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Idempotent n-permutable varieties

M. Valeriote and R. Willard

Abstract

One of the important classes of varieties identified in tame congruence theory is the class of
varieties which are n-permutable for some n. In this paper, we prove two results: (1) for every
n > 1, there is a polynomial-time algorithm that, given a finite idempotent algebra A in a finite
language, determines whether the variety generated by A is n-permutable and (2) a variety is n-
permutable for some n if and only if it interprets an idempotent variety that is not interpretable
in the variety of distributive lattices.

1. Introduction

This paper is concerned with varieties (that is, equationally axiomatizable classes) of general
algebraic structures, the interpretability quasi-order relating varieties, and polynomial-time
algorithms for testing congruence properties of finite algebras. For general background, see, for
example, [2].

By an algebra, we mean any structure A = 〈A, fi(i ∈ I)〉 consisting of a nonvoid set A,
called the universe of A, and a system of finitary operations fi over the set A, called the
basic operations of A. The signature of A is the indexed family τ = (ni : i ∈ I) stipulating
the number of variables admitted by each operation fi. A subset of A that is closed under the
basic operations of A is called a subuniverse of A, and if it is nonempty will form the universe
of a subalgebra of A. A variety is a class of algebras over a common signature that is closed
under direct products, subalgebras, and homomorphic images.

If A is an algebra, then we say that a binary relation on A is compatible (with A) if it is
a subuniverse of A2. A congruence of an algebra A is an equivalence relation θ on A that is
compatible with A. If θ is a congruence of A, then an algebra of the same signature as A
can be defined in a natural way on the set A/θ of the θ equivalence classes. The collection of
congruences of an algebra forms a lattice, denoted by ConA, with lattice operations α ∧ β =
α ∩ β and α ∨ β the transitive closure of α ∪ β. To a large degree, the congruence lattices of
algebras in a given variety V determine the structure of the members of V .

If A is an algebra and R,S are reflexive subuniverses of A2, then R ◦ S denotes the
subuniverse {(a, b) : ∃x ∈ A with (a, x) ∈ R and (x, b) ∈ S}. The operation ◦ is associative on
reflexive subuniverses of A2 and satisfies R ∪ S ⊆ R ◦ S. Define R ◦1 S = R and R ◦k+1 S =
R ◦ (S ◦k R) for k > 1. The utility and importance of the operation ◦ are partly explained by
the fact that, for any congruences α, β of A, their join in the congruence lattice of A is given
by α ∨ β =

⋃
n α ◦n β.

For n � 2, an algebra A is said to be (congruence) n-permutable if for all α, β ∈ ConA we
have α ∨ β = α ◦n β. Hagemann and Mitschke [11], generalizing Mal’cev [18] and improving
[9, 21] provided the following ‘classical’ characterization of n-permutable varieties.
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Proposition 1.1 [11]. Fix n � 1. A variety V is (n + 1)-permutable if and only if it
satisfies the following condition:

There exist terms p1(x, y, z), . . . , pn(x, y, z) in the language of V so that the
following are identities of V :

p1(x, y, y) ≈ x,

pi(x, x, y) ≈ pi+1(x, y, y) for 1 � i < n,
pn(x, x, y) ≈ y.

Recall that an algebra A is idempotent if each of its fundamental operations f satisfies the
idempotent law f(x, x, . . . , x) ≈ x (equivalently, if each 1-element subset of A is a subalgebra
of A), and a variety is idempotent if each of its members is. Idempotent algebras and varieties
are important for a number of reasons, not the least of which is the role of finite idempotent
algebras in the algebraic approach to the Constraint Satisfaction Dichotomy Conjecture (see,
for example, [1, 4, 17]).

For each n > 1, Proposition 1.1 suggests the following algorithm for determining whether
an algebra A generates an n-permutable variety: generate all ternary term operations of A
and search through them for operations satisfying the Hagemann–Mitschke identities. On
finite algebras in finite signatures, this algorithm can be implemented in exponential time,
and Horowitz has proved [13, 14] that the problem of determining whether a finite algebra
generates an n-permutable variety for fixed n > 2 is ExpTime-complete. However, for finite
idempotent algebras, Freese and the first author [7] proved that testing whether V(A) is
2-permutable, or whether V(A) is n-permutable for some n, can both be accomplished in
polynomial time, and they asked [7, Problem 8.5] whether, for each fixed n > 2, there similarly
exists a polynomial-time algorithm for n-permutability in the idempotent case. In Section 3,
we answer this question affirmatively.

The interpretability quasi-ordering between varieties can be defined as follows. If V is a
variety and Σ is a set of identities in a signature τ , then we say that V interprets Σ if there
is a function f 
→ tf from τ to terms in the language of V , so that (A, (tAf : f ∈ τ)) is a
model of Σ for all A ∈ V . If W is another variety, then we write W � V and say that W is
interpretable in V if V interprets some (equivalently every) set of identities Σ axiomatizing W .
(In this definition, we have glossed over a fine point regarding nullary operations; for details,
see [2, 8, 19].) Roughly speaking, W � V means that every member of V carries the structure
of a member of W . The relation � is a quasi-order on the class of all varieties; varieties that
are ‘higher’ in this quasi-ordering can be considered as having ‘more structure’.

The class P of varieties that are n-permutable for some n is one of four classes identified
in the work of Hobby and McKenzie [12] in the locally finite case, and the work of Kearnes
and Kiss [16] in general, as being particularly significant from a structural point of view. The
other three classes are:

(1) T , the class of varieties having a Taylor term;
(2) HM , the class of all varieties having a Hobby–McKenzie term;
(3) SD(∧), the class of congruence meet-semidistributive varieties.

Each of P, T , HM , and SD(∧) is an order-filter with respect to the interpretability quasi-
order, and each has the property that a variety is in the class if and only if its idempotent
reduct is. Each of these classes is definable by a linear idempotent Maltsev condition, has
a characterization involving congruence properties, and (for locally finite varieties) has an
omitting-types tame congruence-theoretic characterization.

For idempotent varieties, membership in each of T ,HM ,SD(∧) has a strikingly simple
characterization in the interpretability quasi-order. Let Sets denote the variety of nonempty
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sets (that is, algebras with no operations), let Semilattices denote the variety of semilattices,
and for each ring R with unit let RM denote the variety of all unital left R-modules.

Proposition 1.2. Let E be an idempotent variety:

(1) E ∈ T if and only if E � Sets;
(2) E ∈ HM if and only if E � Semilattices;
(3) E ∈ SD(∧) if and only if E � RM for every simple unital ring R.

Proof. Statement (1) is due to Taylor [20, Corollary 5.3]; see [12, Lemma 9.4] for a
detailed proof. Statement (2) is due to Hobby and McKenzie [12, Lemma 9.5]. Statement
(3) is essentially due to Kearnes and Kiss as we now explain. The (⇒) implication is easy since
nontrivial varieties of modules are never congruence meet-semidistributive. For the opposite
implication, assume that E �∈ SD(∧). The proof of (10) ⇒ (4) in [16, Theorem 8.1] gives a
nontrivial module B̂ over some ring S and an algebra B ∈ E such that B is a term reduct of
B̂. We can assume that B̂ is a faithful S-module and so HSP(B̂) = SM . Then B ∈ E implies
E � HSP(B̂) = SM . Let R be a simple homomorphic image of S; then SM � RM , proving
E � RM .

What is missing is a correspondingly simple result for the class P. For locally finite varieties,
one can easily deduce from [12, Theorem 9.14] that if E is locally finite and idempotent,
then E ∈ P if and only if E � DistLat , where DistLat denotes the variety of distributive
lattices. Kearnes and Kiss [16, Problem P6] have asked whether this characterization is valid
for all idempotent varieties. Freese [6, Theorem 8] has recently given a partial confirmation by
verifying the equivalence for idempotent linear varieties. In Section 3, we answer the question
of Kearnes and Kiss affirmatively. Equivalently, we prove that if an idempotent algebra A has
a nontrivial compatible partial order, then the variety generated by A contains a two-element
algebra having a compatible total order.

2. Polynomial-time algorithm

In this section, we show that for any integer n � 1, there is a polynomial-time algorithm
to determine if a given finite idempotent algebra generates a congruence (n + 1)-permutable
variety. This generalizes results for congruence 2-permutability from [7, 13] that were also
observed by McKenzie. Our result is in contrast to the general, nonidempotent case, where
this problem is exponential time complete for n > 1 (see [13]). Throughout this section, fix n
to be a positive integer and let A be a finite algebra.

Definition 2.1. Let �p = (p1(x, y, z), p2(x, y, z), . . . , pn(x, y, z)) be a sequence of idempo-
tent ternary operations on A. For such sequences, we set p0(x, y, z) and pn+1(x, y, z) to be the
first and third projection functions, respectively, in the following.

(1) For a, b ∈ A and 0 � i � n, we call (a, b, i) an A-triple of sort i and we say that �p
is a local Hagemann–Mitschke sequence of operations for the triple (a, b, i) if the equality
pi(a, a, b) = pi+1(a, b, b) holds.

(2) For S a collection of A-triples, we say that �p is a local Hagemann–Mitschke sequence
of operations for S if it is a local Hagemann–Mitschke sequence for each triple in S.
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Theorem 2.2. For n � 1, a finite algebra A generates an (n + 1)-permutable variety if and
only if for each set S of A-triples of size n + 1 there is a local Hagemann–Mitschke sequence
of term operations of A for S.

Proof. One direction follows from Proposition 1.1. For the other direction, we show by
induction on |S| that for every collection S of A-triples there is a local Hagemann–Mitschke
sequence of term operations of A for S. For S the set of all A-triples, the corresponding
sequence of term operations is a sequence of Hagemann–Mitschke terms for A.

The base of the induction, when |S| � n + 1, is given, and so suppose that S is a set of
A-triples with |S| > n + 1 and that for every strictly smaller set of A-triples, there is a local
Hagemann–Mitschke sequence of term operations for it. Since |S| > n + 1, there is some i
such that there is more than one A-triple of sort i in S. Let (a, b, i) be one such triple and let
U = S \ {(a, b, i)}. Since |U | < |S|, it follows that there is a local Hagemann–Mitschke sequence
of term operations �u for U .

We now define V to be the following set of A-triples:

V = {(uj(c, c, d), d, j) : 0 � j < i and (c, d, j) ∈ S}
∪{(ui(a, a, b), ui+1(a, b, b), i)}
∪{(c, uj(c, c, d), j) : i < j � n and (c, d, j) ∈ S}.

Since S contains more than one A-triple of sort i, it follows that |V | < |S| and so there is a
local Hagemann–Mitschke sequence of term operations �v for V . Let �s be the following sequence
of ternary term operations of A:

sj(x, y, z) = vj(uj(x, y, z), uj(y, y, z), z) for 1 � j < i,

si(x, y, z) = vi(ui(x, y, z), ui(y, y, z), ui+1(y, z, z)),
si+1(x, y, z) = vi+1(ui(x, x, y), ui+1(x, y, y), ui+1(x, y, z)),

and

sj(x, y, z) = vj(x, uj(x, y, y), uj(x, y, z)) for i + 1 < j � n.

We claim that �s is a local Hagemann–Mitschke sequence of term operations for S. First note
that since �u and �v are local Hagemann–Mitschke sequences of term operations, it follows that,
by definition, the term operations in these two sequences are idempotent. It follows that the
term operations in the sequence �s are also idempotent. The following calculations establish the
rest of our claim.

(1) Let (c, d, j) ∈ S with 0 � j < i − 1. Then

sj(c, c, d) = vj(uj(c, c, d), uj(c, c, d), d)
= vj+1(uj(c, c, d), d, d)
= vj+1(uj+1(c, d, d), d, d)
= sj+1(c, d, d).

(2) Let (c, d, i − 1) ∈ S (assuming that i �= 0). Then

si−1(c, c, d) = vi−1(ui−1(c, c, d), ui−1(c, c, d), d)
= vi(ui−1(c, c, d), d, d)
= vi(ui(c, d, d), d, d)
= vi(ui(c, d, d), ui(d, d, d), ui+1(d, d, d))
= si(c, d, d).
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(3) Let (c, d, i) ∈ S \ {(a, b, i)} = U . Then

si(c, c, d) = vi(ui(c, c, d), ui(c, c, d), ui+1(c, d, d))
= ui+1(c, d, d)
= vi+1(ui(c, c, d), ui+1(c, d, d), ui+1(c, d, d))
= si+1(c, d, d).

(4) Since (ui(a, a, b), ui+1(a, b, b), i) ∈ V, it follows that

si(a, a, b) = vi(ui(a, a, b), ui(a, a, b), ui+1(a, b, b))
= vi+1(ui(a, a, b), ui+1(a, b, b), ui+1(a, b, b))
= si+1(a, b, b).

(5) Let (c, d, i + 1) ∈ S. Then

si+1(c, c, d) = vi+1(ui(c, c, c), ui+1(c, c, c), ui+1(c, c, d))
= vi+1(c, c, ui+1(c, c, d))
= vi+2(c, ui+1(c, c, d), ui+1(c, c, d))
= vi+2(c, ui+2(c, d, d), ui+2(c, d, d))
= si+2(c, d, d).

(6) Let (c, d, j) ∈ S with i + 1 < j < n. Then

sj(c, c, d) = vj(c, uj(c, c, c), uj(c, c, d))
= vj(c, c, uj(c, c, d))
= vj+1(c, uj(c, c, d), uj(c, c, d))
= vj+1(c, uj+1(c, d, d), uj+1(c, d, d))
= sj+1(c, d, d).

(7) Let (c, d, n) ∈ S (assuming that i �= n). Then

sn(c, c, d) = vn(c, un(c, c, c), un(c, c, d))
= vn(c, c, un(c, c, d))
= vn(c, c, d) = d.

Corollary 2.3. A finite idempotent algebra A generates a congruence (n + 1)-permutable
variety if and only if for every pair of (n + 1)-tuples (a0, a1, . . . , an), (b0, b1, . . . , bn) of elements
from A, the pair (a0, bn) is in the relational product R1 ◦ R2 ◦ · · · ◦ Rn, where Ri is the
subuniverse of A2 generated by the pairs (ai−1, ai), (bi−1, ai), and (bi−1, bi).

Proof. By the theorem, we need to ensure that for every set of n + 1 A-triples, the algebra
A has a local Hagemann–Mitschke sequence of term operations for that set. If any two of
the A-triples in the set have the same sort, then the projection operations onto the first
or third variable can be used to construct a local Hagemann–Mitschke sequence of term
operations for the n + 1 A-triples. So, the only type of sets of n + 1 A-triples that need to
be considered are of the form {(a0, b0, 0), (a1, b1, 1), . . . , (an, bn, n)} for some pair of (n + 1)-
tuples (a0, a1, . . . , an), (b0, b1, . . . , bn) over A. It is not hard to see that there will be a local
Hagemann–Mitschke sequence of term operations for such a set if and only if the condition
stated in the corollary holds.
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Corollary 2.4. For a fixed n � 1, there is a polynomial-time algorithm to determine if
a given finite idempotent algebra A generates a congruence (n + 1)-permutable variety.

Proof. The condition from the previous corollary can be tested in polynomial time (as a
function of the size of the algebra A). We use the fact that the 3-generated subalgebras Ri of
A2 from the corollary can be efficiently generated.†

Corollary 2.5. For n � 1, a finite idempotent algebra A generates a congruence (n + 1)-
permutable variety if and only if every (n + 2)-generated subalgebra of A(n+1) is congruence
(n + 1)-permutable.

Proof. We show that the condition of Corollary 2.3 can be met under the assumption
that every (n + 2)-generated subalgebra of A(n+1) is congruence (n + 1)-permutable. Let ā =
(a0, a1, . . . , an) and b̄ = (b0, b1, . . . , bn) be a pair of (n + 1)-tuples of elements from A and let
the Ri be the subalgebras of A2 from the corollary.

For 0 � i � n + 1, let c̄i = (b0, b1, . . . , bi−1, ai, ai+1, . . .) and let C be the subalgebra of A(n+1)

generated by the c̄i. In C, let α and β be the congruences generated by the sets of pairs
{(ci, ci+1) : i even} and {(ci, ci+1) : i odd}, respectively. By construction, we have that (ā, b̄) ∈
α ◦n+1 β and so by assumption, (ā, b̄) ∈ β ◦n+1 α.

For 0 � i � n + 1, let d̄i = (di
0, d

i
1, . . . , d

i
n) be elements of C such that

(1) d̄0 = ā;
(2) (d̄i, d̄i+1) ∈ β, for i even;
(3) (d̄i, d̄i+1) ∈ α, for i odd;
(4) d̄n+1 = b̄;

and for 1 � i � n, let ti(x0, . . . , xn+1) be a term such that

tCi (c̄0, . . . ,c̄n+1) = d̄i.

By examining this equality in the coordinates i − 1 and i, we see that the pair (di
i−1, d

i
i) belongs

to Ri. Since for i even β is contained in the kernel of the projection of C onto its ith coordinate
and for i odd α is contained in the kernel of the projection of C onto its ith coordinate, it
follows that di

i = di+1
i for 0 � i � n. These elements witness that the pair (a0, bn) is in the

relational product R1 ◦ R2 ◦ · · · ◦ Rn, as required.

The exponent (n + 1) in the previous corollary is tight, since the two-element distributive
lattice 2 generates a variety that is not n-permutable for any n. Yet we have the following
proposition.

Proposition 2.6. For every n � 1, every sublattice of 2n is congruence (n + 1)-
permutable.

Proof. Suppose L � 2n, α, β ∈ ConL, a0, a1, . . . , an+1 ∈ L, (ai, ai+1) ∈ α for even i, and
(ai, ai+1) ∈ β for odd i. It suffices to show (a0, an+1) ∈ β ◦n+1 α.

†More generally, for each fixed k, the problem that takes as input a finite algebra A in a finite signature, a
subset X ⊆ Ak, and an element ā ∈ Ak and decides whether ā is in the subalgebra of Ak generated by X, is
solvable in polynomial time. This fact is an easy generalization of an observation of [15]; see also [3].
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Define the binary polynomial operation � on L by x � y = m(x, y, an+1) where m(x, y, z) =
(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). Also define the binary relation � on L by x � y if and only if
x � y = x. Then � is a (meet) semilattice operation on L and � is its corresponding partial
order with least element an+1. Define b0 = a0 and bi+1 = bi � ai+1 for i � n. Then a0 = b0 �
b1 � · · · � bn+1 = an+1, (bi, bi+1) ∈ α for even i, and (bi, bi+1) ∈ β for odd i.

Because � has a coordinate-wise definition in L ⊆ {0, 1}n, the poset (L,�) has height at
most n + 1. Hence, there exists i � n such that bi = bi+1, which implies (a0, an+1) ∈ (α ◦n β) ∪
(β ◦n α) ⊆ β ◦n+1 α, as required.

3. Interpretability characterization

In this section, we prove that an idempotent variety is n-permutable for some n > 1 if and
only if it is not interpretable in the variety of distributive lattices. Our proof depends on the
following lemma connecting the failure of n-permutability to the existence of algebras with a
compatible partial order. The lemma follows easily from an unpublished result of Hagemann,
that a variety is n-permutable for some n if and only if every compatible quasi-order in any
member of the variety is an equivalence relation [10, Corollary 4], and is proved explicitly in
[6, Theorem 3].

Lemma 3.1. The following are equivalent for an idempotent variety E :

(1) E is not n-permutable for any n > 1;
(2) E contains a nontrivial member having a compatible bounded partial order.

The heart of our argument is contained in the following claim.

Proposition 3.2. Suppose that P is an idempotent algebra having a compatible bounded
partial order. Then the variety generated by P contains a two-element algebra having a
compatible total order.

Proof. Let � be a compatible bounded partial order of P with least element 0 and greatest
element 1.

Definition 3.3. (1) Let P0 = P \ {0}.
(2) For any A ⊆ P, define:

(a) A↑ = {x ∈ P : a � x for some a ∈ A};
(b) A↓ = {x ∈ P : x � a for some a ∈ A};
(c) NA = A↑ \ A↓.

(3) Let J = {NA : A ⊆ P0} ∪ {{0}}.

Lemma 3.4. The set P is not the union of any finite subset of J .

Proof. Suppose J0 ⊆ J and
⋃

J0 = P . Set b0 = 1. As b0 �= 0, there must exist NA0 ∈ J0

with b0 ∈ A0↑ \ A0↓. Thus, there exists b1 ∈ A0 with b1 � b0, and since b0 �∈ A0↓, we in fact
have b1 < b0. Finally, 0 < b1 because b1 ∈ A0 ⊆ P0.
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Repeat: as b1 �= 0 there exists NA1 ∈ J0 with b1 ∈ A1↑ \ A1↓. Note that b1 ∈ A0 ⊆ A0↓
implies A1 �= A0. As before, we obtain b2 ∈ A1 with 0 < b2 < b1. Let us try it again: as b2 �= 0
there exists NA2 ∈ J0 with b2 ∈ A2↑ \ A2↓. Note that b2 ∈ A1 ⊆ A1↓ implies A2 �= A1, and
b2 < b1 ∈ A0 implies b2 ∈ A0↓, implying A2 �= A0. As before, we obtain b3 ∈ A2 with 0 < b3 <
b2. Clearly, this goes on forever, implying J0 must be infinite.

Hence, we can fix an ultrafilter U on P with the property that U ∩ J = ∅.

Lemma 3.5. For every Z ∈ U , there exists x ∈ Z such that x �= 0 and Z ∩ {x}↓ is
downward-dense above 0; that is , for all u ∈ P satisfying 0 < u � x there exists y ∈ Z satisfying
0 < y � u.

Proof. Suppose that there is no such x ∈ Z. Then for each x ∈ Z \ {0}, we can choose ux

satisfying 0 < ux < x and Z ∩ {ux}↓ ⊆ {0}. Define A = {ux : x ∈ Z \ {0}}. Then Z ⊆ NA ∪
{0}, contradicting the fact that NA ∪ {0} �∈ U .

Definition 3.6. Let U denote the ultrapower PP /U .

Note that the order relation � is defined naturally in U, and each operation of U is
compatible with �. We will use the following notation (cf. [5, Definition V.2.4]): if a, b, c, . . . ∈
PP and f ∈ Clo(P), then

aU denotes the image of a in U,

�a = b� denotes {x ∈ P : a(x) = b(x)},
�f(a, b, . . .) < c� denotes {x ∈ P : f(a(x), b(x), . . .) < c(x)},

etc.
Let 0̄ denote the constant function P → P with value 0, let id denote the identity function

P → P , and let 0 = 0̄U and 1 = idU . If f ∈ Clo2(P), then let f [0] denote the function f(0, ) :
P → P . Finally, let S be the subalgebra of U generated by {0,1}.

Lemma 3.7. (1) The set S satisfies: S = {f [0]
U : f ∈ Clo2(P)}.

(2) The set S satisfies: |S| > 1, and 0 � a � 1 for all a ∈ S.

Proof. Clearly �0̄ = id� = {0} �∈ U ; hence 0 �= 1. The other claims are routine.

Lemma 3.8. For all h ∈ Clo3(P) and all a ∈ S, if a > 0 and hS(0,1, a) = 0, then
hS(0,1,1) = 0.

Proof. Assume instead that hS(0,1,1) > 0. Pick f ∈ Clo2(P) with f [0]
U = a. Let Z =

�f [0] > 0̄ and h(0̄, id, f [0]) = 0̄ and h(0̄, id, id) > 0̄� and note that our assumptions imply Z ∈
U . Clearly,

Z = {x ∈ P : f(0, x) > 0 and h(0, x, f(0, x)) = 0 and h(0, x, x) > 0}.
Pick x ∈ Z witnessing Lemma 3.5. Because x ∈ Z, we have

0 < f(0, x), h(0, x, f(0, x)) = 0, 0 < h(0, x, x).
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Let u = f(0, x). Because f ∈ Clo2(P) and 0 < x, we have u � f(x, x) = x. By our choice of x,
there exists y ∈ Z with y � u. As y ∈ Z, we have

0 < f(0, y), h(0, y, f(0, y)) = 0, 0 < h(0, y, y).

But h ∈ Clo3(P), so h is order-preserving, so 0 < h(0, y, y) � h(0, x, u) = 0, a contradiction.

Define E = {(a, b) ∈ S2 : a = 0 or b �= 0}.

Lemma 3.9. The set E satisfies E � S2.

Proof. Suppose not. Then there exist n � 1, h ∈ Clon(P), and (a1, b1), . . . , (an, bn) ∈ E
such that hS(a1, . . . , an) > 0 while hS(b1, . . . , bn) = 0. We can assume (by rearranging and
possibly collapsing coordinates) that (a1, b1) = (0,0) and bj > 0 for all j � 2. Because hS is
order-preserving, we can further assume that a2 = · · · = an = 1. Thus,

hS(0, b2, . . . , bn) = 0 and hS(0,1, . . . ,1) > 0.

Thus, there must exist 1 � k < n such that

hS(0,1, . . . ,1︸ ︷︷ ︸
k−1

, bk+1, bk+2, . . . , bn) = 0

and

hS(0,1, . . . ,1,1︸ ︷︷ ︸
k

, bk+2, . . . , bn) > 0.

For k < j � n, choose fj ∈ Clo2(P) such that bj = (f [0]
j )U and define

h̄(x, y, z) = h(x, y, . . . , y︸ ︷︷ ︸
k−1

, z, fk+2(x, y), . . . , fn(x, y)) ∈ Clo3(P).

Also let b = bk+1 and f = fk+1. Then

�h̄(0̄, id, f [0]) = 0̄� = �h(0̄, id, . . . , id︸ ︷︷ ︸
k−1

, f [0], f
[0]
k+2, . . . , f

[0]
n ) = 0̄� ∈ U ,

�h̄(0̄, id, id) > 0̄� = �h(0̄, id, . . . , id︸ ︷︷ ︸
k−1

, id, f
[0]
k+2, . . . , f

[0]
n ) > 0̄� ∈ U .

Hence, b > 0, h̄S(0,1, b) = 0, and h̄S(0,1,1) > 0, contradicting Lemma 3.8.

Now let θ = E ∩ E−1. It follows that θ ∈ ConS, and that if T = S/θ, then |T| = 2 and E/θ
is a compatible total ordering of T. As T is in the variety generated by P, we have proved
Proposition 3.2.

Corollary 3.10. The following are equivalent for an idempotent variety E :

(1) E is n-permutable for some n > 1;
(2) E � DistLat .

Proof. The implication (1) ⇒ (2) is well known and can be deduced from Proposition 1.1 by
noting that the two-element distributive lattice does not support Hagemann–Mitschke terms.

For the opposite implication, assume that E is not n-permutable for any n > 1. Then, by
Lemma 3.1 and Proposition 3.2, E contains a two-element algebra T having a compatible
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total order. Thus, T is a term reduct of the two-element distributive lattice 2, which proves
E � HSP(2) = DistLat .

We note that without the assumption of idempotence, Proposition 3.2 can fail badly. The
following is an example of a variety V that is not n-permutable for any n > 1 but such that
if A is a member of V having a nontrivial compatible partial order �, then � has arbitrarily
large finite chains.

Example 3.11. Let V be the variety defined by the identities for a pairing function. That
is, the language of V consists of a binary operation p and two unary operations f, g, and V is
defined by p(f(x), g(x)) ≈ x, f(p(x, y)) ≈ x, and g(p(x, y)) ≈ y.

Consider the poset (2ω,�) with the pointwise order. Define f, g : 2ω → 2ω and p : 2ω × 2ω →
2ω by

f(a)(i) = a(2i),
g(a)(i) = a(2i + 1),

p(a, b)(i) =

{
a(i/2) if i is even,

b((i − 1)/2) otherwise.

Define the algebra P = (2ω; f, g, p). Then P ∈ V and � is a compatible partial order for P. As
� is a compatible quasi-order that is not an equivalence relation, V is not n-permutable for
any n, by Hagemann’s result.

Now suppose that A is any member of V having a nontrivial compatible partial order �. If
a1 < a2 < · · · < ak is a chain of length k in A, then by the defining identities of V it follows
that

p(a1, a1) < p(a1, a2) < · · · < p(a1, ak) < p(a2, ak) < · · · < p(ak, ak)

is a chain of length 2k − 1.
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