms of the logic programming language DATALOG but there is an equivalent82

formulation using local consistency algorithms, also given in [13]. Given a CSP instance I83

and k < l, the (k, l)-consistency algorithm will produce a new instance having all k variable84

constraints that can be inferred by considering l variables at a time of I. This algorithm85

rejects I if it produces an empty constraint. The class of CSP instances over a finite template86

A will have width (k, l) if the (k, l)-consistency algorithm rejects all instances from the class87

that do not have solutions, i.e., the (k, l)-consistency algorithm can be used to decide if a88
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given instance from the class has a solution or not. The class has bounded width if it has89

width (k, l) for some k < l.90

A lot of effort, in the framework of the algebraic approach to the CSP, has gone in91

to analyzing various properties of instances that are the outputs of these types of local92

consistency algorithms. On one end of the spectrum of the research is a rather wide class of93

templates of bounded width [5] and on the other a very restrictive class of templates having94

bounded strict width [13].95

To be more precise, we now formally introduce instances of the CSP.96

I Definition 2. An instance I of the CSP is a pair (V, C) where V is a finite set of variables,97

and C is a set of constraints of the form ((x1, . . . , xn), R) where all xi are in V and R is an98

n-ary relation over (possibly infinite) sets Ai associated to each variable xi.99

A solution of I is an evaluation f of variables such that, for every ((x1, . . . , xn), R) ∈ C100

we have (f(x1), . . . , f(xn)) ∈ R; a partial solution is a partial function satisfying the same101

condition.102

The CSP over a relational structure A, written CSP(A), is the class of CSP instances103

whose constraint relations are from A.104

I Example 3. For k > 1, the template associated with the graph k-colouring problem is105

the relational structure Dkcolour that has universe {0, 1, . . . , k − 1} and a single relation106

6=k= {(x, y) | x, y < k and x 6= y}. The template associated with the HORN-3-SAT problem107

is the relational structure Dhorn that has universe {0, 1} and two ternary relations R0, R1,108

where Ri contains all the triples but (1, 1, i). It is known that CSP(Dhorn) has width (1, 2),109

that CSP(D2colour) has width (2, 3), and that for k > 2, CSP(Dkcolour) does not have bounded110

width (see [7]).111

Instances produced by the (k, l)-consistency algorithm have uniformity and consistency112

properties that we highlight.113

I Definition 4. The CSP instance I is k-uniform if all of its constraints are k-ary and every114

set of k variables is constrained by a single constraint.115

An instance is a (k, l)-instance if it is k-uniform and for every choice of a set W of l116

variables no additional information about the constraints can be derived by restricting the117

instance to the variables in W .118

This last, very important, property can be rephrased in the following way: for every set119

W ⊆ V of size l, every tuple in every constraint of I|W participates in a solution to I|W (where120

I|W is obtained from I by removing all the variables outside of W and all the constraints121

that contain any such variables).122

Consider the notion of strict width k introduced by Feder and Vardi [13, Section 6.1.2].123

Let A be a template and let us assume, to avoid some technical subtleties, that every124

relation in A has arity at most k. The class CSP(A) has strict width (k, l) if whenever the125

(k, l)-consistency algorithm does not reject an instance I from the class then “it should be126

possible to obtain a solution by greedily assigning values to the variables one at a time127

while satisfying the inferred k-constraints.” In other words, if I is the result of applying the128

(k, l)-consistency algorithm to an instance of CSP(A), then any partial solution of I can be129

extended to a solution. The template A is said to have strict width k if it has strict width130

(k, l) for some l > k.131

A polymorphism of a template A is a function on A that preserves all of the relations of132

A. Feder and Vardi prove the following.133

ICALP 2020
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I Theorem 5 (see Theorem 25, [13]). Let k > 1 and let A be a finite relational structure134

with relations of arity at most k. The class CSP(A) has strict width k if and only if it has135

strict width (k, k + 1) if and only if A has a (k + 1)-ary near unanimity operation as a136

polymorphism.137

Using this Theorem we can conclude that CSP(D2colour) from Example 3 has strict width138

2 since the ternary majority operation preserves the relation 6=2. In fact this operation139

preserves all binary relations over the set {0, 1}. On the other hand, CSP(Dhorn) does not140

have strict width k for any k ≥ 3.141

Following the algebraic approach to the CSP we replace templates A with algebras A.142

I Definition 6. An algebra A is a pair (A,F) where A is a non-empty set, called the universe143

of A and F = (fi | i ∈ I) is a set of finitary operations on A called the set of basic operations144

of A. The function that assigns the arity of the operation fi to i is called the signature of145

A. If t(x1, . . . , xn) is a term in the signature of A then the interpretation of t by A as an146

operation on A is called a term operation of A and is denoted by tA.147

The CSP over A, written CSP(A), is the class of CSP instances whose constraint relations148

are amongst those relations over A that are preserved by the operations of A (i.e., they are149

subuniverses of powers of A).150

A number of important questions about the CSP can be reduced to considering templates151

that have all of the singleton unary relations [7]; the algebraic counterpart to these types of152

templates are the idempotent algebras.153

I Definition 7. An operation f : An → A on a set A is idempotent if f(a, a, . . . , a) = a for154

all a ∈ A. An algebra A is idempotent if all of its basic operations are.155

It follows that if A is idempotent then every term operation of A is an idempotent operation.156

As demonstrated in Example 22, several of the results in this paper do not hold in the157

absence of idempotency.158

The characterization of strict width in Theorem 5 has the following consequence in terms159

of algebras.160

I Corollary 8. Let k > 1 and let A be a finite relational structure with relations of arity at161

most k. Let A be the algebra with the same universe as A whose basic operations are exactly162

the polymorphisms of A. The following are equivalent:163

1. A has a near unanimity term operation of arity k + 1;164

2. in every (k, k + 1)-instance over A, every partial solution extends to a solution.165

The implication “1 implies 2” in Corollary 8 remains valid for general algebras, not166

necessarily coming from finite relational structures with restricted arities of relations. However,167

the converse implication fails even if A is assumed to be finite and idempotent.168

I Example 9. Consider the rather trivial algebra A that has universe {0, 1} and no basic169

operations. If I is a (2, 3)-instance over A then since, as noted just after Theorem 5, every170

binary relation over {0, 1} is invariant under the ternary majority operation on {0, 1} it171

follows that every partial solution of I can be extended to a solution. Of course, A does not172

have a near unanimity term operation of any arity.173

What this example demonstrates is that in general, for a fixed k, the k-ary constraint174

relations arising from an algebra do not capture that much of the structure of the algebra.175

Example 22 provides further evidence for this.176
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Our first theorem shows that for finite idempotent algebras A, by considering a slightly177

bigger set of (k, k + 1)-instances, over CSP(A2), rather than over CSP(A), we can detect the178

presence of a (k + 1)-ary near unanimity term operation. Moreover, it is enough to consider179

only instances with k + 2 variables. We note that every (k, k + 1)-instance over A can be180

easily encoded as a (k, k + 1)-instance over A2.181

I Theorem 10. Let A be a finite, idempotent algebra and k > 1. The following are equivalent:182

1. A (or equivalently A2) has a near unanimity term operation of arity k + 1;183

2. in every (k, k + 1)-instance over A2, every partial solution extends to a solution;184

3. in every (k, k + 1)-instance over A2 on k + 2 variables, every partial solution extends185

to a solution.186

In Theorem 20 we extend our result to infinite idempotent algebras by working with local187

near unanimity term operations.188

Going back the original definition of strict width: “it should be possible to obtain a189

solution by greedily assigning values to the variables one at a time while satisfying the190

inferred k-constraints” we note that the requirement that the assignment should be greedy is191

rather restrictive. The main theorem of this paper investigates an arguably more natural192

concept where the assignment need not be greedy.193

I Definition 11. An instance of the CSP is called sensitive, if removing any tuple from any194

constraining relation invalidates some solution of the instance.195

In other words, an instance is sensitive if every tuple in every constraint of the instance196

extends to a solution. For (k, k + 1)-instances, being sensitive is equivalent to the instance197

being a (k, n)-instance, where n is the number of variables present in the instance. We198

provide the following characterization.199

I Theorem 12. Let A be a finite, idempotent algebra and k > 1. The following are equivalent:200

1. A (or equivalently A2) has a near unanimity term operation of arity k + 2;201

2. every (k, k + 1)-instance over A2 is sensitive;202

3. every (k, k + 1)-instance over A2 on k + 2 variables is sensitive.203

Exactly as in Theorem 10 we can consider infinite algebras at the cost of using local near204

unanimity term operations (see Theorem 21).205

In conclusion we investigate a natural property of instances motivated by the definition206

of strict width and provide a characterization of this new condition in algebraic terms. A207

surprising conclusion is that the new concept is, in fact, very close to the strict width concept,208

i.e., for a fixed k one characterization is equivalent to a near unanimity operation of arity209

k + 1 and the second of arity k + 2.210

1.2 Algebraic viewpoint211

Our work has as an antecedent the papers of Baker and Pixley [1] and of Bergman [8] on212

algebras having near unanimity term operations. In these papers the authors considered213

subalgebras of products of algebras and systems of projections associated with them. Baker214

and Pixley showed that in the presence of a near unanimity term operation, such a subalgebra215

is closely tied with its projections onto small sets of coordinates.216

I Definition 13. A variety of algebras is a class of algebras of the same signature that is217

closed under taking homomorphic images, subalgebras, and direct products. For A an algebra,218

V(A) denotes the smallest variety that contains A and is called the variety generated by A.219

A variety V has a near unanimity term of arity k+ 1 if there is some (k+ 1)-ary term in the220

signature of V whose interpretation in each member of V is a near unanimity operation.221

ICALP 2020
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Here is one version of the Baker-Pixley Theorem:222

I Theorem 14 (see Theorem 2.1 from [1]). Let A be an algebra and k > 1. The following223

are equivalent:224

1. A has a (k + 1)-ary near unanimity term operation;225

2. for every r > k and every Ai ∈ V(A), 1 ≤ i ≤ r, every subalgebra R of
∏r
i=1 Ai226

is uniquely determined by the projections of R on all products Ai1 × · · · × Aik for227

1 ≤ i1 < i2 < · · · < ik ≤ r;228

3. the same as condition 2, with r set to k + 1.229

In other words, an algebra has a (k + 1)-ary near unanimity term operation if and only if230

every subalgebra of a product of algebras from V(A) is uniquely determined by its system of231

k-fold projections into its factor algebras. A natural question, extending the result above,232

was investigated by Bergman [8]: when does a given “system of k-fold projections” arise from233

a product algebra?234

Note that such a system can be viewed as a k-uniform CSP instance: indeed, following235

the notation of Theorem 14, we can introduce a variable xi for each i ≤ r and a constraint236

((xi1 , . . . , xik ); proji1,...,ik R) for each 1 ≤ i1 < i2 < · · · < ik ≤ r. In this way the original237

relation R consists of solutions of the created instance (but in general will not contain all of238

them). In this particular instance, different variables can be evaluated in different algebras.239

Note that the instance is sensitive, if and only if it “arises from a product algebra” in the240

sense investigated by Bergman.241

We will say that I is a CSP instance over the variety V (denoted I ∈ CSP(V)) if all the242

constraining relations of I are algebras in V. In the language of the CSP, Bergman proved243

the following:244

I Theorem 15 ([8]). If V is a variety that has a (k+ 1)-ary near unanimity term then every245

(k, k + 1)-instance over V is sensitive.246

In commentary that Bergman provided on his proof of this theorem he noted that a247

stronger conclusion could be drawn from it and he proved the following theorem. We note248

that this theorem anticipates the results from [13] and [15] dealing with templates having249

near unanimity operations as polymorphisms.250

I Theorem 16 ([8]). Let k > 1 and V be a variety. The following are equivalent:251

1. V has a (k + 1)-ary near unanimity term;252

2. any partial solution of a (k, k + 1)-instance over V extends to a solution.253

Theorem 15 provides a partial answer to the question that Bergman posed in [8], namely254

that in the presence of a (k+1)-ary near unanimity term, a necessary and sufficient condition255

for a k-fold system of algebras to arise from a product algebra is that the associated CSP256

instance is a (k, k + 1)-instance.257

In [8] Bergman asked whether the converse to Theorem 15 holds, namely, that if all258

(k, k + 1)-instances over a variety are sensitive, must the variety have a (k + 1)-ary near259

unanimity term? He provided examples that suggested that the answer is no, and we confirm260

this by proving that the condition is actually equivalent to the variety having a near unanimity261

term of arity k + 2. The main result of this paper, viewed from the algebraic perspective262

(but stated in terms of the CSP), is the following:263

I Theorem 17. Let k > 1. A variety V has a (k + 2)-ary near unanimity term if and only264

if each (k, k + 1)-instance of the CSP over V is sensitive.265
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The “if” direction of this theorem is proved in Section 3, while a sketch of a proof of the266

“only if” direction can be found in Section 5 (the complete reasoning is included in the full267

version of this paper). We note that a novel and significant feature of this result is that it268

does not assume any finiteness or idempotency of the algebras involved.269

1.3 Structure of the paper270

The paper is structured as follows. In the next section we introduce local near unanimity271

operations and state Theorem 10 and Theorem 12 in their full power. In Section 3 we272

collect the proofs that establish the existence of (local) near unanimity operations. Section 4273

contains a proof of a new loop lemma, which can be of independent interest, and is necessary274

in the proof in Section 5. In Section 5 we provide a sketch of the proof showing that, in the275

presence of a near unanimity operation of arity k+ 2, the (k, k+ 1)-instances are sensitive. A276

complete proof of this fact, which is our main contribution, can be found in the full version277

of this paper. Finally, Section 6 contains conclusions.278

2 Details of the CSP viewpoint279

In order to state our results in their full strength, we need to define local near unanimity280

operations. This special concept of local near unanimity operations is required, when281

considering infinite algebras.282

I Definition 18. Let k > 1. An algebra A has local near unanimity term operations of arity283

k + 1 if for every finite subset S of A there is some (k + 1)-ary term operation nS of A such284

that285

nS(b, a, . . . , a, a) = nS(a, b, a, . . . , a) = · · · = nS(a, a, . . . , b, a) = nS(a, a, . . . , a, b) = a.286

for all a, b ∈ S.287

It should be clear that, for finite algebras, having local near unanimity term operations of288

arity k + 1 and having a near unanimity term operation of arity k + 1 are equivalent, but289

for arbitrary algebras they are not. The following provides a characterization of when an290

idempotent algebra has local near unanimity term operations of some given arity; it will be291

used in the proofs of Theorems 20 and 21. It is similar to Theorem 14 and is proved in the292

full version of this paper.293

I Theorem 19. Let A be an idempotent algebra and k > 1. The following are equivalent:294

1. A has local near unanimity term operations of arity k + 1;295

2. for every r > k, every subalgebra of Ar is uniquely determined by its projections onto all296

k-element subsets of coordinates;297

3. every subalgebra of Ak+1 is uniquely determined by its projections onto all k-element298

subsets of coordinates.299

We are ready to state Theorem 10 in its full strength:300

I Theorem 20. Let A be an idempotent algebra and k > 1. The following are equivalent:301

1. A (or equivalently A2) has local near unanimity term operations of arity k + 1;302

2. in every (k, k + 1)-instance over A2, every partial solution extends to a solution;303

3. in every (k, k + 1)-instance over A2 on k + 2 variables, every partial solution extends304

to a solution.305

ICALP 2020
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Proof. Obviously condition 2 implies condition 3. A proof of condition 3 implying condition306

1 can be found in Section 3. The implication from 1 to 2 is covered by Theorem 16. J307

Analogously, the main result of the paper, for idempotent algebras, and the full version of308

Theorem 12 states:309

I Theorem 21. Let A be an idempotent algebra and k > 1. The following are equivalent:310

1. A (or equivalently A2) has local near unanimity term operations of arity k + 2;311

2. every (k, k + 1)-instance over A2 is sensitive;312

3. every (k, k + 1)-instance over A2 on k + 2 variables is sensitive.313

Proof. Obviously condition 2 implies condition 3. For a proof that condition 3 implies314

condition 1 see Section 3. A sketch of the proof of the remaining implication can be found in315

Section 5 (see the full version of this paper for a complete proof). J316

The following examples show that in Theorems 19, 20, and 21 the assumption of idempotency317

is necessary.318

I Example 22. For n > 2, let Sn be the algebra with domain [n] = {1, 2, . . . , n} and with319

basic operations consisting of all unary operations on [n] and all non-surjective operations320

on [n] of arbitrary arity. The collection of such operations forms a finitely generated clone,321

called the Słupecki clone. Relevant details of these algebras can be found in [16, Example322

4.6] and [20]. It can be shown that for m < n, the subuniverses of Smn consist of all m-ary323

relations Rθ over [n] determined by a partition θ of [m] by324

Rθ = {(a1, . . . , am) | ai = aj whenever (i, j) ∈ θ}.325

These rather simple relations are preserved by any operation on [n], in particular by any326

majority operation or more generally, by any near unanimity operation.327

It follows from Theorem 16 that if k > 1 and I is a (k, k + 1)-instance of CSP(S2
2k+1)328

then any partial solution of I extends to a solution. This also implies that I is sensitive.329

Furthermore any subalgebra of Sk+1
k+2 is determined by it projections onto all k-element sets330

of coordinates. As noted in [16, Example 4.6], for n > 2, Sn does not have a near unanimity331

term operation of any arity, since the algebra Snn has a quotient that is a 2-element essentially332

unary algebra.333

3 Constructing near unanimity operations334

In this section we collect the proofs providing, under various assumptions, near unanimity or335

local near unanimity operations. That is: the proofs of “3 implies 1” in Theorems 20 and336

Theorem 21 as well as a proof of the “if” direction from Theorem 17.337

In the following proposition we construct instances over A2 (for some algebra A). By338

a minor abuse of notation, we allow in such instances two kinds of variables: variables339

x evaluated in A and variables y evaluated in A2. The former kind should be formally340

considered as variables evaluated in A2 where each constraint enforces that x is sent to341

{(b, b) | b ∈ A}.342

Moreover, dealing with k-uniform instances, we understand the condition “every set of343

k variables is constrained by a single constraint” flexibly: in some cases we allow for more344

constraints with the same set of variables, as long as the relations are proper permutations345

so that every constraint imposes the same restriction.346
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I Proposition 23. Let k > 1 and let A be an algebra such that, for every (k, k + 1)-instance347

I over A2 on k + 2 variables every partial solution of I extends to a solution. Then each348

subalgebra of Ak+1 is determined by its k-ary projections.349

Proof. Let R ≤ Ak+1 and we will show that it is determined by the system of projections350

projI(R) as I ranges over all k elements subsets of coordinates. Using R we define the351

following instance I of CSP(A2). The variables of I will be the set {x1, x2, . . . , xk+1, y12}352

and the domain of each xi is A, while the domain of y12 is A2.353

For U ⊆ {x1, . . . , xk+1} of size k, let CU be the constraint with scope U and constraint354

relation RU = projU (R). For U a (k − 1)-element subset of {x1, . . . , xk+1}, let CU∪{y12} be355

the constraint with scope U ∪ {y12} and constraint relation RU∪{y12} that consists of all356

tuples (bv | v ∈ U ∪ {y12}) such that there is some (a1, . . . , ak+1) ∈ R with bv = ai if v = xi357

and with by12 = (a1, a2).358

The instance I is k-uniform and we will show that it is sensitive. Indeed every tuple in359

every constraining relation originates in some tuple b ∈ R. Setting xi 7→ bi and y12 7→ (b1, b2)360

defines a solution that extends such a tuple.361

In particular I is a (k, k + 1)-instance over A2 with k + 2 variables and so any partial362

solution of it can be extended to a solution. Let b ∈ Ak+1 such that projI(b) ∈ projI(R)363

for all k element subsets I of [k + 1]. Then b is a partial solution of I over the variables364

{x1, . . . , xk+1} and thus there is some extension of it to the variable y12 that produces a365

solution of I. But there is only one consistent way to extend b to y12 namely by setting y12366

to the value (b1, b2). By considering the constraint with scope {x3, . . . , xk+1, y12} it follows367

that b ∈ R, as required. J368

Now we are ready to prove the first implication tackled in this section: 3 implies 1 in369

Theorem 20.370

Proof of “3 implies 1” in Theorem 20. By Theorem 19 it suffices to show that each subal-371

gebra of Ak+1 is determined by its k-ary projections. Fortunately, Proposition 23 provides372

just that. J373

We move on to proofs of “3 implies 1” in Theorem 21 and the “if” direction of Theorem 17.374

Similarly, as in the theorem just proved, we start with a proposition.375

I Proposition 24. Let k > 1 and let A be an algebra such that every (k, k + 1)-instance I376

over A2 on k + 2 variables is sensitive. Then each subalgebra of Ak+2 is determined by its377

(k + 1)-ary projections.378

Proof. We will show that if R is a subalgebra of Ak+2 then R = R∗ where379

R∗ = {a ∈ Ak+2 | projI(a) ∈ projI(R) whenever |I| = k + 1}.380

In other words, we will show that the subalgebra R is determined by its projections into all381

(k + 1)-element sets of coordinates.382

We will use R and R∗ from the previous paragraph to construct a (k, k + 2)-instance383

I = (V, C) with V = {x5, . . . , xk+2, y12, y34, y13, y24} where each xi is evaluated in A while384

all the y’s are evaluated in A2.385

The set of constraints is more complicated. There is a special constraint on a special386

variable set ((y12, y34, x5, . . . , xk+2), C) where387

C = {((a1, a2), (a3, a4), a5, . . . , ak+2) | (a1, . . . , ak+2) ∈ R∗}.388
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The remaining constraints are defined using the relation R. For each set of variables389

S = {v1, . . . , vk} ⊆ V (which is different than the set for the special constraint) we define390

a constraint ((v1, . . . , vk), DS) with (b1, . . . , bk) ∈ DS if and only if there exists a tuple391

(a1, . . . , ak+2) ∈ R such that:392

if vi is xj then bi = aj , and393

if vi is ylm then bi = (al, am).394

Note that the instance I is k-uniform.395

B Claim 25. I is a (k, k + 1)-instance.396

Let S ⊆ V be a set of size k. If S is not the special variable set, then every tuple in397

the relation constraining S originates in some (b1, . . . , bk+2) ∈ R and, as in Proposition 23,398

sending xi 7→ bi and ylm 7→ (bl, bm) defines a solution that extends such a tuple. We399

immediately conclude, that the potential failure of the (k, k + 1) condition must involve the400

special constraint.401

Thus S = {y12, y34, x5, . . . , xk+2} and if b is a tuple from the special constraint C then402

there is some (a1, . . . , ak+2) ∈ R∗ with403

b = ((a1, a2), (a3, a4), a5, . . . , ak+2).404

The extra variable that we want to extend the tuple b to is either y13 or y24. Both cases are405

similar and we will only work through the details when it is y13. In this case, assigning the406

value (a1, a3) to the variable y13 will produce an extension b′ of b to a tuple over S∪{y13} that407

is consistent with all constraints of I whose scopes are subsets of {y12, y34, x5, . . . , xk+2, y13}.408

To see this, consider a k element subset S′ of {y12, y34, x5, . . . , xk+2, y13} that excludes409

some variable xj . Then, by the definition of R∗ there exists some tuple of the form410

(a1, a2, . . . , aj−1, a
′
j , aj+1, . . . , ak+2) ∈ R. This tuple from R can be used to witness that the411

restriction of b′ to S′ satisfies the constraint DS′ since the scope of this constraint does not412

include the variable xj .413

Suppose that S′ is a k element subset of {y12, y34, x5, . . . , xk+2, y13} that excludes y12.414

By the definition of R∗ there is some tuple of the form (a1, a
′
2, a3, . . . , ak+2) ∈ R. Using this415

tuple it follows that the restriction of b′ to S′ satisfies the constraint DS′ . This is because416

neither of the variables y12 and y24 are in S′ and so the value a′2 ∈ A2 does not matter. A417

similar argument works when S′ is assumed to exclude y34 and the claim is proved.418

Since I is a (k, k+ 1)-instance over A2 and it has k+ 2 variables then by assumption, I is419

sensitive. We can use this to show that R∗ ⊆ R to complete the proof of this proposition. Let420

(a1, . . . , ak+2) ∈ R∗ and consider the associated tuple b = ((a1, a2), (a3, a4), a5, . . . , ak+2) ∈421

C. Since I is sensitive then this k-tuple can be extended to a solution b′ of I. Using any422

constraints of I whose scopes include combinations of y12 or y34 with y13 or y24 it follows423

that the value of b′ on the variables y13 and y24 are (a1, a3) and (a2, a4) respectively. Then424

considering the restriction of b′ to S = {x5, . . . , xk+2, y13, y24} it follows that (a1, . . . , ak+2) ∈425

R since this restriction lies in the constraint relation DS . J426

We are in a position to provide the two final proofs in this section.427

Proof of “3 implies 1” in Theorem 21. By Theorem 19 it suffices to show that each sub-428

algebra of Ak+2 is determined by its (k + 1)-ary projections. Fortunately Propositions 24429

provides just that. J430

Proof of the “if” direction in Theorem 17. For this direction we apply Proposition 24 to431

a special member of V, namely the V-free algebra freely generated by x and y, which we432
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will denote by F. Up to isomorphism, this algebra is unique and its defining property is433

that F ∈ V and for any algebra A ∈ V, any map f : {x,y} → A extends uniquely to a434

homomorphism from F to A. Consequently, for any two terms s(x, y) and t(x, y) in the435

signature of V if sF(x,y) = tF(x,y) then the equation s(x, y) ≈ t(x, y) holds in V.436

Let R be the subalgebra of Fk+2 generated by the tuples (y,x,x, . . . ,x), (x,y,x, . . . ,x),437

. . . , (x, . . . ,x,y). By Proposition 24, the algebra R is determined by its (k+1)-ary projections438

and so the constant tuple (x, . . . ,x) belongs to R. The term generating this tuple from the439

given generators of R defines the required (k + 2)-ary near unanimity operation. J440

4 New loop lemmata441

A loop lemma is a theorem stating that a binary relation satisfying certain structural and442

algebraic requirements necessarily contains a loop – a pair (a, a). In this section we provide443

two new loop lemmata, Theorem 31 and Theorem 32, which generalize an “infinite loop444

lemma” of Olšák [18] and may be of independent interest. Theorem 32 is a crucial tool for445

the proof presented in Section 5.446

The algebraic assumptions in the new loop lemmata concern absorption, a concept that447

has proven to be useful in the algebraic theory of CSPs and in universal algebra [6]. We448

adjust the standard definition to our specific purposes. We begin with a very elementary449

definition.450

I Definition 26. Let R and S be sets. We call a tuple (a1, . . . , an) a one-S-in-R tuple if for451

exactly one i we have ai ∈ S and all the other ai’s are in R.452

Next we proceed to define a relaxation of the standard absorbing notion. We follow a453

standard notation, silently extending operations of an algebra to powers (by computing them454

coordinate-wise).455

I Definition 27. Let A be an algebra, R ≤ Ak and S ⊆ Ak. We say that R locally n-absorbs456

S if, for every finite set C of one-S-in-R tuples of length n, there is a term operation t of A457

such that t(a1, . . . ,an) ∈ R whenever (a1, . . . ,an) ∈ C. We will say that R locally absorbs458

S, if R locally n-absorbs S for some n.459

Absorption, even in this form, is stable under various constructions. The following lemma460

lists some of them and we leave it without a proof (the reasoning is identical to the one in461

e.g. Proposition 2 in [6]).462

I Lemma 28. Let A be an algebra and R ≤ A2 such that R locally n-absorbs S. Then463

R−1 locally n-absorbs S−1; and R ◦R locally n-absorbs S ◦S, and R ◦R ◦R locally n-absorbs464

S ◦ S ◦ S etc.465

Let us prove a first basic property of local absorption.466

I Lemma 29. Let A be an idempotent algebra and R ≤ A2 such that R locally n-absorbs S.467

Let (a1, . . . , an) and (b1, . . . , bn) be directed walks in R, and let (ai, bi) ∈ S for each i (see468

Figure 1). Then there exists a directed walk from a1 to bn of length n in R.469

Proof. We will show that there is a term operation t of the algebra A such that the following470
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a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

· · ·

p1
p2 p3 pn−1

pn

Figure 1 Solid arrows represent tuples from R and dashed arrows represent tuples from S.

(n+ 1)-tuple of elements of A is a walk of length n in R from a1 to bn.471

(a1 =t(a1, a1, a1, . . . , a1),472

t(b1, a2, a2, . . . , a2),473

t(b2, b2, a3, . . . , a3),474

...475

t(bn−1, bn−1, . . . , bn−1, an),476

bn =t(bn, bn, bn, . . . , bn)).477
478

In order to choose a proper t we apply the definition of local absorption to the set of (n+ 1)479

one-S-in-R tuples corresponding to the steps in the path. J480

The loop lemma of Olšák concerns symmetric relations absorbing the equality relation481

{(a, a) | a ∈ A}, which is denoted =A. The original result, stated in a slightly different482

language, does not cover the case of local absorption. However, a typographical modification483

of a proof mentioned in [18] shows that the theorem holds. For completeness sake, we present484

this proof in the full version of this paper.485

I Theorem 30 ([18]). Let A be an idempotent algebra and R ≤ A2 be nonempty and486

symmetric. If R locally absorbs =A, then R contains a loop.487

In order to apply this theorem in the case of sensitive instances, we need to generalize it.488

In the following two theorems we will gradually relax the requirement that R is symmetric.489

In the first step, we substitute it with a condition requiring a closed, directed walk in the490

graph (i.e., a sequence of possibly repeating vertices, with consecutive vertices connected by491

forward edges and the first and last vertex identical). Recall that R−1 is the inverse relation492

to R and let us denote by R◦l the l-fold relational composition of R with itself.493

I Theorem 31. Let A be an idempotent algebra and R ≤ A2 contain a directed closed494

walk. If R locally absorbs =A, then R contains a loop.495

Proof. Let n denote the arity of the absorbing operations. The proof is by induction on496

l ≥ 0, where l is a number such that there exists a directed closed walk from a1 to a1 of497

length 2l.498

We start by verifying that such an l exists. Take a directed walk (a1, . . . , ak−1, ak = a1)499

in R. We may assume that its length k is at least n, since we can, if necessary, traverse500

the walk multiple times. An application of Lemma 29 to the relations R,=A and tuples501

(a1, . . . , an), (a1, . . . , an) gives us a directed walk from a1 to an of length n. Appending this502
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walk with the walk (an, an+1, . . . , ak = a1) yields a directed walk from a1 to a1 of length503

k + 1. In this way, we can get a directed walk from a1 to a1 of any length greater than k.504

Now we return to the inductive proof and start with the base of induction for l = 0 or505

l = 1. If l = 0, then we have found a loop. If l = 1 we have a closed walk of length 2, that is,506

a pair (a, b) which belongs to both R and R−1. We set R′ = R ∩R−1 and observe that R′ is507

nonempty and symmetric, and it is not hard to verify that R′ locally absorbs =A. Olšák’s508

loop lemma, in the form of Theorem 30, gives us a loop in R.509

Finally, we make the induction step from l − 1 to l. Take a closed walk (a1, a2, . . .)510

of length 2l and consider R′ = R◦2. Observe that R′ contains a directed closed walk of511

length 2l−1 (namely (a1, a3, . . .)), and that R′ locally absorbs =A (by Lemma 28), so, by the512

inductive hypothesis, R′ has a loop. In other words, R has a directed closed walk of length 2513

and we are done by the case l = 1. J514

Note that we cannot further relax the assumption on the graph by requiring that, for515

example, it has an infinite directed walk. Indeed the natural order of the rationals (taken516

for R) locally 2-absorbs the equality relation by the binary arithmetic mean operation517

(a+ b)/2 (i.e., all the absorbing evaluations are realized by a single operation). The same518

relation locally 4-absorbs equality with the near unanimity operation n(x, y, z, w) which,519

when applied to a ≤ b ≤ c ≤ d, in any order, returns (b+ c)/2.520

Nevertheless, we can strengthen the algebraic assumption and still provide a loop; the521

following theorem is one of the key components in the proof sketch provided in Section 5 (albeit522

applied there with l = 1).523

I Theorem 32. Let A be an idempotent algebra and R ≤ A2 contain a directed walk of524

length n− 1. If R locally n-absorbs =A and R◦l locally n-absorbs R−1 for some l ∈ N then525

R contains a loop.526

Proof. By applying Lemma 29 similarly as in the proof of Theorem 31, we can get, from a527

directed walk of length n− 1, a directed walk (a1, a2, . . .) of an arbitrary length. Moreover,528

by the same reasoning, for each i and j with j ≥ i+ n− 1, there is a directed walk from ai529

to aj of any length greater than or equal to j − i.530

Consider the relations R′ = R◦ln
2 and S = (R−1)◦n2 , and tuples531

c = (c1, . . . , cn) := (an2 , a(n+1)n, . . . a(2n−1)n), and532

d = (d1, . . . , dn) := (an, a2n . . . , an2)533
534

By the previous paragraph and the definitions, both c and d are directed walks in R′, and535

(ci, di) ∈ S for each i. Moreover, since R◦l locally n-absorbs R−1, Lemma 28 implies that536

R′ locally absorbs S. We can thus apply Lemma 29 to the relations R′, S and the tuples537

c,d and obtain a directed walk from c1 = an2 to dn−1 = an2 in R′. This closed walk in turn538

gives a closed directed walk in R and we are in a position to finish the proof by applying539

Theorem 31. J540

5 Consistent instances are sensitive (sketch of a proof)541

In this section we present the main ideas that are used to prove the “only if” direction in542

Theorem 17 and “1 implies 2” in Theorem 21. These ideas are shown in a very simplified543

situation, in particular, only the case that k = 2 and A is finite is considered. In the end of544

this section we briefly discuss the necessary adjustments in the general situation. A complete545

proof is given in the full version of this paper.546
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Consider a finite idempotent algebra A with a 4-ary near unanimity term operation547

and a (2, 3)-instance I = (V, C) over A. Each pair {x, y} of variables is constrained by a548

unique constraint ((x, y), Rxy) or ((y, x), Ryx). For convenience we also define Ryx = R−1
yx549

(or Rxy = R−1
yx in the latter case) and Rxx to be the equality relation on A. Our aim is to550

show that every pair in every constraint relation extends to a solution. The overall structure551

of the proof is by induction on the number of variables of I.552

We fix a pair of variables {x1, x2} and a pair (a1, a2) ∈ Rx1x2 that we want to extend.553

The strategy is to consider the instance J obtained by removing x1 and x2 from the set of554

variables and shrinking the constraint relations Ruv to R′uv so that only the pairs consistent555

with the fixed choice remain, that is,556

R′uv = {(b, c) ∈ Ruv | (a1, b) ∈ Rx1u, (a2, b) ∈ Rx2u, (a1, c) ∈ Rx1v, (a2, c) ∈ Rx2v}.557

We will show that J contains a nonempty (2, 3)-subinstance, that is, an instance whose558

constraint relations are nonempty subsets of the original ones. The induction hypothesis559

then gives us a solution to J which, in turn, yields a solution to I that extends the fixed560

choice.561

Having a nonempty (2, 3)-subinstance can be characterized by the solvability of certain562

relaxed instances. The following concepts will be useful for working with relaxations of I563

and J .564

I Definition 33. A pattern is a triple P = (W ;F , l), where (W ;F) is an undirected graph,565

and l is a mapping l : W → V . The variable l(i) is referred to as the label of i.566

A realization ( strong realization, respectively) of P is a mapping α : W → A, which567

satisfies every edge {w1, w2} ∈ F , that is, (α(w1), α(w2)) ∈ Rl(w1),l(w2) ((α(w1), α(w2)) ∈568

R′l(w1),l(w2), respectively). (Strong realization only makes sense if l(W ) ⊆ V \ {x1, x2}.)569

A pattern is ( strongly) realizable if it has a (strong) realization.570

The most important patterns for our purposes are 2-trees, these are patterns obtained571

from the empty pattern by gradually adding triangles (patterns whose underlying graph is572

the complete graph on 3 vertices) and merging them along a vertex or an edge to the already573

constructed pattern. Their significance stems from the following well known fact.574

I Lemma 34. An instance (over a finite domain) contains a nonempty (2,3)-subinstance if575

and only if every 2-tree is realizable in it.576

The “only if” direction of the lemma applied to the instance I implies that every 2-tree577

is realizable. The “if” direction applied to the instance J tells us that our aim boils down578

to proving that every 2-tree is strongly realizable. This is achieved by an induction on a579

suitable measure of complexity of the tree using several constructions. We will not go into580

full technical details here, we rather present several lemmata whose proofs contain essentially581

all the ideas that are necessary for the complete proof.582

I Lemma 35. Every edge (i.e., a pattern whose underlying graph is a single edge) is strongly583

realizable.584

Proof sketch. Let Q be the pattern formed by an undirected edge with vertices w1 and w2
585

labeled z1 and z2, respectively. Let P be the pattern obtained from Q by adding a set of586

four fresh vertices W ′ = {w11, w12, w21, w22} labeled x1, x2, x1, x2, respectively, and adding587

the edges {wi, wi1} and {wi, wi2} for i = 1, 2, see Figure 2. Observe that the restriction of a588
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W ′

w11x1

w12x2

w21x1

w22x2

w1 z1

w2 z2

Figure 2 Pattern P in Lemma 35.

Figure 3 Path of three bow ties.

realization β of P, such that β(wij) = aj for each i, j ∈ {1, 2}, to the set {w1, w2} is a strong589

realization of Q.590

We consider the set T of restrictions of realizations of P to the set W ′. Since constraint591

relations are subuniverses of A2, it follows that T is a subuniverse of A4.592

T = {(β(w11), β(w12), β(w21), β(w22)) | β realizes P} ≤ A4
593

We need to prove that the tuple a = (a1, a2, a1, a2) is in T . By the Baker-Pixley theorem,594

Theorem 14, it is enough to show that for any 3-element set of coordinates, the relation T595

contains a tuple that agrees with a on this set. This is now our aim.596

For simplicity, consider the set of the first three coordinates. We will build a realization597

β of P in three steps. After each step, β will satisfy all the edges where it is defined. First,598

since (a1, a2) ∈ Rx1x2 and I is a (2,3)-instance, we can find b1 ∈ A such that (a1, b1) ∈ Rx1z1599

and (a2, b1) ∈ Rx2z1 , and we set β(w11) = a1, β(w12) = a2, and β(w1) = b1. Second, we find600

b2 ∈ A such that (a1, b2) ∈ Rx1z2 and (b1, b2) ∈ Rz1z2 (here we use (a1, b1) ∈ Rx1z1 and that601

I is a (2,3)-instance), and set β(w21) = a1, β(w2) = b2. Third, using (a1, b2) ∈ Rx1z2 we find602

a′2 such that (b2, a
′
2) ∈ Rz2x2 and set β(w22) = a′2. By construction, β is a realization of P603

and (β(w11), β(w12), β(w21)) = (a1, a2, a1), so our aim has been achieved. J604

Using Lemma 35, one can go a step further and prove that every pattern built on a graph605

which is a triangle is strongly realizable. We are not going to prove this fact here.606

I Lemma 36. Every bow tie (a pattern whose underlying graph is formed by two triangles607

with a single common vertex) is strongly realizable.608

Proof sketch. Let W′1 and W′2 be two triangles (viewed as undirected graphs) with a single609

common vertex w. Let Q′ be any pattern over W ′1 ∪W ′2 with labelling l′ sending W ′1 ∪W ′2610

to V \ {x1, x2}. Similarly as in the proof of Lemma 35 we form a pattern Q by adding to611

Q′ ten additional vertices (five of them labeled x1, the other five x2) and edges so that the612

restriction of a realization α of Q to the set W ′1 ∪W ′2 is a strong realization of Q′ whenever613

the additional vertices have proper values (that is, value ai for vertices labeled xi).614

We will gradually construct a realization α of Q, which sends all the vertices labeled615

by x1 to a1, and all the vertices labeled by x2 and adjacent to a vertex in W ′1 to a2. First616

use the discussion after Lemma 35 to find a strong realization of Q′ restricted to W ′1. This617

defines α on W ′1 and its adjacent vertices labeled by x1 and x2.618

Next, we want to use Lemma 35 for assigning values to the two remaining vertices of619

W ′2. However, in order to accomplish that, we need to shift the perspective: the role of620

ICALP 2020



110:16 Sensitive instances of the Constraint Satisfaction Problem

x1 is played by x1, but the role of x2 is played by l′(w); and the role of (a1, a2) is played621

by (a1, α(w)). In this new context, we use Lemma 35 to find a strong realization of the622

edge-pattern formed by the two remaining vertices of W ′2 (with a proper restriction of l′).623

This defines α on all the vertices of Q, except for the two vertices adjacent to W ′2 \ {w} and624

labeled by x2. Finally, similarly as in the third step in the proof of Lemma 35, we define α625

on the remaining two vertices (labeled x2) to get a sought after realization of Q.626

Now α assigns proper values (a1 or a2) to all additional vertices, except those two coming627

from the non-central vertices of W ′2 and labeled by x2. We apply the 4-ary near unanimity628

term operation to the realization α and its 3 variants obtained by exchanging the roles of629

W ′1 and W ′2 and x1 and x2. The result of this application is a realization of Q which defines630

a strong realization of Q′. J631

In the same way it is possible to prove strong realizability of further patterns, such as those632

in the following corollary.633

I Corollary 37. Every “path of 3 bow ties” (i.e., a pattern whose underlying graph is as in634

Figure 3) is strongly realizable.635

The application of the loop lemma is illustrated by the final lemma in this section.636

I Lemma 38. Every diamond (i.e., a pattern whose underlying graph is formed by two637

triangles with a single common edge) is strongly realizable.638

Proof sketch. The idea is to merge two vertices in a bow tie using the loop lemma. Let Q′639

be a pattern over a graph which is a bow tie on two triangles W ′1 and W ′2 (just like in the640

proof of Lemma 36). Let w1 ∈W ′1 \W ′2 and w2 ∈W ′2 \W ′1 be such that l(w1) = l(w2).641

Let Q be obtained from Q′ exactly as in the proof of Lemma 36 and notice that a proper642

realization α of Q with α(w1) = α(w2) gives us a strong realization of a diamond. Let Q3 be643

the pattern obtained by taking the disjoint union of 3 copies of Q and identifying the vertex644

w2 in the i-th copy with the vertex w1 in the (i+ 1)-first copy, for each i ∈ {1, 2} (Figure 3645

shows Q3 without the additional vertices).646

Denote by T the set of all the realizations β of Q and denote by S ⊆ T the set of those647

β ∈ T that are proper. By a straightforward argument, both T and S are subuniverses of648 ∏
w∈Q A. Using the near unanimity term operation of arity 4, S clearly 4-absorbs T .649

The plan is to apply Theorem 32 to the binary relation projw1,w2 S ⊆ A×A. As noted650

above, a loop in this relation gives us the desired strong realization of a diamond, so it only651

remains to verify the assumptions of Theorem 32. By Corollary 37, the patternQ3 has a proper652

realization. The images of copies of vertices w1 and w2 in such a realization yield a directed653

walk in projw1,w2(S) of length 3. Next, since S 4-absorbs T , then projw1,w2(S) 4-absorbs654

projw1,w2(T ), so it is enough to verify that the latter relation contains =A and projw1,w2(S)−1.655

We only look at the latter property. Consider any (b1, b2) ∈ projw1,w2(S)−1. By the definition656

of S, the pattern Q has a realization α such that α(w1) = b2 and α(w2) = b1. We flip the657

values α(w1) and α(w2), restrict α to {w1, w2} together with the middle vertex of the bow tie,658

and then extend this assignment to a realization of Q, giving us (b1, b2) ∈ projw1,w2(T ). J659

There are two major adjustments needed for the general case. First, the “if” direction of660

Lemma 34 (and its analogue for a general k) is no longer true over infinite domains. This661

is resolved by working directly with the realizability of k-trees and proving a more general662

claim by induction: instead of “a (k, k + 1)-instance is sensitive” we prove, roughly, that663

any evaluation, which extends to a sufficiently deep k-tree, extends to a solution. Second,664

for higher values of k than 2 we do not prove strong realizability in one step as in, e.g.,665
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Lemma 35, but rather go through a sequence of intermediate steps between realizability and666

strong realizability.667

6 Conclusion668

We have characterized varieties that have sensitive (k, k + 1)-instances of the CSP as those669

that possess a near unanimity term of arity k + 2. From the computational perspective, the670

following corollary is perhaps the most interesting consequence of our results.671

I Corollary 39. Let A be a finite CSP template whose relations all have arity at most k and672

which has a near unanimity polymorphism of arity k + 2. Then every instance of the CSP673

over A, after enforcing (k, k + 1)-consistency, is sensitive.674

Therefore not only is the (k, k + 1)-consistency algorithm sufficient to detect global675

inconsistency, we also additionally get the sensitivity property. Let us compare this result to676

some previous results as follows. Consider a template A that, for simplicity, has only unary677

and binary relations and that has a near unanimity polymorphism of arity k + 2 ≥ 4. Then678

any instance of the CSP over A satisfies the following.679

1. After enforcing (2, 3)-consistency, if no contradiction is detected, then the instance has a680

solution [4] (this is the bounded width property).681

2. After enforcing (k, k + 1)-consistency, every partial solution on k variables extends to a682

solution (this is the sensitivity property).683

3. After enforcing (k + 1, k + 2)-consistency, every partial solution extends to a solution [13]684

(this is the bounded strict width property).685

For k + 2 > 4 there is a gap between the first and the second item. Are there natural686

conditions that can be placed there?687

The properties of a template A from the first and the third item (holding for every688

instance) can be characterized by the existence of certain polymorphisms: a near unanimity689

polymorphism of arity k + 2 for the third item [13] and weak near unanimity polymorphisms690

of all arities greater than 2 for the first item [5, 11, 17]. This paper does not give such a691

direct characterization for the second item (essentially, since Theorem 21 involves a square).692

Is there any? Moreover, there are characterizations for natural extensions of the first and693

the third to relational structures with higher arity relations [13, 3]. This remains open for694

the second item as well.695

In parallel with the flurry of activity around the CSP over finite templates, there has been696

much work done on the CSP over infinite ω-categorical templates [9, 19]. These templates697

cover a much larger class of computational problems but, on the other hand, share some698

pleasant properties with the finite ones. In particular, the (k, k+1)-consistency of an instance699

can still be enforced in polynomial time. Corollary 39 can be extended to this setting as700

follows.701

I Corollary 40. Let A be an ω-categorical CSP template whose relations all have arity at702

most k and which has local idempotent near unanimity polymorphisms of arity k + 2. Then703

every instance of the CSP over A, after enforcing the (k, k + 1)-consistency, is sensitive.704

Bounded strict width k of an ω-categorical template was characterized in [10] by the705

existence of a quasi-near unanimity polymorphism n of arity k + 1, i.e.,706

n(y, x, . . . , x) ≈ n(x, y, . . . , x) ≈ · · · ≈ n(x, x, . . . , y) ≈ n(x, x, . . . , x),707
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which is, additionally, oligopotent, i.e., the unary operation x 7→ n(x, x, . . . , x) is equal to708

an automorphism on every finite set. This result extends the characterization of Feder and709

Vardi since an oligopotent quasi-near unanimity polymorphism generates a near unanimity710

polymorphism as soon as the domain is finite. On an infinite domain, however, oligopotent711

quasi-near unanimity polymorphisms generate local near unanimity polymorphisms which,712

unfortunately, do not need to be idempotent on the whole domain. Our results thus fall713

short of proving the following natural generalization of Corollary 39 to the infinite.714

I Conjecture 41. Let A be an ω-categorical CSP template whose relations all have arity715

at most k and which has an oligopotent quasi-near unanimity polymorphism of arity k + 2.716

Then every instance of the CSP over A, after enforcing (k, k + 1)-consistency, is sensitive.717

To confirm the conjecture, a new approach, that does not use a loop lemma, will be718

needed since there are examples of ω-categorical structures having oligopotent quasi-near719

unanimity polymorphisms for which the counterpart to Theorem 30 does not hold. Indeed,720

one such an example is the infinite clique.721
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