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Abstract

A variety V of universal algebras is said to be congruence per-
mutable if for every algebra A of V and every pair of congruences «,
G from A we have ao 8 = o . We show that if V is locally finite
(i.e., every finitely generated member of V is finite) then congruence
permutability is equivalent to a local property of the finite members
of V, expressible in the language of tame congruence theory. This
answers a question of R. McKenzie and D. Hobby.
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1 Introduction

By an algebra we mean simply any structure A = (A, f;(¢ € I)) consisting
of a nonvoid set A, called the universe, and a system of finitary operations
fi over A. A congruence of an algebra A is an equivalence relation 6 on
the universe of A which is compatible with the operations of A, in the sense
that an algebraic structure can be defined naturally on the set A/f of 6
equivalence classes.

The relational product of two congruences o and (3 of A is the relation

aof={{a,b) : (a,c) € aand (c,b) € (§ for some element c}.

A has permuting congruences, or is congruence permutable, if for all
congruences « and [ of A, ao 3 = foa. A variety (i.e., a class of algebras
defined by a set of equations) V is congruence permutable if every algebra in
V is congruence permutable.

Many familiar algebraic structures, such as groups, rings and modules,
are congruence permutable and many deep results in universal algebra have
been proved about algebras and varieties having permuting congruences. One
of the earliest and most important results dealing with permutability was
proved by A. I. Maltsev in [5]. He showed that a variety V is congruence
permutable if and only if there is some term t(x,y, z) in the language of V
such that

VEt(r,z,y) = ty,z,z) = y.
For example, the appropriate terms for groups and rings are x - y~
x — y + z respectively.

Since Maltsev’s work on congruence permutability, other properties of
varieties, such as congruence distributivity and congruence modularity, have
been shown to have similar sorts of characterizations using terms and equa-
tions. Characterizations of this sort are now called Maltsev conditions; see
Taylor [7] or Neumann [6] for the general definition.

In the early 1980’s, Ralph McKenzie and his student David Hobby made
important advances in the study of finite algebras and locally finite vari-
eties. (A variety is locally finite if every finitely generated member is finite.)
They developed a theory called tame congruence theory which amongst other
things demonstrates that the lattice of congruences of any finite algebra de-
termines to a great degree the structure of that algebra. A brief overview of
this theory will be given in the next section.
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One of the many interesting aspects of the work of McKenzie and Hobby
can be found in Chapter 8 of [3]. There they show that congruence distrib-
utivity and congruence modularity in locally finite varieties can be charac-
terized in the language of tame congruence theory. It is left open whether
or not the condition stated in Exercise 8.8 (1) provides a tame congruence
theoretic characterization of locally finite congruence permutable varieties.
We answer that question here in the affirmative.

2 Tame Congruence Theory

One of the key steps in the development of tame congruence theory was the
realization that locally the behaviour of finite algebras is quite limited. This
is made precise in the following definitions and theorems. The reader may
wish to refer to [3] for further details and proofs. (For the basic theory of
universal algebra, consult [1].)

By a polynomial operation of the algebra A we mean an operation on
A (the universe of A) of the form t2(zy,...,Z,,¢1,. .., Cn), where t is a term
of A and ¢y, ...,c,, are elements in A. We denote the set of all polynomials
of A by Pol A, and the set of all unary (n = 1) polynomials of A by Pol; A.
Two algebras A and A’ having the same universe are called polynomially
equivalent if Pol A = Pol A’

Definition 2.1 Let A be a finite algebra and let o and 3 be congruences of
A.

(1) We say that a function f : A — A collapses [ into o and write
f(B) C aif (f(a), f(b)) € a for all (a,b) € 3.

(2) By a congruence quotient of A we mean a pair («, (3) of congruences
of A such that a < 3. A congruence quotient («, 3) of A is called a
prime quotient iff 5 covers o in Con A (the lattice of congruences of
A ordered by inclusion). The relation of covering between two elements
of Con A is written a < 3.

(3) Let («, 5) be a congruence quotient of A and let

Ua(a,B) ={f(A) : f€PolA and f(f5) ¢ a}



and Ma (o, ) be the set of all minimal members of Ua (o, 3) relative
to the ordering of inclusion. A member of Mx («, ) is called an («, [3)-
minimal set of A.

Definition 2.2 Let A be a finite algebra and suppose that @ < § € Con A.
By an (a, §)-trace in A we mean any set N C A such that for some U €
Ma(a,3), N C U and N is of the form (z/8) N U for some x € U such that
(x/a)NU # (z/B) NU. The body and the tail of an («, 5)-minimal set U
with respect to (a, 3) are defined by

body = | J{{a, B)-traces contained in U},
tail = U — body.

For U a nonvoid subset of an algebra A, we let (Pol A )|y denote the set of
all f|y where f € Pol A and U is closed under f. The (non-indexed) algebra
Aly having universe U and fundamental operations (Pol A)|y is called the
algebra induced by A on U.

In tame congruence theory we focus on the algebras induced on the mini-
mal sets, bodies and traces of finite algebras. We close this section by stating
the features of these algebras we will need in the next section.

THEOREM 2.3 Let A be a finite algebra and let {(«, (3) be a prime quotient
of A. If Ny and N, are {(«, [§)-traces then «|y, is a congruence of Aly, for
i = 1, 2 and the algebras (A|n,)/(a|n,) and (Aln,)/(a|n,) are isomorphic.
Furthermore these quotient algebras are polynomially equivalent to exactly
one algebra (up to isomorphism) from the following list:

(1) a faithful G-set, for some finite group G,
(2) a vector space,

(3) a two-element Boolean algebra,

(4) a two-element lattice,

(5) a two-element semilattice.

We say that the type of the prime quotient (v, 3) is equal to i if the algebra
(A|n,)/(c|n,) is polynomially equivalent to an algebra in the ith entry of
this list. We denote this type by typ(a, ).
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Definition 2.4

(1) Let (d,v) be any congruence quotient of a finite algebra A. We define
typ{d, v} to be the set

{typ(c, B) : 6 <a < B <)

(2) For a finite algebra A we define typ{A} to be typ{04,14}.

(3) For a class K of algebras we define typ{K} to be the set

J{typ{A}: A € K and A is finite} .

We say that a finite algebra omits type i if i ¢ typ{A}. A class K omits
type ¢ if every finite member of /C does so.

THEOREM 2.5 Let {(a, 3) be a prime congruence quotient of a finite al-
gebra A and let U € Ma(a, 3) and B be the («, f)-body of U.

(i) If typ(«, B) = 2 then A|p is a Maltsev algebra and hence is congruence
permutable.

(ii) If typ(e, B) € {3,4} then B is a two element set and so A|p is con-
gruence permutable.

3 Permutability

In this section we prove that a finite algebra A is congruence permutable if it
omits types 1 and 5 and satisfies the condition given in the next definition. Of
course the converse is not true since any simple algebra is trivially congruence
permutable.

Definition 3.1 Let A be a finite algebra and let (a, 3) be a prime quotient
of A. We say that this quotient satisfies the HM condition if whenever
(a,b) € f — « then there is some v in A and some (a, §)-trace N such that
(u,b) € a and {a,u} C N. A finite algebra satisfies the HM condition if
every one of its prime quotients does, and a class of algebras satisfies the HM
condition if every finite algebra in it does so.
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The following theorem was originally proved by P. Idziak in [4] under the
assumption of congruence modularity. R. McKenzie subsequently noticed
that this assumption was not necessary.

THEOREM 3.2 If a finite algebra A fails to be congruence permutable
then there are congruences «, 3 and v of A such that v < «a, v < 8 and «
and (8 do not permute.

Proor. Choose a pair of nonpermuting congruences of A whose meet is
maximal amongst all such pairs and call this meet 7. Next, choose a pair
(o, B3) of nonpermuting congruences, minimal in the lattice (Con A)? amongst
all those nonpermuting pairs whose meet is 7.

Following the proof given by Idziak we now show that o and § cover .
Let ap and 3y be any congruences satisfying v < ag < a and v < 5y < (3,
and let 6 = o V fy. It will suffice to show that necessarily 8 = v, so assume
for the sake of argument that § > . Let o/ = a V0 and ' = 3V 0; then
and (' permute by the maximality of 7. Note also that (g, ), (o, By) and
(v, Bo) are permuting pairs, by the minimality of («, ).

Now

o =aVl=aVayVi=aV B =03Foxa

and similarly
B=pvo=08VaVB=08Va=p0oa
SO
aof3 C ooff
— 5/00/
(Boag)o(Byoa)

50(500040)006
B o a.

This implies that o and 3 permute, which is a contradiction. |

LEMMA 3.3 Let A be a finite algebra with congruences «, 3, v and 6 with
aNB =~ aVF=0,0<0andtyp(s,0) € {2,3,4}. Further, suppose that
the prime quotient ([3,0) satisfies the HM condition. Then « and  permute.
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Figure 1: The lattice D;.

Proor. It will suffice to show that § — 5 C awo 3. Let (a,b) € 6 — 3
and let © € A and N C A be an element of A and a (f3, §)-trace so that a,
w are in N and (u,b) € B. Choose a (3, 0)-minimal set U which contains N
and let B be the body of U. Since the type of the quotient (3,6) is 2, 3 or
4, by Theorem 2.5 the induced algebra A|p is congruence permutable.

Since a and u belong to N, then (a,u) € 0| and so (a,b) € §|go 3. From
Lemma 2.4 of [3] we know that since § = « V 3, then 0|p = a|g V §|p in
Con A|p. As A|p is congruence permutable, it follows that this join is equal
to alp o B|p and so (a,b) € (a|g o B|p) o B which is contained in « o 3 as
required. |

THEOREM 3.4 Let A be a finite algebra that omits types 1 and 5 and is
such that every prime quotient of A satisfies the HM condition. Then A is
congruence permutable.

Proor. By Theorem 3.2 it suffices to show that congruences o and (3
permute whenever they both cover their meet in Con A. Let a and ( be
such a pair and let v and 6 be their meet and join respectively.

According to Lemma 3.3 it will be enough to show that 6 covers at least
one of o and (. If 6 covers neither, then choose congruences o' and (3 such
that « < o < 0 and § < ' < 0. If &’ A 3’ # ~ then the congruences «, 3
and o/ A ' generate a sublattice of Con A isomorphic to the lattice Dy as
pictured in Figure 1. This contradicts Lemma 6.4 of [3] since A omits type
1. Thus &/ A" = «. By Lemma 3.3, using the congruences v, «a, o', #’ and 6



we conclude that 5’ permutes with both a and o/. But then {7, o, o/, 7,0}
forms a permuting nonmodular sublattice of Con A, which is impossible. 1

This last theorem plus some results from [3] yield several tame congruence
theoretic characterizations of locally finite congruence permutable varieties,
which we list in the next Corollary. Condition (vi) below was proposed by
McKenzie and Hobby in Exercise 8.8 (1) of [3].

COROLLARY 3.5 Let V be a locally finite variety. The following are
equivalent:

(i) V is congruence permutable,

(ii) The finite members of V are congruence permutable,
(iii) For any finite algebra A in V, the covers of 04 in Con A permute,
(iv) There is a term t(x,y, z) such that V = t(x,z,y) =~ t(y,z,x) =~ y,
(v) V omits types 1 and 5 and satisfies the HM condition,
(vi) V omits types 1, 4 and 5 and satisfies the HM condition,

(vii) V omits types 1, 4 and 5 and satisfies the HM condition, and for all
finite A in V and all prime quotients («, ) of A, the {(«, )-minimal
sets have empty tails.

PrROOF. The equivalence of (i), (ii) and (iv) is well known, and their
equivalence to (iii) follows from Theorem 3.2. The implications (vii) =
(vi) = (v) are trivial, while (v) = (ii) follows from Theorem 3.4. To prove
(i) = (vii), assume V is congruence permutable and let ¢(z,y, z) be a term
as in condition (iv). Using Theorems 9.14 and 8.5 of [3] we conclude that V
omits types 1, 4 and 5 and has empty tails.

That V satisfies the HM condition is the content of Exercise 8.8 (1)(ii) in
[3]; for completeness we provide a proof. Let A be a finite member of V and
let (o, B) be a prime quotient of A. From Lemmas 5.22 and 5.24 (2) of [3]
we gather that 3 is equal to the binary relation

ao{N?: N is an (a, B)-trace} o a.



Thus if (a,b) € f — « then there are elements ¢ and d belonging to some
(o, B)-trace N such that (a,c) and (d,b) belong to « and (c,d) € f — a.

Consider the unary polynomial p(z) = t*(x,c,a). Since p(c) = a and
p(d) =, tA(d,c,c) = d =, b it follows that p does not collapse the relation
B|n into a. So by Exercise 2.19 (6) of [3] we conclude that p(N) = N’ is
an (a, B)-trace. This trace contains a and the element u = p(d) which is a-
related to b. Thus we have verified the HM condition for the quotient {(«, 3).
1

4 Conclusion

In Chapter 9 of [3] McKenzie and Hobby show that for certain subsets I
of {1,2,3,4,5} the property typ{V} NI = § for a locally finite variety
V is equivalent to an algebraic condition on the congruence lattices of the
members of V, which in turn can be characterized by a Maltsev condition.
One example is the following result (Theorem 9.14 in [3]): a locally finite
variety omits types 1, 4 and 5 if and only if it is n-permutable for some n, if
and only if for some n it satisfies the Maltsev condition for n-permutability
given in [2]. (A variety is n-permutable if for every algebra A in the variety
and for every pair of congruences o and 3 of A, o™ 3 = 30" ar, where ao” 3
means ao Jowo--- with n — 1 occurrences of o.)

Our Corollary 3.5 can be seen as a refinement of this last result of McKen-
zie and Hobby to the case n = 2. It would be interesting to obtain similar
results for other fixed values of n. In particular, we pose the following prob-
lem.

PROBLEM: Find a tame congruence theoretic characterization of the locally
finite 3-permutable varieties.

McKenzie and Hobby introduced a class of Maltsev conditions which they
call “special 7 (see Chapter 9 in [3]). All of the Maltsev conditions we have
considered in this paper fall into this class.

PROBLEM: Does every special Maltsev condition for locally finite varieties
have a tame congruence theoretic description?



References

[1] Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra.
Springer-Verlag, 1981.

[2] J. Hagemann and A. Mitschke. On n-permutable congruences. Algebra
Universalis, 3:8-12, 1973.

[3] David Hobby and Ralph McKenzie. The Structure of Finite Algebras, vol-
ume 76 of Contemporary Mathematics. American Mathematical Society,
1988.

[4] P. M. Idziak. Varieties with decidable finite algebras II: Permutability.
Algebra Universalis, 26:247-256, 1989.

[5] A. I. Maltsev. On the general theory of algebraic systems. Mat. Sb.
(N.S.), 35:3-20, 1954.

(6] W. D. Neumann. On Mal’cev conditions. J. Austral. Math. Soc., 17:376—
384, 1974.

[7] W. Taylor. Characterizing Mal'cev conditions. Algebra Universalis,
3:351-397, 1973.

10



