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CHAPTER 1

The Structure of Finite Algebras

1 Palfy’s theorem

An algebra is a pair
A= (A F),

where A is a nonempty set and F' is a collection of finitary operations on A. A is the
universe of A and the operations in F' are sometimes called the basic operations of
A. Often, F' will be presented as an indexed set. This leads to the usual first-order
language of A. If F is not indexed, A will be called a nonindezed algebra.

A clone of functions on A is a set of functions from A™ to A for varying n’s
which contains all projections and is closed under composition. The clone of term
operations of A, denoted by Clo(A), is the smallest clone on A which contains F'.
So, a term operation of A is an operation which is obtained by compositions of
basic operations of A and projections on A.

A polynomial of an algebra A is an operation p(Z) of the form ¢(z,a), where ¢
is a term operation of A and a is a finite sequence of elements from A. The clone
of polynomials of A is the set of all polynomials of A and is denoted by Pol(A). It
is not hard to see that Pol(.A) is a clone on A, and is in fact the smallest clone on
A which contains F' and all of the constant operations on A. The set of all n-ary
polynomials of A is denoted by Pol,,(A).

Two algebras A and B with the same universe are polynomially equivalent if
Pol(A) = Pol(B).

1.1. Exercise Show that the algebra A = ({0,1};d(z,y, 2)) with

z, fe=y
d(x,y,z) =
(9, 2) {x, otherwise

is polynomially equivalent to the two-element boolean algebra.

An algebra A is minimal if it is finite and each of its unary polynomials is
either constant or a permutation.

1.2. Example 1. Any finite vector space is minimal. The unary polyno-
mials are all of the form Az + ¢, where ¢ is a vector and A is a scalar.

2. Let G be a group. A G-set is a set A together with a homomorphism from G
into the symmetric group on A. Such a set is considered as a unary structure
by taking the functions induced by the group elements as basic operations.
Any finite G-set is minimal.

3. Any two-element algebra is minimal.

1.3. Exercise Let (G,-) be a finite semigroup. Show that there is a k > 0
such that m* - m* = m* for all m € G.
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A function f: A™ — A is called idempotent in the i-th variable if the equation
f(mla"';xiflyf(mlv"'7mn))xi+1)"')xn) = f(mla"'amn)
holds in A. From the previous exercise, one easily derives the following key fact.

Fact If A is finite then there exists a natural number k > 0 such that for all
functions f: A — A, f* is idempotent.

If f(z1,...,x,) is an operation on A4, i < n and k > 0, then we define
f(ki) (z1,...,2,) inductively by

f(oi)(xl, ce ) = T4,
f(ki;rl(a:l, ceny ) = f(z, ... ,mi,l,f(ki)(ml,...,mn),miﬂ, Cey ).
1.4. Corollary If A is a finite set, then there exists a k > 0 such that for all
maps f: A" — A and i < n, f(’”;) (a1,...,0;—1,2,ai11,...,a,) is idempotent for

all ay,...,a, € A.

An operation t(z,y, z) on aset A is a Mal’cev operation, if it satisfies t(z, z,y) =
y = t(y,z,z). An algebra is Mal’cev, if it has a term operation which is a Mal’cev
operation.

1

1.5. Example zy~ "z is a Mal’cev term on any group.

An algebra (G, -) with a binary operation - is a quasigroup, if for all a € G the
operations z - a and a - ¢ are permutations of G.

1.6. Lemma Any finite quasigroup is Mal’cev.

Proof Let A = (A4, f(z,y)) be a finite quasigroup. Choose k > 0 such that
the equation f(kl)(a:,y) = f(kl)(f(kl)(a:,y),y) holds in A. For all a € A, the operation
f(kl)(a:,a) is idempotent and is a permutation of A. Since the only idempotent
permutation is the identity, f(kl)(a:, a) = x. Thus f(kl)(a:,y) = 2 holds for all z and
y. If we define dy(z,y) to be f(klgl(a:,y), we have f(dy(z,y),y) = x. Repeat the

above construction to get a term ds(x,y) such that f(x,d2(z,y)) = y. We claim
that

q(w,y,z) = f(dl(madQ(yay))vd2(va))
is a Mal’cev operation.

First, we have f(di(y,d2(y,v)),d=2(y,y)) = y = f(y,d2(y,y)). Since A is a
quasigroup, this implies di(y,d2(y,y)) = y. So q(y,y,2) = f(y,d2(y,2)). By the
choice of dy, this is z.

On the other hand, q(z,y,y) = f(di(z,d=2(y,v)),d2(y,y)) = z by the choice of
dy. O

An algebra is abelian, if for all term operations t(z,y) the algebra satisfies
YuVoVgz(t(u, ) = t(u, 2) = t(v,§) = t(v, 2))-

1.7. Example Any R-module is abelian. The term operations all have the
form t(x,y) = rz + Y s;y; for r, s; € R. Suppose that t(a,é) = t(a,d). Then
ra + Y. sic; =ra+ Y. sid;, sorb+ Y sic; = rb+ > s;d; (just add rb — ra to the

first equation).

1.8. Exercise A group is abelian iff it is commutative.
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1.9. Theorem (Smith, Gumm) If A has a Mal’cev polynomial and satisfies
the following weakening of abelianness

VavoVyz(t(u,y) = t(ua,z) — t(v,y) = t(0, 2))
for all term operations t(%,y), then A is polynomially equivalent to a module.

Proof Let d(z,y,z) be a Mal’cev polynomial. Let 0 be an arbitrary element
of A. Define

a+b=d(a,0,b), —a =d(0,a,0).

We claim that these operations define an abelian group structure on A.

Let dy(z,y,z,u) = d(d(z,0,u),0,d(y,u,z)). Note that dy(0,b,0,b) = b =
d,(0,b,0,0). By abelianness, this implies

(a+0b)+c=di(a,b,c,b) =di(a,b,c,0) =a+ (b+c).
The commutativity is proved similarly.
Claim: We have f(2) = 32, <;<,, fi(z:) —(n—1)f(0,...,0) for all n-ary polynomials
f(@) of A, where f;(z) = f(0,...,0,2,0,...,0).

The proof is by induction on n. For n = 1, there is nothing to do.

For n = 2, consider f(0,y)—f(0,y) = f(0,0)— f(0,0). By abelianness, f(z,y)—
£(0,9) = f(2,0) = £(0,0), thus f(z,y) = £(2,0) + £(0,y) — £(0,0) as required.

For n > 2, treat f(x,y2,...,Yn) as a polynomial in yo,...,y,. The induction
hypothesis yields

f(x)y%"':yn) =
f(x7y2707 B 70)+f(x507y3707 B 70)+ : +f(.’1},0, . 707yn)_(n_2)f(m707 N 70)

Now apply the case n = 2 to each summand to get the result for f(z,ys2,...,yn)-
Define R = {p(z) € Pol;(A) | p(0) = 0}. Clearly (R,o0,+,—,0,id) is a ring. If
p(x) € R, then p(z +y) = p(x +0) + p(0+y) — p(0 + 0) = p(z) + p(y). This shows
that (A4,+,—,0) is an R-module M. Since all operations of M can be defined
by polynomials of 4, we have Pol(M) C Pol(A). For the other inclusion, let
f(z) € Pol(A). If we choose a;(z) = fi(x) — fi(0) € R, an easy calculation shows
that f(z) =Y a;x; + f(0,...,0). Thus, f(Z) is a module polynomial. O

1.10. Exercise An abelian algebra which has a Mal’cev polynomial is Mal’cev.

1.11. Lemma (Twin lemma) Let A be a minimal algebra with at least three
elements and f(z,y) € Pol(A). If ¢,d € A, then f(x,¢) is a permutation of A iff
fz,d) is.

Proof Without loss of generality, we may assume that f is binary. (If f(z,¢) is
a permutation and f(z,d) not, we can exchange ¢ and d elementwise to find single
entries ¢; and d; such that f(z,d,...,di—1,¢i,ciy1...,¢,) is a permutation and
flz,dy,...,di—1,di,Ciqq ..., cp) DOL.)

So assume we have elements a, b such that f(b,y) is a permutation, while f(a, y)
is not. Then there are elements ¢, d such that f(a,c) = f(a,d) and f(b,c) # f(b,d).
Choose k such that g(x,y) = f(kQ) (z,y) satisfies g(z, g(x,y)) = g(z,y)-
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Since f(b,y) is a permutation, g(b,y) is an idempotent | e w y
permutation, so g(b,y) = y. Similarly, g(a,y) is constant, a|e e e
since f(a,y) is. In fact, g(e,y) is either constant or the iden- b |e w y
tity for any e € A. e 7?7

Let g(a,y) = e for all y € A. Choose elements w # e and
u ¢ {a,b}. We have g(b,w) = w and ¢(b,e) = e, so g(z,e) is
constant, in particular g(u,e) = e. There are two possibilities for g(u,w). It can
either be e or w. In both cases, the polynomial g(z,w) is neither constant nor a
permutation. This contradicts the minimality of A. O

An algebra is called essentially unary if every basic operation depends on at
most one variable. If this is the case, every polynomial also depends on at most
one variable.

1.12. Exercise If the polynomial g(x1, ..., z,) depends on all variables, there
are indices 1 < j < n and elements ¢y, ..., ¢, such that
(€1, ey G, &y Cig 1y e o, Cj—1, Y, Cjgdy o+, Cn)

depends on x and y.

1.13. Theorem (Palfy) If A is a minimal algebra with at least three ele-
ments, then A is essentially unary or polynomially equivalent to a vectorspace.

Proof Assume that f(Z) is a polynomial of A which depends on more than
one variable. By Exercise 1.12, we can assume that f is binary.
Claim: (A, f) is a quasigroup.
Since f(z,y) depends on z, there is a ¢ such that f(z,c) is not constant, hence is a
permutation. By the twin lemma, f(z,c) is a permutation for all ¢ € A. Similarly
for the second variable. This proves the claim.

By Lemma 1.6, we find a Mal’cev term for A. To apply the theorem of Smith—
Gumm, we need to establish

f(avc):f(avd) = f(b,C) :f(bvd)

for all polynomials f(x,7) and all @, b,c,d € A.
So let f(a,c) = f(a,d). If c = d, trivially f(b,c) = t(b,d). If ¢ # d, then f(a,y)
is constant, so by the twin lemma, f(b,y) is also constant. Again f(b,c) = t(b, d).
By the theorem of Smith—-Gumm, A is polynomially equivalent to a module M
over a finite ring R. The minimality of A forces each ring element to be invertible,
thus R is a division ring. But finite division rings are fields, so M is a vectorspace.
O

1.14. Corollary Let A be minimal. Then A is polynomially equivalent to one
of the following

a unary permutational algebra (a G-set),
a vectorspace over a finite field,

the two-element boolean algebra,

the two-element lattice,

a two-element semilattice.

Gl L=

Proof The one-element algebra is trivially unary permutational and the min-
imal algebras with at least three elements are treated in P&lfy’s theorem, so it
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remains to analyze the two-element algebras up to polynomial equivalence. This is
done in the next exercise. O

1.15. Exercise Let A be a two-element algebra. Then A is polynomially
equivalent to one of the following

1. a pure set, or a set with a transposition,
a vectorspace,

a boolean algebra,

a lattice,

a semilattice.

Gl L

For a minimal algebra .4 we define the type of A, denoted by typ(.A), to be the
number in the enumeration in P&lfy’s theorem which applies to it.

2 Localization and Relativization

A neighbourhood of an algebra A is a subset U C A of the form e(A) for some
idempotent polynomial e(z) of A. The algebra induced by A on U, denoted by Aly,
is the algebra

(UAf@)v | f € Polp(A), f(U") CU,n <w}) .

2.1. Exercise Determine the types of the two-element neighbourhoods of the
ring Zy.

A relation « on a set A is compatible with a function f: A™ — A if
ayaby,...,apab, = fla,...,a,) a f(bi,...,by,).

A congruence on an algebra A4 is an equivalence relation that is compatible with
the basic operations of 4. The set Con(A) of all congruences of A is a lattice with
respect to C. Tts smallest element is 04 = {{(a,a) | a € A} and its largest element
is 1A = Az.

2.2. Exercise Let 6 be an equivalence relation on the algebra 4. Then 6 is a
congruence iff 8 is compatible with all unary polynomials of A.

2.3. Lemma Let U be a neighbourhood of A.
(a) If a,c € U, f € Pol(A) such that f(a) = ¢, then there is a polynomial
g € Pol(A|v) such that g(a) = c.
(b) The restriction map from Con(A) to Con(Aly) is a surjective lattice
homomorphism.

Proof (a) Let U = e(A) and e? = e. Then g = ef]|y is as required.
(b) 6+ 6|y maps # to an equivalence relation on U. Since 6 is compatible with all
unary polynomials on A4, its restriction is compatible with all restrictions of unary
polynomials on A. Thus 6|y is a congruence.

It is easy to see that (61 N62)|y = 61|v N O2|y. For a € Con(A|y) define

a={(z,y) € A* | (ef(z),ef(y)) € a for all polynomials f}.

Claim: @ is the largest congruence on .4 whose restriction to U is a.

Clearly, & is an equivalence relation on A. By Exercise 2.2, it is enough to show that
@ is compatible with all unary polynomials. So let (a,b) € @ and f € Pol; (A). If ¢
is another unary polynomial, (egf(a),egf(b)) € a by the definition of a. But this
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implies (f(a), f(b)) € a. Thus, @ is a congruence. a < @y is clear. If (a,b) € a|v,
then (e?(a),e?(b)) = (a,b) € a and s0 aly = a.

Finally let  be another congruence with 8|y = a. Let (a,b) € 6. Let f be an
arbitrary unary polynomial. Then (ef(a),ef (b)) € 8, since 6 is a congruence, and
(ef(a),ef(b)) € U? by the choice of e. So (ef(a),ef(b)) € 8|y = a. The definition
of @ now implies {(a,b) € &. This shows that # C @ and finishes the proof of the
claim.

By the claim, the restriction map is surjective. Let now #; and 6> be two
congruences of A. Let =6, V6 and a = 01|y V 2|y. Since 01,6, < 3, we have
01lu,62|v < Blu and thus a < B|y. Conversely 61|u,02]v < «, which implies by
the claim 6;,6, < @, so f < a and Bly < aly = «a.

|

For congruences a < 8 of A, we define the («a, 3)-separating polynomials to be
the elements of the set

Sep(a, B) = {f € Poli(A) | f(B) £ a} .

Let M4(a,8) be the set of C-minimal elements of {f(A4) | f € Sep(a,B)}. The
elements of M 4(«a, 3) are called the («, 3)-minimal sets of A.

.................. | not in M4(a, 3)

......... N >*/ possibly in M 4(a, 3)

2.4. Exercise A is minimal iff M 4(04,14) = {A}.
We write a < (3 to indicate that there is no congruence between « and .

2.5. Lemma Let A be a finite algebra and o < B two congruences. The
(a, B)-minimal sets are neighbourhoods of A.

Proof Let U be an («, 3)-minimal set. Let K = {f € Pol;(A) | f(A) C U}.
Note that K is a right ideal in the semigroup Pol; (A). Consider the relation

p=A{(z,y) € 8| (f(z),f(y)) €aforall feK}
Claim: p € Con(A) and a < pu < 6.
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It is easy to see that p is an equivalence re- a
lation between « and S. So it suffices to show
that p is compatible with the unary polynomi-
als. If {a,b) € p and g € Poly (A), then fg € K, b/ e 9f (@)
so (fg(a), fg(b)) € a for all f € K. But this .
implies (g(a), g(b)) € p.

So u is either a or §. There is an (a,3)- | |
separating polynomial f with range U. For this f.(b) _______________
f, we find a -related pair (a, b) such that f(a)
and f(b) are not a-related and so {(a,b) ¢ p. It \ | gf(b)
follows that u = a. By the definition of u, there
is a g € K such that (gf(a),gf(b)) ¢ a. /

So g(A) and gf(A) are both subsets of U —
and gf does not collapse 8 into a. By the minimality of U, gf(4) = U. Since
f(A) = U, this implies g(U) = U, i.e. g|y is a permutation. By taking a suitable
iterate of g, we get an idempotent polynomial e(z) of A with range U. O

/

2.6. Exercise If o is any binary relation on A which is compatible with all
unary polynomials, then the equivalence relation generated by o is a congruence.

Two sets X, Y C A are polynomially isomorphic, denoted X ~ Y, if there
are polynomials f,g € Pol;(A) such that f(X) =Y, g(Y) = X, fgly = idy and
gf|lx =idx. In this event we write f: X ~ Y.

2.7. Exercise

(a) If f: X ~Y, then A|x and Aly are isomorphic algebras.
(b) A set that is polynomially isomorphic to an (a, 3)-minimal set is («, 3)-
minimal.

2.8. Theorem Let A be a finite algebra and let a« < 3 be two congruences.

(a) (Uniformity) Any two («, 8)-minimal sets are polynomially isomorphic.
(b) Every (a, 3)-minimal set is a neighbourhood.

(¢) (Incompressibility) If U is (o, B)-minimal and f € Pol;(A) is such that
fBlu) € a, then f(U) is (a, 3)-minimal and f|y is a polynomial isomor-
phism between U and f(U).

(d) (Separation) If {a,b) € B\ a and U is («,3)-minimal, then there is
f € Poly(A) such that f(A) =U and (f(a), f(D)) ¢ a.

(e) (Connectedness) If U is («, B)-minimal, then (3 is the transitive closure

of
aU{(g(z),9(y)) | (z,y) € Blu and g € Poli(A)}.

(f) If f is an (a, B)-separating polynomial, then there is an («, 3)-minimal
set U with U ~ f(U).

A pair (a, 8) of congruences satisfying (a)—(f) of the previous theorem is called
tame by McKenzie. This is the origin of the name tame congruence theory. McKen-
zie showed that not only pairs (a, 8) with a < 8 are tame, but also the pairs such
that the interval [a, 3] is a simple lattice whose largest element is the join of its
atoms. Examples of such lattices are subspace lattices of finite-dimensional vec-
torspaces.
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2.9. Example Let A be a simple algebra, i.e. 04 < 14. Then Sep(04,1.4)
is the set of all nonconstant unary polynomials and M 4(04,14) is the set of all
minimal ranges of such polynomials.

If A is, for example, a finite simple nonabelian group, then the minimal sets
are two-element boolean algebras. In this case, even more is true: M4(04,14)
contains all two-element subsets of A. This follows from the fact that any function
on A is a polynomial (see [BS81] for a proof).

The meaning of (e) is best seen in a picture. Here a 3 b.

Proof of Theorem 2.8 (b) is already done.
(d) Let U be an («, 8)-minimal set and let e be an idempotent polynomial with
range U. Consider the relation

0= {(v,y) € B] (f(x),ef(y)) € a for all f € Poly(A)}.

This is a congruence relation (as in the proof of Lemma 2.5, since {ef | f € Pol;(A)}
is a right ideal) that lies between « and (. In fact, # = «, since U is the range
of an (a, §)-separating polynomial. Let (a,b) € 8\ a. Since {a,b) ¢ 0, there is a
polynomial g such that (eg(a),eg(b)) ¢ a. But {(eg(a),eg(b)) € 8 and eg(4) C U.
By the minimality of U, eg(A) = U. Thus f(z) = eg(z) is the required polynomial.
(e) Let 0 be the transitive closure of the relation

v =aU{(g(x),9(y)) | (z,y) € Blv and g € Pol, (A)}.

It is easy to see that « is reflexive, symmetric and compatible with all unary poly-
nomials. By Exercise 2.6, this implies that 6 is a congruence. Since o C v C 6 < 3,
we have 6 = 3.

(a) Choose idempotent polynomials eg and e; such that eg(4) = U and e; (A) = V.
Furthermore, choose a pair (a,b) € 3|y \ a. By (d), there is a polynomial f with
f(U) =V such that (f(a), f(b)) ¢ a.
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U NV
b f gb)
............... ;
a* f{a)

Counsider e; feg € Pol; (A). The range of this polynomial is contained in V" and
erfeo(B) Z a, since ey feg(a) = f(a) ¢ f(b) = e1feo(b). By the minimality of V,
we must have e; feg(A) = V. Since eq(A) = U, it follows that e, f(U) = V. Let
g(z) be the polynomial e f(x).

In a similar way we get a polynomial h(z) such that h(V) = U. So hgly is a
permutation of U. Choose a k > 0 such that (hg)*(z) = z for all z € U. Then
[(z) = (hg)* 'h(z) is the inverse of g(z) on V, i.e. (V) = U, lg|y = idy and
gl|U = idv.

(c) Let U = e(A) for a suitable idempotent polynomial e.

U
b \ ()

a’ / f{a)

Since f(Blu) € «, there is a pair (a,b) € 3|y \ @ such that f(a) and f(b) are
not a-related.

Choose by (d) a polynomial g(x) with range U such that gf(a) ¢ gf(b). Note
that {gf(a),gf(b)) = (gfe(a),gfe(b)). Hence gfe(x) is an (a, B)-separating polyno-
mial whose range is contained in U. By the minimality of U, gf(U) = gfe(A) = U.
So gl¢v) and f|y are bijections. By Exercise 2.7, f(U) is («, 3)-minimal.

(f) Let f € Sep(a, ) and let V be an arbitrary («, 3)-minimal set. There is a
pair (a,b) € B\ a such that (f(a), f(b)) € 8\ a. By (e), a and b are connected,
modulo «, by a chain of pairs of the form (g;(c;), g(d;)) for suitable polynomials g;
and pairs (¢;,d;) € Blv \ @ and so the pairs (fg;(c;), fgi(d;)) connect f(a) and f(b)
modulo «. There is an index 4 such that for ¢ = g; and (¢,d) = (¢;,d;) the pair

(fg9(c), fg(d)) lies in G\ a.
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b f(b)

TN | |

d | |

[ ) [ ) f [ )
. g e l ....... - l .......
‘. ! !
N2 l l .......

a f(a)

In particular, g(c) and g(d) cannot lie in the same a-class. By (c) we know
that U = ¢(V) is an («, 3)-minimal set. Finally, f(8|v) € «, since fg(c) is not
a-related to fg(d).

O
Let U be an arbitrary («, 3)-minimal set. 3
The S|y-classes which split into more than
one afy-class are called (a, 3)-traces. By de- | = |= ~ |
finition, every («, #)-minimal set contains at @ || (|oeen \
least one trace. The union of all tracesof U'is | [} \ _________
called the body of U. The remainder is called | | | “p}~—1—

the tail of U.

The congruence lattice of an algebra A is
N-complete. For a set X C A2, the congru-
ence generated by X is

Cg(X) =[){# € Con(A) | X C 6}.

2.10. Exercise

(a) Cg(X) is the equivalence relation generated by {(g(z),9(y)) | (z,y) €
X,g € Poly(A)}. In fact, Cg(X) is the symmetric transitive closure of this
relation.

Stated in another way, (a,b) € Cg(X) iff there are polynomials g;(x)
and pairs (z;,;) € X U X! such that

a = go(wo)
9o0(yo) = g1(x1)
g1(y1) = g2(x2)

-gk(yk) =b.

(b) If U is a neighbourhood of A, X C U? and a,b € U, then (a,b) € Cg4(X)
iff (a,b) € Cgyy, (X).

2.11. Exercise Let A be a finite algebra. If g € Pol;(A) is a permutation
and 8 € Con(A), then g permutes the 3-classes of A.

2.12. Proposition Any two (a, 3)-traces of A are polynomially isomorphic.
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Proof Since any two («, 3)-minimal sets are polynomially isomorphic, it suf-
fices to verify the proposition for traces N and M of the same minimal set U. Since
U is a neighbourhood, we may assume A = U.

It suffices to find a polynomial p(z) with p(N) C M and p(8|n) € «, since this
implies that p is a permutation of A and then Exercise 2.11 gives the result.

Since N and M are traces, there are pairs (a,b) € 8|y \ @ and (¢, d) € 8|y \ .
Since « is covered by 3,

f = Cgla U {(a,b)}).

In particular, {c,d) € Cg(a U {(a,b)}). Choose polynomials g; and pairs (z;,y;)
according to Exercise 2.10.

b N a 1M
.\ T
\\ l
gi ] | ............
//"T
o/ l
a c

There is an i such that (g;(z;),9:(vi)) € B\ a. Since g;(x;) o ¢i(yi), we
must have {z;,y;} = {a,b}. So g; maps the S-class of a, namely N, into M and

9:(BIn) € o O

2.13. Exercise Let a < 3. If U is an («, #)-minimal set of A, then U/« is an
(0, B/a)-minimal set of A/a.

2.14. Proposition If a < (3 in a finite algebra A and N is an («, 3)-trace,
then a|n is a congruence on A|n and A|n/a|n is a minimal simple algebra.

Proof By Exercise 2.13, we can assume that &« = 0. We need to show that
every polynomial p(z) € Pol; (A|n) is either constant or a permutation.

Let such a p be given. It is of the form p(z) = ¢(z)|n for some polynomial
q(z) of A with ¢(N) C N. Choose a (0, 3)-minimal set U containing N. Since U
is the range of some idempotent polynomial e of A, we may assume q(4) C U by
replacing ¢ by eq.

If p is not constant, then ¢(8|n) € 0. By the minimality of U, we must have
q(U) = U. Hence ¢ is a permutation of U. In particular, ¢|x = p is a permutation
of N.

The simplicity of 4|y follows easily from the fact that 0 < § and is left as an
exercise. |

The previous proposition allows us to define typ(a, ) to be the type of the
minimal algebra A|x/a|n for any (a, 8)-trace N. This turns Con(.A) into a labeled
lattice. We also define

typ{A} = {typ(e, §) | @ < B in Con(A)},
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and for a class K of algebras, we define
typ(K) = U{typ{A} : A€ K, A finite}.

2.15. Exercise Let A be either unary or polynomially equivalent to a lattice
or semilattice. Then A is not Mal’cev.

2.16. Lemma If A is Mal’cev, then typ{A} C {2,3}.

Proof Let @ < 8. We want to determine typ(a, 3). Since homomorphic images
of Mal’cev algebras are also Mal’cev, we can replace A by A/a and assume a = 0.
Let p(z,y,z) be a Mal’cev polynomial. Choose a (0, 8)-trace N contained in the
(0, B)-minimal set U. Let e(z) be an idempotent polynomial whose range is U.

Claim: ep(x,y,z)|n is a Mal’cev polynomial of A|x.

The equations defining a Mal’cev operation are clearly satisfied. It remains to show
that ep(N,N,N) C N. So let a,b,c € N. Then a 8 b, so ep(a,b,c) B ep(b,b,c) = ¢
and ep(a,b,c) € e(A) = U. Since N is the intersection of U with the S-class of ¢,
we conclude ep(a, b,c) € N.

By Exercise 2.15 and the claim, A|y must be of type 2 or 3. |

3 Centrality

Let «, 8 and 7 be congruences of an algebra 4. We say that a centralizes
B modulo v, denoted by C(a,f,7), if for all polynomials #(z,y) and all elements
a,b,¢,d € A such that a a b and ¢; 8 d; we have

t(a,¢) v t(a,d) = t(b,¢) v t(b,d).
Note that A is abelian iff C(14,14,04).

3.1. Proposition
(a) If ! <, B' < B and Cla, B,7), then C(a', B, 7).
(b) If C(aiaﬂa’)/) fOT’ all i? then C(V aiaﬂa’)/)'
(C} If C(aaﬁa’)/i) fOT‘ all i’ then O(Cl,ﬂ, A/Yz)

Proof (a) C(a,f,7) is a condition on all pairs in & and 3. If we make these
relations smaller, the condition remains true for all the pairs in the smaller relations.
(b) Assume C(a;, 3,7) for all i. Let = \/ a;. Let t(z, ) be a term and a, b,&,d €
A such that a 6 b and so that the corresponding entries of ¢ and d are SB-related.
Assume that t(a,¢) v t(a, d).

Since 6 is the transitive closure of | J a;, there are elements a; and congruences
«;; such that

a=ap Qj, 1 Oy ... Q& Gp =b.

Now apply C(a;,,7) to conclude first t(a1,¢) v t(ai,d), then t(az,c) v t(az,d)
and so on.

(c) Assume C(a,f,7;) for all i. Let 6 = A7;. Let t(z,y) be a polynomial and
a,b, ¢, d € A such that a a b and so that the corresponding entries of ¢ and d are

B-related. Assume that t(a,¢) § t(a,d). Then t(a,¢) ~v; t(a,d) for all i and we

can apply the conditions C(«, 8,7;) to conclude ¢(b,¢) ; t(b,d) for all i. But then

t(b,¢) & t(b, d).
O
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By the second claim of the proposition there is a largest congruence 6 with
C(0,8,7). 0 is called the annihilator of 8 modulo . By the third claim, there is a
smallest congruence § with C(a, 8,9). ¢ is called the commutator of a and 8 and
is denoted by [, 3].

In general, the commutator operation [ , ] is not commutative and does not
behave well with respect to quotients. But in congruence modular varieties, [ , ]
behaves similarly to the group-theoretic commutator in the variety of groups (see
[FM8T]).

3.2. Exercise The annihilator of # modulo 7 is the relation

{{a,b) | t(a,€) v t(a,d) < t(b,¢) v t(b,d) for all polynomials ¢(x, ) and all ¢; 3 d;}.

Let a < 8. We say that 3 is abelian over a if C'(3,8,a) holds. 3 is solvable
over « if there are congruences

a=ay<a < <ap =0

such that a;4; is abelian over a; for all i < n. If @ = 0, we say just that 3 is abelian
or solvable.

3.3. Exercise (3 is abelian over « iff 3/« is abelian.
3.4. Exercise Define the following descending chain of congruences:

[a, a]O =,
[av a]nJrl = [[aaa]nv [aaa]n]'

Show that A is solvable iff [14,14]" = 04 for some n < w.

(In a similar way, one has descending chains a > [a,a] > [, [a,@]] > ... and
a > [a,a] > [[a,a],a] > ... Ais called left/right nilpotent if one of these chains
reaches 04 after finitely many steps.)

3.5. Exercise If « is a congruence, Si,...,S, are a-classes and f(z1,...,%n)
is a polynomial, then f(Si,...,S,) is contained in an a-class.

3.6. Exercise If 3 = «, then 3 is the transitive closure of « U J{N? | N
an (a, B)-trace}.

3.7. Theorem Let o < 3 be congruences of the finite algebra A. [ is abelian
over « iff typ(a, B8) € {1,2}.

Proof By Exercise 3.3, we can assume that a = 0.

< Let N be a (0, B)-trace. If typ(0, 8) ¢ {1,2}, A|n is polynomially equivalent to
a boolean algebra, lattice or a semilattice. Thus we can name the elements of N as
0 and 1 and find a polynomial which defines A on N. Then we have 0A0 =0A1
and 0 81, but 1A0# 1A1, contradicting the abelianness of 3.

= We have to show C(3,3,04), i.e. that 3 is contained in the annihilator of
modulo 04. Since 0 < £, it suffices to find a pair (a,b) € 3\ 04 that also lies in
the annihilator.

Claim: Let N C U be a (04, 3)-trace. Then N? is contained in the annihilator of
B modulo 04.
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Choose elements a and b in N. We have to show for any polynomials ¢t(z, ) and

elements ¢; B d; that t(a,c) = t(a,d) implies t(b,c) = t(b, d).
Let U be a (04, [)-minimal set containing U and e an idempotent polynomial

with range U. Let f(z,¥) be a polynomial such that f(a,¢) = f(a,d) and f(b,c) #

f(b,d) for some ¢; 8 d;. We know that (f(b,¢), f(b,d)) € 5. By Theorem 2.8 we
may assume that the range of f is contained in U. By Proposition 2.12 we may

also assume that {f(b,¢é), f(b,d)} C N. Note that f(a,é) € N, since f(a,c) lies in
U and is S-related to f(b,c), an element of N.

N a ﬁ ................. a N
ad~<T—1_ U Nn a % N
I ' No,

Nl k ................. Nnk

Let T; be the (-class of ¢; and d;. Then f(N,T},...,T,) C N by Exercise 3.5,
since f(b,c1,...,¢,) € N. By Exercise 3.6, each ¢; can be connected to the cor-
responding d; by a chain of overlapping (0.4, 8)-traces. By allowing repetitions we
can assume that all chains have the same length. Thus there is a £ < w and traces
N;j for 1 <i<nand 0 <j <k such that

=
Q
2.
=
=
=
M

¢; € Ny, d; € N;x, and Nij N Nij+1 75 ¢ for all 4 and J.

Since each NV;; is polynomially equivalent to N, there exist polynomials «;; such
that a;;(IN) = N;;. Define polynomials f; by
fj(mayly L] )yn) = f(ma alj(yl)v ) an](yn))

Since f(N,Tl,...,Tn) g N and Oéij(N) g Tz then fj(N,N,...,N) g N, SO f]|N €
Pol(A|n). Choose elments ¢},...,c, and d},...,d], in N such that a;(c}) = ¢
and (677 (d;) = dl

Now the proof breaks into cases depending on whether A|y is essentially unary
or polynomially equivalent to a vectorspace.

Case 1. A|y is polynomially equivalent to a vectorspace over the finite field F'. We
can write the f;|x in the form

FilN @@, yns o yn) = i+ > Njiys + ¢

for suitable pj, Aj1,...,A\jn € F and ej € N.
Claim: pj = pjyq for all j < k.
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Let j be fixed. Choose elements u;,v; € N such that a;;(u;) = ajq1(v;). Such
elements exist, since N;; N N;j11 # 0. Then we have for all z € N

HiT + (Z Ajiwi + ej) = fj(x>ﬂ) = f(maalj(ul)) s >anj(un)) =
F@,01j41(v1), s anjgr (0n)) = Figa (@, 0) = iz + (O Njsvivi + €j11),

so (¢t — pj+1)x is constant on N. This forces p; = pj4+1, proving the claim.
By the claim, we have pg = pg. Together with

NOa'f‘Z)\OiC;’ +eo = f(a, &) = f(a,d) :Nka+z/\kid;' +eq,
this implies Y Aoic} + e0 = Y Arid} + e4. But then adding pob = ugb yields
F(b,6) = pob+ > oic; +eo = b+ Y idy + eq = f(b,d).

Since this is exactly what was needed to show that (a,b) lies in the annihilator of
# modulo 04, we are finished.

Case 2. Aln is essentially unary. Then the polynomials f;|n depend on at most
one variable.

Claim: f; depends on z iff f;;; depends on z.

We show the direction from left to right, the other one is similar. Let f;|n depend
on z. Then there are u,u’,o € N such that f;(u,?) # f;(u',7). Since f;j|n does
not depend on the variables g, we can choose the tuple v arbitrarily. In particular,
we can choose ¥ so that a;;(v;) € N;j N Nyj+1. But then there is a tuple o' € N
such that a;j+1(v}) = a;5(v;) and consequently

fiv1(u, @) = fi(u,v) # fi(u',0) = fj(u',0') .

Thus fj41|n depends on z.
If f1|n does not depend on z, then trivially

f(baé) = fl(b>él) = fl(aaél) = f(ayé) = f(a>J) = fl(a>d_,) = fl(baci’) = f(baj)
If fi|n depends on z, then by the claim, no f; depends on the variables g, so
the maps f;(b, ) are constant on N™. By the definition of the f;’s, this just means
that f(b,7) is constant on the sets Nij X - -+ X Np;. Since these set are overlapping
and their union contains ¢ and d, we conclude f(b,¢) = f(b,d).

O

Let o, 8 and v be congruences. We say that « strongly centralizes [ modulo
v, denoted C*(a, 3,7), if

fla, &)y f(b,d) = f(a,e) v f(b,€)
for all polynomials f(x,7) and all a,b,é,d,& € A such that a a b and ¢; 8 d; 3 e;.

If « < B and C* (B, 3,a), we call 3 strongly abelian over .
An algebra A is strongly abelian if 1 4 is strongly abelian over 04.

3.8. Example 1. Any essentially unary algebra is strongly abelian. To
see this, consider an equation of the form f(a,é) = f(b,d). Either the poly-
nomial f(z,y) depends on z, in which case we can simply plug in any tuple

€ for the variables g, or f(z,7) depends on one of the y’s, say the first one.
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Then f(z,e1,y2 ... ,yn) does not depend on any of the variables z,ys, ..., yn,
so in particular f(a,ei,es...,e,) = f(b,e1,ea,...,€n).

2. No nontrivial module is strongly abelian, since we have 0 — 0 = m — m, but
0 — 0 # m — 0 for any nonzero element m.

3.9. Exercise

(a) Find a finite simple algebra which is of type 1 but which is not essentially
unary. Note that this algebra must be strongly abelian.

(b) Find a finite simple algebra which is of type 2 but which is not polyno-
mially equivalent to a vectorspace. Note that this algebra must be abelian.

(c) Find a finite algebra which is strongly abelian but which has a quotient
which is not abelian.

3.10. Exercise The following statements are equivalent:

(i) B is strongly abelian over a.

(ii) B/« is strongly abelian.

(iii) f(a,¢) a f(b,d) implies f(a,é) a f(b,é) for all polynomials f(Z,7) and
all @,b,¢,d,e € A such that a; 8b; and ¢; 3 d; 3 e;.

3.11. Exercise Strong abelianness implies abelianness.

3.12. Exercise

(a) The following are equivalent:
(i) A is strongly abelian.
(ii) For each term #(x1,...,z,) of A there are equivalence relations
Ey,...,E, on A such that for all a and b
t(a) =t(b) iff a; E;biforalll1 <i<n.
(b) If A is finite and strongly abelian, then no term can depend on more
than log, |A| variables.

3.13. Theorem Let a < 3 be congruences of the finite algebra A. (3 is strongly
abelian over a iff typ(a, 3) = 1.

Proof = If typ(a, 8) € {3,4,5}, A is not even abelian. By Example 3.8.2, A
is also not strongly abelian if typ(«, 8) = 2.
< By Exercise 3.10 we may assume that @« = 04 and 04 < 8. The key to our
proof is the following claim:
Claim: If f(x1,... ,2y) is a polynomial, Ty, ... , T, are 8-classes and f(T1,...,Ty)
C N for some (04, 3)-trace N then f depends on at most one variable when
restricted to T =T7 X Tp X - -+ x T),.

We leave the reduction of this claim to the case when n = 2 to the reader, and
will assume that f is binary. Suppose that f|r depends on both of its variables.
Then there are elements a; € T;, i = 1,2 with f(a1,y) nonconstant on T and
f(z,az) nonconstant on 7. Since the (0.4, 8)-traces cover both T} and T% then we
can find traces N; C T; with f(a1,y) nonconstant on Ny and f(zx,a2) nonconstant
on Nj.

Since f is abelian (by Theorem 3.7) then we may assume that a; € N; for
it = 1,2. Thus, f depends on both of its variables on the set N7 x Ns. Since N is
polynomially isomorphic to Ny and N», we can find unary polynomials «; () and
as(z) so that a;(N) = N;, i = 1,2. But then the polynomial f(a;(z),as(y)) maps
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N x N into N and depends on both of its variables on this set. This contradicts
that the induced structure of A on N is essentially unary.

To conclude the proof, suppose that a, b, ¢, d, and € are in A with (a,b) € 3
and for each i < n (where n is the length of ¢), ¢;, d; and e; are S-related. If f is
a polynomial of A with f(a,&) = f(b,d) and f(a,é&) # f(b,é) then by applying a
suitable unary polynomial, we may assume that the range of f is contained in some
(0.4, 3)-minimal set U. By setting T; to be the §-class which contains ¢;, we have
that f maps the set T =Ty x Ty x - -+ X T}, into some (04, 3)-trace N contained in
U.

Using the claim, we conclude that f(z,)|r depends on at most one variable.
By considering the various possibilities, we see that f(a,é) = f(b,d) implies that
f(a,e) = f(b,€), contradicting our assumptions.

([l

If a« < 3 are congruences of A and M4(a, ) = {A}, then A is said to be an
(a, B)-minimal algebra.

3.14. Exercise If A is (a,3)-minimal, then A/ is (04/q,3/a)-minimal.

Two polynomials f(Z) and g(Z) are called twins if there is a polynomial s(Z, 7)
and two tuples @ and b such that f(Z) = s(z,a) and g(z) = s(Z,b). If the tuples
come from the body of a minimal set, we call f and g body twins.

3.15. Lemma (Twin lemma) Let A be an (a, 3)-minimal finite algebra. If
A has two unary body twins of which one is a permutation and the other is not, then
the body B of A consists of a single (o, 3)-trace which is a union of two a-classes.
In particular, a < (.

Furthermore, A has a polynomial which induces a semilattice operation on B/«
and typ(a, B) € {3,4,5}.

Proof (after E. Kiss) By Exercise 3.14 we can assume that « = 0. Let
fo(z) = ho(z,¢) and go(x) = ho(x,d) be body twins such that fo(z) is a permu-
tation and go(z) is not. By finding the step at which the bijectivity is lost in the

following chain

hO(x)E) hO(mvdlyc%"':cn) hO(x>d1>d2>C3)"'7cn) ho(l‘,d_),
we can come up with two body twins f(z) = h(z,c) and g(z) = h(z, d) which come
from a binary polynomial h(z,y) and with the former a permutation, and the latter
not.
By iterating h in the first variable, we may assume that h(h(z,y),y) = h(z,y).
Thus any polynomial of the form h(z,e) is idempotent. In particular, any permu-
tation of this form is the identity.

Claim: No twin of f is a permutation.

Suppose that b # ¢ is another parameter for which h(z,b) is a permu-
tation. By the choice of h, we have h(u,b) = u = h(u,c) for all u € A.
This implies that no row of h is a permutation. So by the minimality
of A, we have h(u,) C 04 for all u € A. Put in a different way, if
two elements e,é € A are (-related, the functions h(z,e) and h(z,é)
are the same. So ¢ and d cannot be (-related.

Since ¢ and d are from the body, their 8-classes are not singletons and we can
choose new elements ¢’ and d’ such that ¢ 8 ¢ and d' 8 d. Counsider h(z,z). We
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have h(d,d) = h(d',d) = h(d',d’). By the minimality of A, h(z,z) collapses g to
04, s0 ¢c=h(c,c) = h(c,c") = h(c,c) = ¢. This contradiction finishes the proof of
the claim.

Claim: B has exactly two elements.

If not, choose u,v € B such that v 8 v and |{u, v, c}| = 3. By the first claim and
the minimality of A, the polynomials h(z,u) and h(z,v) are constant on the classes
of 8. From this it follows that if (a,b) € 3, then f(a,z) and f(b,x) are either both
permutations or both not.

Since h(e,¢) = ¢, we have h(N,N) C N, where N is the (-class of
¢. Consider now h(z,y) on N. Of course, h(z,c) is a permutation,
while h(z,c’) is constant on N, say its value is ¢’. This gives
h(c",¢) =" = h(", ), i.e. h(c",y) is not a permutation. But
then none of the functions h(e,y) with e € N is a permutation,
and so they are all constant on N. So

c¢=h(c,c) =hle,d)=c" =h(d,c)=h(d,c) =¢,

contradicting the choice of ¢'.
At this point we know that B = N = {¢,d}. This implies in particular that

04 < 0.

. If h(c,d) = d then h(z,y) is a meet operation in
. . . . the semilattice |d.
A If h(c,d) = c, then h(z,f(d,y)) is a meet opera-
tion in the semilattice [c.
The presence of a meet operation on N forces typ(a, 3) to be 3, 4 or 5. |

3.16. Remark The converse of the lemma is also true. If A is (a, 3)-minimal,
a < 3 and typ(a, B) € {3,4,5}, then there are two body twins of which exactly one
is a permutation.

Namely, let N = {0,1} be a trace and let p be a polynomial such that p(z,y)|n =
xAy. Then f(z) = p(z,1)|x =idn, so f does not collapse 3 to a. By the minimal-
ity of A, f is a permutation. It is clear, that g(x) = p(x,0) is not a permutation
and that f and g are body twins.

3.17. Lemma Let A be finite and («, 8)-minimal for two congruences a < 3
with typ(a, ) € {3,4,5}. Let N be the unique (o, 8)-trace of A. Then there is an
element 1 € N and a polynomial p(z,y) € Poly(A) such that

(a) NJa={0,I}, where O and I = {1} are the a-classes of N.

(b) N is closed under p and (N,p|n)/c« is a semilattice with neutral ele-
ment I.

(c) ({a,1},pl{a,1}) is a semilattice for all a € A\ {1}.

(d) p(a,u) a a ap(u,a) for alla € A\ {1} and u € O.

(e) p(x,y) is idempotent in the first variable.

Proof Let g(z,y) be a polynomial which induces a semilattice operation on
N/a. By renaming O and I, we can assume that g has the following multiplication
table.
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The polynomial d(z) = g(x,x) doesn’t collapse 3 into a, soitis ¢
a permutation of A. Its inverse is of the form d*, hence it is alsoa O
polynomial. Setting p(z,y) = d 'g(z,y), we have p(z,z) =z andp I
still induces the meet operation on N/a.

By iterating p we may assume that p is idempotent in both variables. Let z € I.
If u € O, then (p(z, 2), p(u, z)) € B\ a, hence p(z, z) does not collapse 3 into « and
is a permutation of A. Similarly, p(z,z) is a permutation of A. Since these maps
are also idempotent, they are the identity and we have

SRS

1
)
1

p(z,2) = 2 = p(2,x)

for all z € I and z € A. If 2’ is another element of I, this gives z = p(z,2") = 2/, so
|I| = 1. By now we have established (a), (b) and (e).

(c) p(1,1) = 1 is clear since p(I,I) C I. Let a # 1. By the properties we have
already established, p(a,a) = a and p(a,1) = a = p(1,a), so p is indeed a meet
1

operation on la.
(d) Let u € O. If z € O, then p(z,u),p(u,z) € O, since p(O,0) C O. This means
just p(z,u) a z a p(u, ).

If x ¢ N, then p(1,z) = 2 = p(z, 1), so p(u,x) B = B p(z,u). But since z is in
the tail of A, the -class of z is the same as its a-class.

O

A polynomial satisfying the conditions in Lemma 3.17 is called a pseudo-meet
operation for A. A pseudo-join operation is a pseudo-meet operation where the
roles of I and O are exchanged.

3.18. Corollary If typ(a, ) € {3,4}, then I and O are both singletons and
A|n is already polynomially equivalent to a lattice (in the type 4 case) or to a boolean
algebra (in the type 3 case). A has pseudo-meet and pseudo-join operations.

3.19. Lemma Let A be a finite (o, §)-minimal algebra with typ(a,3) = 2.
Let B be the body of A. There is a polynomial p(x,y) such that B is closed under
p and p(x,b) and p(b,x) are permutations for all b € B.

Proof Let N C B be a trace. There is a polynomial p(z,y) such that N is
closed under p and such that p induces a group operation on A|y/a. Note that
p|n depends on both variables. In fact, p|n(n,z) and p|n(z,n) are permutations
of N for any n € N. By the twin lemma, any body twin of these polynomials is
also a permutation. O

3.20. Remark 1. In the situation of the lemma (B, p|g=) is a quasigroup.

2. The conclusion of the lemma is false if typ(a,3) = 1. If (B,p|g2) is a
quasigroup, there is a polynomial d(z,y, z) such that d|p is a Mal’cev op-
eration on B. Let N C B be a trace of A. Then d(N,N,N) C N, since
d(z,z,z) = x. Thus d|y is a Mal’cev operation for N and then d|y/a is a
Mal’cev operation on A|x/a. So A|n/a is not essentially unary.

3. In fact, the Mal’cev polynomial d(z,y, z) gives the addition operations on all
traces, via d|n(z,0n,y). The polynomial d|n(x,0n,05r) provides a canon-
ical isomorphism between the traces N and M.

3.21. Lemma Let A, a, 8 and B be as in Lemma 3.19. There is a polynomial
d(x,y,z) such that
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(a) d(B,B,B) C B,

(b) dlz,z,z) == for al z € A.

(c) d(z,z,y) =y =d(y,z,z) for allz € B and y € A.

(d) d(a,b,z), d(a,z,b) and d(z,a,b) are permutations of A for all a,b € B.
(

Proof Let do(x,y, z) be a polynomial of A whose restriction to B is a Mal’cev
polynomial of the quasigroup (B,p|gz). Since q(z) = do(z,z,2) = x on B, the
unary polynomial ¢ does not collapse 3 into «, thus it is a permutation. Its inverse
is of the form ¢~ = ¢* for some k > 0 and so it is also a polynomial. Let

di(z,y,2) = q 'do(z,y, 2).

We then have dy(z,z,z) = x for all z € A. Since dy is a Mal’cev polynomial
on B, the maps dy(z,a,a) and dy(a,a,x) are permutations of A for each a € B
(using the minimality of A again). Thus the maps di(z,a,a) and di(a,a,x) are
also permutations.

Let u(z,y) = di(z,z,y). Let u"(z,y) be an iterate of u(z,y) in its second
variable so that the polynomial u'(z,y) = u"(z,u(z,y)) is idempotent in y. Put

dz(l’,y,Z) = U”(l',dl (Z’,y,Z))

Note that u(x,z) = di (z,z,x) = x and hence v'(z,z) = u”(x,z) = x for all z € A.
Thus da(z,z,z) = x for all z € A. Note further that we have

dy(a,a,7) = u"(a,di(a,a,z)) = u"(a,u(a, z)) = v'(a, )

for a € B. So this map is an idempotent permutation, thus it is the identity. Hence
we have d2(a,a,z) = for all @ € B.

Now let v(z,y) = da2(x,y,y). Again choose an iterate v"(x,y) of v(z,y) in its
first variable so that the polynomial v'(z,y) = v"(v(z,y),y) is idempotent in its
first variable. Set

d3($,ya2’) = ’U”(dg(.’I},y,Z),Z).
As with d», we can show that v(z,z) = v'(z,2) = v"(x,z) =z, d3(z,z,z) = z and
ds3(z,a,a) = z for all a € B and x € A. Finally, we calculate
dsz(a,a,z) =v"(ds(a,a,x),z) = v"(z,2) = z.

By now, we know that ds satisfies (b) and (c).

By the twin lemma, the maps ds(a,b,z) and ds(x,a,b) are permutations for
a,b € B, since the maps ds(a, a, ) and ds3(z,a,a) are. Assume we had a,b € B such
that ds(a,z,b) is not a permutation. Choose an element u such that (u,a) € 8\ a.
By the minimality of A, d3(a,z,b) collapses 8 into « and thus we have

b=ds(a,a,b) ads(a,u,b).
Since [ is abelian over a, we can conclude
ds(u,a,b) a ds(u,u,b) = b.

But then ds3(a,a,b) a ds(u,a,b), i.e. the map dz(x,a,b) does collapse (3 into «,
contradiction. So (d) is satisfied. (a) is an easy consequence of the fact that ds
maps («, §)-traces into («, 8)-traces. O

An operation d(z,y, z) with the properties stated in Lemma 3.21 is called a
pseudo-Mal’cev operation.
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4 Labelled congruence lattices

4.1. Exercise Let U be a neighbourhood of A and let € be a congruence of A.
If N is a f|y-class, then the restriction map from [04, 6] to Con(A|n) is a surjective
homomorphism.

4.2. Exercise Let a1 A Bp = ap and [y < (.

(a) If By is abelian over oy then (3 is abelian over ay.
(b) If B, is strongly abelian over a; then [y is strongly abelian over «q.

4.3. Lemma Let A be finite and let o; < B; be congruences of A fori =1,2.
If ax ABo = g and a1 V By = B1, then M a(ao, Bo) = Ma(au1, B1) and typ(ao, o) =
typ(ai, B1).

Proof If U € M 4(«g, Bo) is the range of the idempotent polynomial e(z), then
e(f1|lu) € aa, since this would imply e(Bo|) C a1 A Bo = ap. So U contains an
(o, f1)-minimal set V.

Conversely, if V' € M 4(aq, 1) is the range of the idempotent polynomial e(x),
then e(Bo|v) € ao, since this would imply e(B1|v) = e(Bolv Vaa|v) C Cgle(Bolv)U
e(a1|v)) C ay. Thus V contains an (ag, Bp)-minimal set U.

This shows that the two pairs of congruences have the same minimal sets. Let
Ue M.A(CKO)ﬁo)-

Case 1. typ(aq,p1) € {3,4,5}. Let Ny be the unique (a1, 31)-trace.
Claim: N;p contains a unique (g, Bo)-trace.

N1 NO

ol

By Exercise 4.1, aq|n, V Boln, = Bi|n,- This implies there is a u € N; such
that (1,u) € Bp \ ap. Therefore N; contains at least one (ay, fBp)-trace Ny, which
contains 1. Since Ny \ Ny C O and O is an ay-class, all the other fy-classes in
N1\ Ny are also ap-classes, since aq|n, A Bo|n, = ao|n, by Exercise 4.1. So they
belong to the (g, By)-tail of U.

If typ(aq, 1) € {3,4}, then N; has two elements. Thus Ny = Ny and ap|n, =
CM1|N1 . Consequently, typ(ahﬁl) = typ(aﬂa 50)

If, on the other hand, typ(ao, o) € {3,4}, then the join operation on Ny/ag
also induces a join operation on Ny /ay and so typ(ai, 81) € {3,4}.

This shows that, if typ(ai,81) = 5, then typ(ag, Bo) ¢ {3,4}. It can’t be 1
or 2, since the meet operation on N;/a; induces a meet operation on No/ayp. So it
must also be 5.

Case 2. typ(aq,p1) € {1,2}. Then f; is abelian or strongly abelian over ;. By
Exercise 4.2, By has the same property over ay.
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So let us assume that typ(ay,31) = 2. Let By be the (a1, $1)-body and N be
an (ag, Bp)-trace of U. Then N C Bj. Since B; has a Mal’cev polynomial, N also
has. But then N/« cannot be unary, so must also have type 2.

O



CHAPTER 2

Varieties

1 Subdirectly irreducibles

A wariety is a class of algebras of the same language defined by a set of equa-
tions. When K is a class of algebras of the same language, we consider the classes

: H(K) - the class of all homomorphic images of algebras from K.

: S(K) — the class of all algebras isomorphic to subalgebras of algebras from K.

: P(K) — the class of all algebras isomorphic to a cartesian product of algebras
from K.

The following theorem is fundamental for the theory of varieties.

1.1. Theorem (Birkhoff) Let K be a class of algebras of the same language.
The following are equivalent:

(i) K is closed under taking homomorphic images, subalgebras and cartesian
products.
(i) K =HSP(K).

(i) K is a variety.

A proof can be found in e.g. [Hod93], [MMT87] or [BS81].

It is a corollary of this theorem, that V (K) = HSP(K) is the smallest variety
containing K.

Birkhoff’s theorem provides a weak sort of structure theorem for the algebras in
a variety. A better sort of structure theorem would assert that V' = P(K), i.e. that
each member of V' is isomorphic to a cartesian product of algebras from some ‘well
behaved’ class K. In some special cases, e.g. if V' is locally finite and decidable, V'
indeed satisfies this sort of structure theorem.

The next best case of structure theorem for a variety V' would perhaps assert
that V' = SP(K) for some ‘nice’ class K.

To investigate this possibility further, let us say that an algebra A is a subdi-
rect product of algebras A;, if A < [[;.; Ai and each projection m;: A — A; is
surjective.

A homomorphism A — [, A; is a subdirect embedding if it is injective and
its image is a subdirect product of the A;.

An algebra A is subdirectly irreducible (or just irreducible for short) if, whenever
f: A — [l;cr Ai is a subdirect embedding, one of the maps m; o f: A — A; is
an isomorphism.

1.2. Theorem (Birkhoff)

(a) The following are equivalent:
(i) A is irreducible.
(i) There is a least nonzero congruence p4 in Con(A).

23
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(iii) There are elements a # b in A such that for all ¢ # d we have (a,b) €
Cgal(c,d).
(b) If (0:)icr is a family of nonzero congruences in Con(A), then the natural
map A — [[;c; A/0; is a subdirect embedding iff \;c;0; = 04.
(¢) Every algebra A is isomorphic to a subdirect product of irreducible homo-
morphic images of A.
(d) V =SP(Vsy), where Vs is the class of all irreducible members of V.

Proof (b) < It is clear, that f: A — [[;c; A/6; is a homomorphism and
that m; o f is surjective for each i. It remains to show that f is injective. So let
a # b. Then there is an ¢ € I such that (a,b) ¢ 6;, and thus a/6; # b/6;. Hence
f(a) and f(b) have different i-th coordinates.

(b) = Let (a,b) € A\;c;0;- Then a/6; = b/f; for all i € I and thus f(a) = f(b).
Since f is an embedding, we must have a = b.

(a) It is clear that (ii) and (iii) are equivalent: Cg((a,b)) = w4 is the required
congruence and any tuple {(a,b) € u4 \ 04 will do.

(i)=>(ii) If there is no such p4, then 04 = Ay, 0. By (b), f: A — [[pz, A/0
is a subdirect embedding. This shows that .4 is not irreducible, since we have
ker(mg o f) = 6 for each 6.

(i)«=(ii) Let f: A — []; A; be a map such that no 7; o f is an isomorphism. Then
ker(m; o f) # 04 for all i and hence pa < A, ker(m; o f) = ker(f). Thus f is not
an embedding.

(c) Let @ # b. By Zorn’s lemma, there is a congruence 6,5 which is maximal
with the property that (a,b) ¢ 6,5. By (b), A — Ha# A/6,p is a subdirect
embedding, since /\aib Oap =04.

If 6 > 6, is any congruence of A, then 6 > Cg 4(6,,,U{(a,b)}) by the choice of
a5 Since the congruence lattice of A/8, ; is isomorphic to the interval [0,.p, 1 4],
this, together with (a), shows that every algebra .4/6,  is irreducible.

(d) It is clear that SP(Vsr) C V. By (c), the other inclusion is also true, since the
algebras A/6,; are members of V' and are irreducible.

i€l

O

The least nonzero congruence of an irreducible algebra is often called its mono-
lith.

The equivalence of (i) and (ii) in (a) shows that subdirect irreducibility is an
internal property of algebras, despite its external definition.

V =SP(K) for a set K iff up to isomorphism Vg; is a set iff there is a cardinal
bound k on the size of the irreducibles in V. When this happens, V is said to be
residually small, in particular residually < k. Otherwise, V' is residually large.

The main focus of the remainder of this text will be on residually small varieties
generated by a finite algebra. In the end we will consider abelian varieties and give
a criterion for such a variety to be residually small.

We start off with some old results on residual smallness.

1.3. Theorem (Taylor) If k is the cardinality of the language of V and if V
has an irreducible of size > 2%, then V is residually large.

A proof of this can be found in [BS81].

1.4. Theorem (McKenzie, Shelah) If the language of V' is countable and V
has an infinite irreducible, then V has irreducibles of size k for every Xg < k < 2%0,
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A variety V is finitely generated if V' = HSP(A) for some finite algebra .A.
A class K is said to be abelian if every algebra in it is abelian. K is congruence
modular if every algebra in it has a modular congruence lattice.

1.5. Theorem (Quackenbush) IfV is finitely generated and has an infinite
irreducible, then it has arbitrarily large finite ones.

Question: If V is finitely generated and has arbitrarily large finite irreducibles,
must it have an infinite one?

The answer is in general No (McKenzie), but for ‘nice’, e.g. congruence mod-
ular, varieties, it is Yes (Freeze-McKenzie). Other ‘nice’ varieties for which the
answer is Yes are varieties omitting the types 1 and 5 (McKenzie-Hobby). We will
be concerned for the rest of these notes with showing that abelian varieties are also
among the ‘nice’ ones. This is the content of the following theorem.

1.6. Theorem (Kiss, Kearnes, Valeriote) IfV is a finitely generated resid-
wally small abelian variety, then V is residually < n for some n < w.

If the language of V is finite, then there is a recursive function f such that
V = HSP(A) is residually small iff V' is residually < f(|A]). There is an algorithm
to determine if A generates a residually small variety.

The proof involves finding bounds on the size of irreducibles in V' which have
congruence lattices of the following sorts.

typ(0s, pus) = 2 typ(Os, ps) =1 typ(0s, ps) =1
typ(S) = {1} typ(S) = {1,2}

We will treat the three cases in Sections 3, 4 and 6. But first we need some
more facts about the abelian condition.

1.7. Exercise Let V be a locally finite abelian variety and let Ky be the class
of all finite algebras A in V such that typ(A) = {1}. Then V; = HSP(K) contains
all of the strongly abelian algebras in V. We'll see later on that V7 contains only
strongly abelian algebras.

1.8. Exercise Let K be a class of finite algebras. If A is a finite member
of HSP(K), then there are Aj,..., A, in K such that A is already contained in
HS(A; x -+ x A,).

1.9. Exercise Let a and b belong to A and let C be the subalgebra of 42
generated by 04 U {(a,b)}. Then (c,d) € C iff (c,d) = (p(a), p(b)) for some unary
polynomial p of A.

The function ¢({x,y)) is a unary polynomial of C iff there is a binary polyno-
mial 7(z,y) of A such that ¢({(z,y)) = (r(z,a),r(y,b)).
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1.10. Exercise (Kearnes) If R is a finite ring and M a subdirectly irre-
ducible R-module, then |M| < |R|.

1.11. Exercise A locally finite variety with an infinite irreducible member has
arbitrarily large finite irreducible members. A variety with language L containing
an irreducible of size A contains irreducibles of every cardinality |L| < k < A.

1.12. Exercise Let A be an (o, #)-minimal algebra with typ(«, 8) = 2. Show
that the following relation is a congruence on A (called the twin congruence):
6 = {(a,b) | for all binary polynomials p: p(z,a) is a permutation iff p(x,b) is}
Show that the body of A is a 6-class.

2 Facts about the abelian condition

An algebra A is abelian iff it satisfies the formulas

Va'Vyy' (o, y) = t(z,9') — ', g) = t',7"))
for all terms t(z,y). Thus abelianness is determined by a set of universal Horn
conditions. Since these are preserved by cartesian products and subalgebras, then

A abelian = SP(A) abelian.

But there are finite abelian algebras with nonabelian quotients, so abelianness is in
general not preserved by homomorphic images. If A is abelian and lies in a con-
gruence modular variety, then every homomorphic image of A is abelian ([HMS88]).

2.1. Proposition

(a) Let'V be an abelian variety. Then typ(V) C {1,2}, i. e. typ(e, B) € {1,2}
for every finite algebra A in V and all congruences o < 8 in Con(A).

(b) If A is finite and abelian and o < B in Con(A) such that typ(a, ) = 2,
then every (a, B)-minimal set has empty tail, hence has a Mal’cev polyno-
mial.

Proof (a) Since V is closed under homomorphic images then it suffices to show
that if A € V is finite and § is a congruence of A which covers 0] 4 then typ(0|4, 5)
is 1 or 2. This follows immediately from Theorem 3.7.

(b) We can assume a = 04. Now assume that U € M 4(0.4, 3) has nonempty tail.
Choose a polynomial d(z,y, z) such that d|y is a pseudo-Mal’cev operation on U.
If b is an element of the body and ¢ an element of the tail of U, then
d(t,t,t) =t = d(b,b,t) .
By abelianness, we can replace the last occurrence of ¢ in both terms by b to get
d(t,t,b) =d(b,b,b) =b.
Consider the polynomial h(x) = d(z,d(t,d(t,x,b),b),b). Let N be the trace which
contains b. For all u,v € N, we have d(t,u,v) B d(t,u,u) = ¢, hence d(t,u,v) = t.
Now this gives
h(u) = d(u, d(t, d(t,u,b),b),b) = d(u,d(t, t,b),b) = d(u,b,b) = u,
so h is the identity on N. By the minimality of U, h is a permutation on U. But
on the other hand,
h(t) = d(t,d(t,d(t,,b),b),b) = d(t,d(t,b,b),b) = d(t,t,b) = b= h(b).

This contradiction finishes the proof.
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O

An algebra A is said to be Hamiltonian if every nonempty subuniverse of A
is a congruence class of some congruence on A. A variety is Hamiltonian if each
member is.

2.2. Example Every module and in particular every abelian group is Hamil-
tonian. The 8-element quaternion group is an example of a nonabelian Hamiltonian

group.
2.3. Exercise

(a) Show that a nonempty subuniverse B of A is a block of a congruence if
and only if for all polynomials p(x) of A, and b, ¢ from B, p(b) € B if and
only if p(c) € B.

(b) Show that V' is Hamiltonian if for each term #(x,y) there is a ternary
term k:(z,y, z) (‘k’ for Klukovits) such that

V E k(t(z,9),z,2) = t(z,7) .

(c) Prove the converse to (b). Hint: For #(z,y) a term, consider the free
algebra of V' generated by x, z and § and apply the Hamiltonian property
to the subalgebra generated by z, z and t(z, 7).

(d) Show that every Hamiltonian variety is abelian. The converse is true for
locally finite varieties. It is proved in Theorem 2.4.

(e) Use the Hamiltonian property to show that if .4 belongs to a locally finite
abelian variety and p(z) is a polynomial then there is some term t(z,y, z)
such that for all ¢ € A, p(x) = t(x, ¢, p(c)) for all z € A.

Not every abelian variety is Hamiltonian (E. Kiss), but the following is true.

2.4. Theorem (Kiss, Valeriote) IfV is locally finite and abelian, then it is
Hamultonian.

Proof It will be enough to establish the following claim.
Claim: If A is finite and HS(A) is abelian, then A is Hamiltonian.

Let B be a subalgebra of A. B is a block of a congruence iff it is a block
of B = Cga(B?).

B is not a block of 3 iff there is a pair (b;, bs) € B? and a polynomial p(z) of A
with p(b1) € B and p(b2) ¢ B. Thus, B fails to be a block of a congruence of A if
and only if there is a polynomial p(z) such that p(B) N B # @ and p(B) € B. Let

P = {s(B,...,B) | s(z) € Pol(A)} .

Note that every set S € P is contained in some [-class.

Assume that B is not a block of some congruence of A and let T' € P be a
C-maximal member of P with the property that TN B # () and T € B , say
T = t(B,...,B,a) for some term ¢ and parameters @ € A. Let b € B and T' =
t(B,...,B,b). Since B is a subalgebra, T’ C B. By abelianness, |T| = |T'|. We'll
show that our assumptions on A imply that in fact 7" = T'. This, of course,
contradicts the fact that 7" is not contained in B.

Claim: Let s(z,y) be a polynomial and @ € A be such that S = s(B,...,B,a) is
maximal in P. If a; 8 b; for all entries a; of @, then S = s(B, ..., B,b).
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Just consider the case when 7 is a single variable y. Since 3 is generated by B2,
it is enough to verify this for a, b of the form p(u), p(v) for some polynomial p and
u,v € B. By the maximality of S,

S=s(B,...,B,p(u)) Cs(B,...,B,p(B)) CS.
But then also
s(B,...,B,p(v)) Cs(B,...,B,p(B)) CS=s(B,...,B,p(u)) .

Since the two sets have the same size, they must be equal.

Claim: Let s(B,...,B,a) € P be maximal. If Sz = s(B, ..., B, ¢) lies in the same

[B-class as S, then S = S&.
If not, then there is a v € B such that
0z = s(v,a) # s(0,¢) = 0z .

Since S and S lie in the same -class, then 05 8 0z. Let S be an enumeration of S,
say of length k. Then there are elements s} from B with

$1 s(si,...,sk a)
S = : =
Sk s(sk,... sk a)

Let S; be the j-th column of the matrix (sf) Let C be the subalgebra of A*
generated by the vectors S; and the constants. (For a € A, a denotes the k-tuple

(a,...,a).) Wehave s(Si,...,Sn,a1,...,a) =S and s(Sy,...,Sn,¢1,...,0) = Se,

~

an enumeration of the elements in Sz. Note that s(03,...,05,a1,...,a4) = 0z and
S$(V1y. ey UnyC1yen, ) = 0g.

Let § = Cge((03,0z)). If we can prove that (3,Sz) ¢ 0, then we reach the
contradiction that C/6 is not abelian and are finished.

It will be enough to show, that if p(z) is a polynomial of C and p(OAa) is an
enumeration of S, then so is p(OAE) But if p is such a polynomial, then p(z) =
r(z, 8, ...,8y,) for some polynomial r of A. Since r(03, 51, ..,Sy) is an enumera-
tion of S, then r(05,B,...,B) € Pand S C r(05,B,...,B),s0S =r(05,B,...,B).
By the first claim, S = (05, B, ..., B), so 7(05, 51, ..., Sy) is another enumeration
of S.

To conclude the proof, we apply the claim to the sets T" and T'. Since T is
maximal and T" lies in the same (-class as T, it follows that T = T". O

3 The case typ(0,p) =2

In this section we will consider finite irreducible algebras with typ(0, u) = 2,
where 4 is the monolith of the algebra. Our goal is to show that in a locally finite
abelian variety, there is an upper bound to the size of such algebras.

3.1. Lemma Let K and L be abelian groups and let a € L\ {0} and R C
Hom(K, L) be finite such that for each c € K \ {0} there is an r € R with r(c) = a.
Then |K| < (|R| + 1)

Proof by induction on |R|. If R = (), we have nothing to do, since K = {0}
in this case. So let |[R| > 0. Choose r € R so that |[r~!(a)| = | ker(r)| is maximal.
Then |K| < 1+ |R|-|r~*(a)|.
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For each ¢ € ker(r)\{0} thereis an s € R such that s(¢) = a. Since r(c) =0 # a,
we know s € R\ {r}. By the induction hypothesis, | ker(r)| < |R|!. We conclude

|K| <1+ |R|-[ker(r)] <1+ [R|-|R|! < (|R] +1)! (1)
O

For V a variety and \ a cardinal, let F)\ (V') be the free algebra on A generators
in V and let My = |FA\(V)|.

3.2. Theorem Let A be a finite irreducible abelian algebra and let V' be the
variety generated by A. If typ(O4, ua) = 2 Then |A| < MM,

Proof Let U € MA(04,p) and let e(z) be an idempotent polynomial with
range U. Note that p|y is the smallest nontrivial congruence in Con(Aly), hence
Alv is polynomially equivalent to an irreducible module. This follows from the fact
that U has an empty tail and so has a Mal’cev polynomial.

Choose elements 0 # 1 such that (0,1) € u|y. For all u # v, we have p <
Cg((u,v)) and in particular (0,1) € Cg((u,v)). From this we get a polynomial p(z)
of A with ep(u) = 0 # ep(v) or ep(u) # 0 = ep(v). In both cases, ep(x) has range
contained in U and ep(u) # ep(v).

Let p(z) = q(x,a) for some term ¢ and @ from A. By the abelianness of A, we
conclude eq(u,0) # eq(v,0). So er(u,0) # er(v,0) for the binary term r(z,y) =
q(z,y,...,y). Thus the map

v: A— UY) y(a)(t(x,y)) = et(a,0)
is injective and hence |A| < |U|Mz.

The following argument shows that |U| < Ms! and is due to Freese and McKen-
zie. A more complicated argument due to Kearnes shows that in fact |U| < Mo.
Claim: A|y is polynomially equivalent to an irreducible R-module with |R| < M.
Recall that Ay is polynomially equivalent to a module over the ring R = {r(z) €
Poly (Aly) | r(0) = 0}, where 0 is a fixed but arbitrary element of the body. By
Lemma 3.21, there is a pseudo-Mal’cev polynomial d(z,y, z) for U. Let r(z) € R.
Then r(z) = es(z,a)|y for some term s(z,y) and some tuple @ € A. We have
es(0,a) =r(0) =0, so

d(es(0,a),es(0,a),es(x,a)) = es(x,a) = d(es(x,a),es(x,a),es(x,a)).
By abelianness, we conclude that for € U,
d(es(0,a),es(0,0),es(z,0)) = d(es(z,a), es(x,0),es(x,0)) = es(z,a) = r(z).
N———
=0
If we set 7(z,y) = s(z,y,...,y), we finally get r(z) = d(0, er(0,0), er(z,0)) for z €
U. Thus each r(z) € R is determined by an element of F»(V). This implies |R| <
M.
Claim: If R is a finite ring and M an irreducible R-module then |M| < |R|!.
Let N be the least nonzero submodule of M, say N = (a). Then for any ¢ € M\ {0},

we have N C Re. In particular, there is an r € R with rc = a. Now the claim
follows from Lemma 3.1. O

3.3. Corollary Let V be locally finite and abelian. If S € V is a finite irre-
ducible algebra such that typ(0s, us) = 2, then |S| < Mé\b.
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4 The case typ(S) = {1}

Our next task is to examine irreducible algebras S where typ(Os,us) = 1.
This task divides in the (easy) case where typ(S) = {1} and the (hard) case where
typ(S) = {1,2}. We will treat the easy case in this section.

4.1. Lemma Let B be an algebra and 0 a strongly abelian congruence of B. If

there is a polynomial t(x,7) of B and elements a,b,¢,d such that t(a,c) = t(b,d),
but (t(a,e),t(b,¢)) € 8\ 0p, then HS(B?) contains a nonabelian algebra.

Proof If possible, choose a, b as in the statement, with (a,b) € 6. Assume
that H(B) is abelian and let
0= t(a,c) = t(b,d),
0' =t(b,c),
0" =t(a,d).
Then (0,0") € 6\ 0p and since B/ is abelian and t(a,¢) 0 #(b,¢), we also have
(0,0") € 6.
Claim: For all polynomials p(x), p(0) = p(0') if and only if p(0) = p(0").

The abelianness of B implies that for any polynomial p(z), pt(a,¢) = pt(b,¢) iff
pt(a,d) = pt(b,d). So we have p(0) = p(0") iff p(0) = p(0") for all polynomials p(z)
of B.

Let C be the subalgebra of B? generated by O U {(a,b)} and let v be the

congruence on C generated by {((0,0'),(0"”,0))} (The two pairs (0,0") and (0"”,0)
are in C by Exercise 1.9)

Claim: C/~ is nonabelian.
Since

t(<a) b>7 (61,01>, SN <Cnycn>) = (0)0’> Y <0”7 0> = t(<a7 b)) <d1)d1>7 te (dn)dn»)
t((b,b),{c1,c1),...,{cn,cn)) = (0',0),
t((b, by, (d1,d1),...,{dn,d,)) =(0,0),

the above claim follows from

Claim: ((0,0),(0",0%)) ¢ 7.

If (0,0) v (0',0"), there is a polynomial g({x,y)) of C with g({0,0")) # ¢({0",0))
and (0, 0) equal to one of them.

Without loss of generality, suppose that g((0,0")) = (0,0). There is a polyno-
mial s(z,y) of B such that g((x,y)) = (s(x,a), s(y, b)) and so we have 0 = s(0,a) =
s(0’,b). By showing that 0 = s(0"”,a) = s(0,b) we will obtain the contradiction

g({0",0)) = (0,0) = g((0,0)).

Case 1. (a,b) € 6. Since 6 is strongly abelian, we have 0 = s(0,a) = s(0,b). The
abelianness of B then implies s(x,a) = s(x,b) for all z. Hence we have s(0',a) =
s(0',b) =0 = s(0,a). By the first claim, this implies that s(0"”,a) = 0 = s(0, a).

Case 2. (a,b) ¢ 6. Since 00 0" and s(0,a) = s(0',b), then (s(0,a), s(0',a)) € 8\ 03
is impossible. Otherwise, we could have selected 0 and 0’ in place of @ and b and s
in place of ¢, putting us in Case 1. Thus, s(0,a) = s(0', a).
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By the first claim, s(0,a) = 0 = s(0”, a) and by abelianness, s(0',a) = s(0, b)
implies s(0,b) = s(0,a) = 0.

O

4.2. Theorem Let V be a locally finite abelian variety. Let Vi be the subva-
riety generated by all finite members of V' with type set {1}. Then Vi = {A €V |
A strongly abelian}.

Proof If A is a strongly abelian member of V then, being locally finite, it
lies in the variety generated by its finite subalgebras. All of these subalgebras are
members of V; and so A lies in V; as well.

By Theorem 7.2 and Corollary 7.6 of [HM88] it follows that typ(Vi) = {1}. If
V1 is not strongly abelian, then V] contains a finite algebra A which is not strongly
abelian, since V is locally finite. Let us assume that 4 is as small as possible.
Claim: A is irreducible.

Assume not. By Theorem 1.2, A4 is isomorphic to a subdirect product of irreducible
proper quotients. Since these quotients are all smaller than A and also in V7,
they are strongly abelian by the minimal choice of A. Since strong abelianness
is a universal Horn property, it is preserved by SP. Thus A is strongly abelian,
contradiction.

By the minimality of A, A/u is strongly abelian, where u is the monolith of
A. Furthermore, since the typeset of A is {1}, then typ(0|a, ) = 1. Since A is not
strongly abelian then there are a, b, ¢, and d and a polynomial ¢ with ¢(a, ¢) = ¢(b, d)
and t(a,¢) # t(b,¢). We at least have that (t(a,¢),t(b,¢)) € u, since A/ is strongly
abelian. Then by the Lemma, we conclude that HS(.A?) is not abelian, contradicting
our assumption that V is abelian. |

4.3. Corollary If A is a finite member of an abelian variety and typ(A) = {1}
then A is strongly abelian.

4.4. Theorem Let V be a locally finite abelian variety and let S be a finite
irreducible member of V' with a strongly abelian monolith . If p is a strongly abelian
congruence of S then each p-class has size bounded by 2.

Proof Let C be a p-class and let (a,b) € p with a # b. For each ¢ € C, let T,
be the set of all term operations t(x,y, z) on S with a = t(¢, ¢,a). Since there are
at most M3 ternary term operations on S then there are at most 22 sets of the
form T., ¢ € C. We will establish the bound by showing that T # Ty when ¢ and
d are distinct members of C.

Let ¢, d € C with ¢ # d. Since (a,b) is in the congruence generated by (c, d)
then there is a polynomial p(z) of S with p(c) # p(d) and a € {p(c), p(d)}. Without
loss of generality, assume that p(c) = a. It follows from exercise 2.3 that there is a
term t(z,y, z) such that p(z) = t(z, c,p(c)) = t(z,c,a). In fact, we can let t(z,y, 2)
be ks(z,y,x), where ks is a term as in part b) of exercise 2.3 and s(z,u) = p(x) for
some term s and tuple @. Since p(c) = a then t(c,¢,a) = a and so t € T,.

To conclude the proof, we need only show that t ¢ Ty. If a = t(d,d,a) =
t(c,c,a) then since p is strongly abelian, it follows that ¢(d,d,a) = t(d, ¢,a) and so
a = t(d,c,a) = p(d) # a, a contradiction. Thus, t(d,d,a) # a and so t ¢ T,. O

4.5. Corollary (Shapiro) Let V be a locally finite abelian variety. If S is a
finite irreducible member of V such that typ(S) = {1}, then |S| < 2Ms.
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4.6. Corollary IfV is abelian and generated by the finite algebra A and S is
an irreducible member of V' with typ(S) = {1}, then

|\A\3

NESS
5 The residually large configuration
5.1. Example (A residually large abelian variety) Let V = HSP(A), where
A=({0,1,1'},+,",0)

and the nonconstant operations are given by

+]0 1 7 |’
oo 1 1 0]0
1{t 00 1|V
it oo 1|1

Claim: V is abelian.

To prove abelianness, we find normal forms for the terms of V. There are a
number of ‘obvious’ identities:

r+z=0 r+y=y+z z+y+z2)=(@+y)+=
z+y =z+y ' =1 (z+y)+0=z+y

From these equations it is easy to prove by induction on the complexity of the terms
that each term ¢(z1,...,z,) which depends on all of its variables is equal in V' to
one of the following:

07 T, $1+0, 56'1, T+ -+ Ty, (x1++mn)’

Let now B be an algebra in V and t(zy,...,z,) a term depending on all variables

and assume that t(a,¢) = t(a,d). We have to show that ¢(b,¢) = t(b,d).

In the case n < 1 there is nothing to do, so we can assume that ¢ is of the form
1+ 4z, or (x1+---+2,) . In the first case, we derive the following sequence
of equations:

t(a,c) = t(a,d)

a+ca+ - +cp, = a+dy+---+d,
a+a+c+ - +ep=a+a+dy+--+d,
Otcat - ten=O+dot-+dy
b+0+co+ - Fen=b+0+do+--+dp,
btco+ - tcp=  btdy+--+d,

t(b,e) = t(b,d) .
The other case is similar.
We leave it as an exercise to prove that p4 = 04 U {(1,1"),(1',1)} is the only
nontrivial congruence on 4 and that

typ(0.4, pa) = 1,

typ(pa,la) = 2,

M (04, 1) = {A},
Ma(pa,1a) = {{0,1},{0, 1'}}.
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Claim: V is residually large.

Let k be any cardinal. Consider A4%. Let B be {0,1}* U {0,1'}", a proper
subalgebra of A”. Let 6 be the congruence of B generated by

{(£. )| fe{0,1}"\ {1}},

where for a € A, @ = (a,aq,...).

Since for any nontrivial polynomial p of B, we have p(f) = p(f’), it follows
that {f,g} = {h,h'} for some h € {0,1}*\ {1}, whenever f # g and f # g. From
this it follows that (1,1') ¢ @ and that |B/6] > 2*. It remains to show that B/6 is
irreducible. For this it is enough to show that

(1,1) € 0V Cg((f,9)), forall (f,g) ¢ 6.
So let f, g € B with (f,¢) ¢ 8 and let o =60V Cg((f, g)). We have

N N N () . . N
l=1+f+fHald+f+g9) 6 A+f+g) al+f+f) =1,
where at (*) we used the fact that f + g # Oandsol+ f+g#1.
The following lemma unravels the general construction behind this example.

5.2. Lemma (The residually large configuration) Let A be an algebra with
1. subsets N ={0,1} and N' = {0,1'}, where 1 # 1',

s|0 1
2. a ‘subtraction polynomial’, i. e. a polynomial s(x,y) of A such that 0|0 x|
1{1 0
3. polynomials e(x) and €'(x) such that
e(0) =¢€'(0) =0,
e(l) =e(l') =1,

e€l)y=¢1")=1,
such that for all polynomials p(x) of A the following holds:
if p(0) = p(1) or p(0) = p(1'), then p(1) = p(1') . (*)
Then HSP(A) is residually large.

In Example 5.1, we can choose e(z) =z + 0 and €'(z) = 2'.

Proof Let x be a cardinal. Let B be the subalgebra of 4" generated by the
set {0,1}* U {a | a € A} and ~y the congruence on B generated by

{(fe' () | Fe{o, 13"\ {1}} .
Claim: (1,1') ¢ ~.
If (1,1') € 4, then there is a polynomial p(z) of B and an f € {0,1}*\ {1} such

that p(f) # p(e'(f)) and 1 € {p(f), p(e'()}.

Since B is generated by {0, 1}* and the constants, there is a polynomial q(z, 7)
of A and g a tuple from {0, 1}" such that p(z) = ¢(z, §). Since p(f) # p(e'(f)), there
is an i < k with p(f)(i) # p(e'(f))(i). Let us assume, without loss of generality,
that

1=q(f(i),g(i) # q(e'(f(2)),5(7)) -
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This implies in particular g(f,§) = 1. As f(i) # €'(f(i)) then we must have f(i) = 1
and e'(f(¢)) = 1', implying that

1=4q(1,3() #q(1',5(i)) -

Since f # 1, there is a j < & such that f(j) = 0. Then ¢(0,3(j)) = 1 and we can
conclude that

q(0,9(7)) =1 =q(1,9(i)) # q(1', (3)) -

By rearranging the variables of ¢, we may assume that §(i) and g(j) are of the form

I, 1> I3 In
. —~ NSNS
g()=0...01...10...01...1,
g(j)=1...10...00...01...1.

Let ¢(z) = s(1,z) and let

r(z) = q(m,g(x), e ,e(xl,f(e(w)), ..., cle(r)),0,...,0,1,...,1).

-~ ~ et S e
I, I I3 Iy
Then
r(0) =4(0,3(j)) = 1,
r(1) =q(1,9(i)) =1,
r(1) = q(1',9(9) # 1,

contradicting (*). So 1y 1’, and in fact 1/y = {1}.
Let 6 be a congruence above v maximal with (1,

It remains to show that |B/6| > k.

For A <k let
. 1 ifi<A
GA(Z)Z{

1y ¢ 6. Then B/ is irreducible.

0 otherwise.
Now let A < § < k and suppose that ay 0 as. Then
1=s(1,s(as,a6)) 0 s(1,5(as,ar)) v €'(s(1,s(as,ar))) 0 €' (s(1,s(as,a6))) =€'(1) =1",

contradiction. Thus the ay for A < & give rise to k£ many distinct elements of
B/6. O

5.3. Example (A residually small abelian variety) Let V = HSP(A), where
A = ({07 0’7 17 1’}7 +7 f7 g7 h7 07 0’7 17 1I>

and the nonconstant operations are given by

+]0 0 1V | flg|h
0001 1 of0[L]0O
0f0 0 1 1 00|10
1{1 100 1]0|1 |V
it 100 1|1]1]|V
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It is left as an exercise to prove that V is abelian and that A has exactly one
nontrivial congruence p 4 with

typ(0.a, pa) = 1,

typ(pa,1a) = 2,

Ma(0.4,p4) = {A},

Ma(pa,1a) = {{0,1},{1,1},{0,1'}}

Claim: V is residually < 6.

Let S be an irreducible in V. The equations
of A force the range of + to be a 2-group Gp.
The ranges G of g and G5 of h are polyno-
mially isomorphic to G and so are 2-groups as
well. Also, every nontrivial polynomial of .S has
range contained in G; for some i.

Let a € GoNG4. Then a = g(b) for some b €
S and a +0 = a and so g(b) + 0 = a. But
g(z) + 0 =1 is an equation of A and so a = 1.
We have just shown that Go NGy = {1}. In a similar way one can show that
G1 NGy = {1'}. This gives us the following picture of S:

Claim: Disjoint congruences on S|, give rise to disjoint congruences on S.

Let 8 be a congruence on S|g, and let 6 be the congruence on S generated by
f. Since Gy is the range of an idempotent polynomial then 6 N6 = 6. We claim
that if (0,0’) € @ then (0,1) € 6. This follows, with some effort, from the facts,
noted earlier, that every nontrivial polynomial has range contained in G; for some
7 and that the intersection of distinct G;’s have size at most 1.

Now, let 8y and 6; be congruences of S|, with (z,y) € o N6, and with x # .
If {z,y} = {0,0'} then we have that (0,1) € 6o N#;. Otherwise, z and y must be
in the ranges of some nontrivial polynomials and so must belong to Go U G; U Gs.
If they both lie in G; for some i, then as G; is polynomially isomorphic to Gy there
are z', y' € Gy with {x,y} polynomially isomorphic to {z',y'}. It follows that
(a:’,y’) € 90 N 91.

By symmetry, the other cases to consider are when z € Gy and y € GG or
x € Gy and y € G5. In both cases, we can use various polynomial projections onto
Gy to find a pair of distinct elements of Gy which lie in 8y N #;. We can conclude
that if 8y N6 # Og, then By N6 # 0.

Thus, the irreducibility of S implies that S|g, is, up to polynomial equivalence,
an irreducible 2-group and so has size 2.

Our picture now is the following:

Note that if a and b are elements which be-
have identically with respect to the basic oper-
ations of S then the only two distinct elements
identified by the congruence generated by (a, b)
are a and b. The elements 0 and 0’ have this
property. If S has more than 5 elements then,
by considering the various possibilities, it can
be shown that there must be another pair of
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elements besides {0,0"} which behave identically. From this it follows that, as S is
irreducible, S can contain no more than 5 elements.

5.4. Exercise This exercise continues the discussion of Example 5.3.

(a) Show that V is abelian.

(b) Prove the claims made about congruence lattice and the minimal sets
of A.

(¢) Find an irreducible in V' which contains exactly 5 elements. Hint: Look
for a quotient of a subalgebra, of A3.

5.5. Exercise Let A be a finite algebra and a > 8 and pu > v in the congruence
lattice of A. Show that if some subset U is a minimal set for both (a, 8) and (u,v)
then the set of («, #)-minimal sets coincides with the set of (u,)-minimal sets.

5.6. Exercise Call two covers «, 8 of a congruence p equivalent if the pairs
(p,a) and (p, B) have the same minimal sets. Show that if A is finite, 04 < o and
J is the set of covers of 04 equivalent to a then any (0, a)-minimal set U is also a
(0.4,7)-minimal set, where v is the join of the congruences in J.

If the type of (0, ) is 2 show that any 7|y class V contained in the body of U
is polynomially equivalent to a vector space having |.J| one dimensional subspaces.
Also, show that if the (0, «a)-traces are vector spaces over the finite field F' then
Al|y is polynomially equivalent to a vector space over F' as well.

5.7. Exercise Let V be a locally finite abelian variety and suppose that p
is a strongly abelian congruence of the finite algebra A from V. If t(z1,...,2,)
is a term of V and C1,...,C, are p-blocks then the number of variables which
t|cy x--xc,, can depend on is at most the product of the size of the 2-generated free
algebra in V' with the size of the quotient A/p.

5.8. Exercise Let A be a finite algebra. Define two congruences a and 3 to
be strongly solvably related if typ({a A 8,a vV 8}) = {1}. Show that the strong
solvability relation is a congruence of the congruence lattice of A.

5.9. Exercise Let a < 3 in the congruence lattice of the finite algebra A with
typ(a, 3) = 2. Show that if a is strongly solvable (i.e., typ([0,a]) = {1}) and U is
an (a, #)-minimal set with body B then a|p = 0p.

5.10. Exercise Let A be a finite algebra in an abelian variety and let « be a
strongly solvable congruence of A. Prove that « is strongly abelian.

Hint: Assume that we are dealing with a minimal counterexample and then
use Lemma 4.1.

6 The case typ(S) = {1,2}
6.1. Proposition Let B be a finite algebra and let a and § be congruences
of B.
(a) typ([0B,a]) = {1} iff there is a chain Op = ap < aq < ... < ap = a such
that typ(a;,air1) =1 for alli <n
(If this is the case, a is called strongly solvable.)
(b) If typ([0s, @]) = {1} and typ([0s, B]) = {1}, then typ([05,a V A]) = {1}.

Proof (a) = obvious.
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< Suppose there is a pair p < v < a with typ(u,v) # 1. Let N be a (u,v)-trace
and (a,b) € v|n \ p. Since typ(u,v) # 1, there is a polynomial p(z,y) under which
N is closed and, after possibly interchanging a and b, such that

pla b
al* a
bla b

Choose an i such that (a,b) € a;1+1 \ @;. Since a;4 is strongly abelian over «; and
(p(a,b),p(b,a)) € a;, then (p(a,b),p(b,b)) € ;, contradiction.

(b) Since we have already established (a), it suffices to show that typ([3,aV 8]) =
{1}.

aVvp Let 0 = ap < a1 < ... < a, = a be chosen according to (a). Suppose
ZB

B that there is a pair u < v between 8 and a V § such that typ(u,v) # 1.
Let U be a (i, v)-minimal set and (a, b) € v|y \ p|u. Since v < aV pu,
then v|y < oy V u|y and so (a,b) € a|y V ply. So there is a ¢ € U with
(a,c¢) € a\ 0p (after possibly adjusting a). Since typ(p,v) # 1, then there is a

ple a
polynomial p(z,y) with (*) ¢ | * ¢ , after interchanging a and c if necessary. p
alc a

is derived from either a pseudo-meet, a pseudo-join or a pseudo-Mal’cev operation
on U. As in (a), this implies typ(«a;, a;+1) # 1 for some i.
O

In [HMS8S], the configuration (*) which appeared in the last proof is called a
1-snag.

6.2. Corollary There is a largest congruence pp of B, such that typ([0s, pg]) =

{1}. If a > pp, then typ(ps,a) # 1.
The congruence pg is called the strongly solvable radical of 5.

From now on we will assume the following situation unless
otherwise stated: A is a finite algebra, V = HSP(A) is abelian
and S is a finite irreducible with monolith p and strongly solvable
radical p such that typ(Os, 1) = 1 and typ(S) = {1,2}. From the
corollary, we get that every cover of p is of type 2 and that Con(S)
looks like:

6.3. Proposition Let Be V.

(a) If B is finite and (3 is a strongly solvable congruence of B,
then [ is strongly abelian.

(b) If p(Z) is a polynomial of B, then there is a term t(Z,y,z)
and elements a,b € B such that p(Z) = t(Z,a,b) for all T € B.

I

Proof (a) See Exercise 5.10.
(b) See Exercise 2.3.
O

6.4. Theorem Each p-class has at most 2M elements and thus |S| < |S/p|2Mz.

Proof This is just Theorem 4.4. [l
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To finish the proof of Theorem 1.6, we have to bound |S/p|. To achieve this,
we have to analyze the covers of p a bit closer.
Let N be the number of covers of p.

6.5. Proposition If S/p is big, then p has a lot of covers. In fact, |S/p| <
()"
2

Proof Let I be the set of covers of p. For a € I let o' be a congruence of S
which is maximal with the property that a A o' = p.

Claim: S/a' is an irreducible with monolith of type 2.

Since a = p, then a V o' = o' and so, by Lemma 4.3, typ(a/,a V a') = 2 since
typ(p, @) = 2. By the maximality of o', every congruence lying strictly above o/
also lies above o and so §/a’ is irreducible.

By Theorem 3.2, |S/a’| < MM, It is easy to see that Noer @ = p and thus
§/p embeds naturally into [[,.; S/a’. This implies the inequality. O

N
6.6. Corollary |S| < (M2]V[2) 2Ms

We call two covers 8y and 6, of p equivalent if the (p, 6p) and (p, 61) minimal sets
are the same. It follows from the properties of minimal sets given in Theorem 2.8
that this is indeed an equivalence relation on the covers of p.

6.7. Lemma Let B € V be finite and a < 3 be a pair of congruences of B.
Then there exist a term t(x,y) such that t(t(z,y),y) = t(z,y) holds in V and
t(B,a) € Mg(a, 3) for all a € B.

In particular, there are at most Ma equivalence classes of covers of p.

Proof Let U € Mp(«, 3) and let e be an idempotent polynomial with range U.
Choose a term s(z,y) and a tuple ¢ such that e(xz) = s(z,¢). Since e is idempotent,
then by suitably iterating s in its first variable, we may assume that s(z,y) is
idempotent in z.

Let a € B be an arbitrary element. Since B is abelian,

Ul =1s(U,0)| = |s(U.a,...,a)| =|s(B,a,...,a)|.

Also, since B/« is abelian and s(3,¢) € «, then s(8|v,a,...,a) € a. So s(B,a,...
a) contains an (a, 8)-minimal set. But since all such minimal sets have the same
cardinality as U and s(B,a,...,a) has size equal to U then it too is an («, 3)-
minimal set. Hence the term ¢(z,y) = s(z,y,...,y) is as required.

Since for each cover 8 of p there is some binary term operation which determines
some (p,d)-minimal set, and there are at most M, binary term operations on S,
then there are at most M, equivalence classes of p covers. O

The final, and most difficult, step in proving Theorem 1.6 is to show that under
the assumption of residual smallness the number of covers of p can be bounded as a
function of the size of the generating algebra A. Theorem 1.6 follows immediately
from the following result.

6.8. Theorem Let V be a locally finite abelian variety. The following are
equivalent:

(i) V is residually small.
(i) V avoids the residually large configuration.
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4
(iii) V is residually < Mé\@ 2Ms

Proof (iii)=(i) clear.
(i)=(ii) This follows from Lemma 5.2.
(ii)=(iii) We know that for S a finite irreducible from V', S has size bounded by
(M)"2)N2Ms - where N is the number of covers of the strongly solvable radical of
S. So, what is left is to show how avoiding the residually large configuration leads
to |[N| < M3.
(|

To show that when V' avoids the residually large configuration, the number of
covers of p is at most M3 we need only prove that each equivalence class of covers
of p has at most M2 elements, since we know that there are at most M, equivalence
classes.

Let’s fix a cover a of p and let J be the set of all covers of p equivalent to «

and
y=V 8.

BeJ

Let U € M(p, ). A modification of Exercise 5.6 can be used to show that U is also
a (p,y)-minimal set and that this pair of congruences is tame. A consequence of this
is that the (p,y)-minimal sets have most of the properties given in Theorem 2.8. A
definition of tameness, as well as a proof of this can be found in [HMS8S].

A (p,v)-trace of U is a vy|y-class which is not also a p|y-class. If W is such a
trace then S|y is a minimal algebra which is polynomially isomorphic to a vector
space. The one dimensional subspaces of this vector space correspond to the covers
of p which lie in J. Another important fact about W is noted in the following
Lemma.

6.9. Lemma If p is any polynomial of S, then either p is constant on W or
p induces an isomorphism between W and p(W).

Proof Suppose p is not injective on W. Then p is not injective on U, so p
must collapse v into p.

If p is not constant on W, there are ¢,d € W such that p(c) # p(d). Consider
t(x,y) = p(x —y + ¢), where + and — are polynomials whose restrictions to W
provide vector space addition and subtraction, and note that

t(c,c) = p(e) = t(d,d) .
But we also have
(t(c,c),t(d,c)) = (p(c), p(d)) € p\ Os .
By Lemma 4.1, the variety V' is not abelian, contradiction. |
It is beyond the scope of these notes to provide a complete proof of Theorem 6.8.

Instead, we will conclude by developing two key ideas which are used in the proof
and which are of independent interest.
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7 Multitraces

We’ll see in this section that subsets larger than traces, but which are derived
from traces, can carry an affine structure. These larger structures are called multi-
traces, and are obtained by applying a polynomial (of several variables) to a trace.
The behaviour of the multitraces in a finitely generated abelian variety determines
the residual character of the variety.

7.1. Example (The matrix power of a module) If M is an R-module, then
M* can be regarded as both an R-module and a module over the ring My (R) of
k x k-matrices over R.

As a module over R, the terms of M¥* are of the form

rilyxy + -+l ,

where the r; are ring elements, I is the k x k identity matrix and the elements of
MP* are treated as column vectors.
As a module over My (R), the terms of M* are of the form

Az + -+ Ay

for arbitrary k X k-matrices A; over R.

The latter set of matrices can be produced from the former set using the pro-
jection matrices (with a single 1 on the diagonal) and the matrix that cyclically
permutes the variables.

For an arbitrary algebra A, we consider the following operations on A*:
’/Tz(x) = (0)"'70)xi70>"'70)>
S('T) = (xkamla . 7wk—1);

d(ml,...,mk) = (xu,...,xkk)

and define the k-th matriz power of A to be the algebra
ARl = (AF d, s) .
7.2. Proposition
(a) ConA ~ ConA*! via § — 6%,
(b) ™ is an equivalence between the varieties HSP(A) and HSP(A*).

(¢) If V is a F-vector space, then VIE 45 term equivalent to V¥ considered
as a module over M, (F).

Proof The proof of this Proposition is left as an exercise. O

7.3. Theorem Let A be finite and 0 < « with typ(0,a) € {1,2} and let N be
a (0,a)-trace. If

T = f(N,...,N)
for some polynomial f, then A|r is polynomially equivalent to a matriz power

(AN for some k < n.

Proof Assume that typ(0,a) = 2 and let F be the field over which 4|y is a
vector space. Let + be the addition operation for this vector space and let 0 be the
zero vector. Let 0' = f(0,...,0) and define

G = {g(z)|r | g € Pol(A),g(T) C N,g(0') =0} C NT.
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It is not difficult to see that G is a finite dimensional vector space over F. Let
g1(x), ..., gr(z) be a basis of G.

Since, for all 7, g;f maps N into N, and 0 to 0, then g; f|n is a polynomial of
the vector space A|x which sends 0 to 0 and so there are Ai,..., AL € F such that

J

Let M be the k x n-matrix ()\3) It follows that since the g;’s are linearly
independent, then so are the rows of M. Thus M has rank k& and so & < n. Let
M' be an n x k-matrix M’ such that MM' = Iy, say M’ = (p}). For i < n let
li(z1,...,z1) be a polynomial of A whose restriction to N is pizi + -+ + plxy.
Let f'(z1,-..,x5) = f(li(z1,. .. xk), - In(z1, ..., x)). It is easy to check that
9:f(Z) = x; and that f'(N,...,N)CT.

Claim: If a,b € T are distinct, then there is an i such that g;(a) # g:(b).

Since T is contained in an a-class, (a,b) € a'\ 0. Since N is an (0, a)-trace, a
and b can be separated by a polynomial g mapping T into N. Let ¢'(z) = g(x)—g(0).
Then ¢'(a) # ¢'(b) and ¢'(0") =0, so ¢’ € G. Since the g;’s form a basis of G, the
result follows.

Now let a € T and b = f'(g1(a),...,gkx(a)). For all i, we have g;(b) =
9i(f'(g1(a),...,gr(a))) = gi(a) since MM' = Ij,. By the previous claim, a = b
and thus f'(N,...,N)=T.

Using f’ and the g;’s, we have bijections

F:N¥Y — T (x1,...,00) — f'(x1,...,%1) .
and
G:T — Nt = (g1(0),...,gr(t))

In a natural way, F' and G induce bijections between the functions on T and the
functions on N*: If h: T™ — T, then

G(h)(Z1,...,Zm) = G(W(F(Z1),...,F(Zm)))
and if s: (N¥)™ — N*, then
F(s)(t1, ... tm) = F(s(G(t1),...,G(tm)))

Claim: If s(x) is a polynomial of (A|x)*!, then F(s) € Pol(A|r).
It suffices to establish this for z+y, Az, 7;(z) and s(x) since these functions generate
the polynomial clone of (A|y)*! (exercise).

F(z +y)(t,t2) = f'(G(t1) + G(t2)) = f(g1(t1) + g1(t2), .-, gk (t1) + gu(t2))
€ Pol(A),
F(m)(t) = f'(mi(g1(t), ..., 9x())) = f(0,...,0,9:(t),0,...,0) € Pol(A),
F(s)(t) = f'(gr(t), 91(t),- .., gr—1(t)) € Pol(A).
Claim: If h € Pol(A|r), then G(h) € Pol((A|x)H).
If h(zy,...,xm) € Pol(A]r), then
G(h)(ar,.-..,um) = (gih(f' (W), ..., f'(@m)),- .. grh(f' (W), ..., f'(um))) -

This is a vector of linear maps on A|y and so it is in Pol(.A|[I<c,]).
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The above claims establish that A|r is polynomially equivalent to A|Ef,] in the
case where the type of (04, ) is 2. The argument for the type 1 case is similar and
is left to the reader to reproduce. O

A set T as in the previous theorem is called a (0, a)-multitrace of rank k.

8 Parallelism

Consider a field F' and the n-dimensional vector space V' = F" for some n > 1.
The lines in V' are equal to the cosets of the one-dimensional subspaces of V. Two
lines Ly and Lo, are parallel if they are cosets of the same one-dimensional subspace.
Alternatively, they are parallel if and only if one can be obtained from the other
via translation (i.e., addition with some fixed vector).

More generally, for 8 a congruence of a finite algebra B, let us call two polyno-
mially isomorphic subsets X, Y (3-parallel and write

X|sY

if (X, Y) lies in the transitive closure of {(¢(X,a), (X, b)) | t(z,y) € Poly(B), (a,b) €
B}. It B = 1p, we just write X || Y. So, if X and Y are parallel then one can be
obtained from the other via a sequence of polynomial translations.

8.1. Proposition Let B be a finite algebra.

(a) For each X C B and each congruence 8 on B, ||z is an equivalence
relation on the set of all subsets of B which are polynomially isomorphic
to X.

(b) If B is abelian and X || Y, then |p(X)| = |p(Y)| for all polynomials p.

Proof (a) The relation is naturally reflexive. To establish symmetry and tran-
sitivity use the fact that the sets in question are all polynomially isomorphic.
(b) Let p be a polynomial. It suffices to consider pairs of the form (¢(X, a),t(X, b)),
where t(x,y) is a polynomial. Since B is abelian, p(t(z,a)) = p(t(y, a)) if and only
if p(t(z,5)) = p(t(y, b)) for all 2, y and so [p(t(X, )| = [p(H(X, B))].
[l

The previous proposition highlights an important feature of parallelism. Namely,
that in an abelian algebra, polynomial projections of polynomially isomorphic par-
allel subsets have the same size. Let’s define two subsets X and Y of an algebra B
to be quasi-parallel if for all polynomials p(z) of B, p(X) and p(Y') have the same
size.

In our vector space example, any two subsets of V' which have the same size
are quasi-parallel, since all nonconstant polynomials of V' are permutations. If we
regard V' as a module over the ring of n X n-matrices over the field F' then it turns
out that two lines of V' are parallel if and only if they are quasi-parallel. This is
because, as a module, there are enough polynomial projections available distinguish
between lines which are not parallel.

8.2. Proposition

(a) If a < B such that typ(a, B) = 2, then all (o, B)-traces lying in the same
(a, B)-minimal set are parallel.

(b) If B is a member of a finitely generated abelian variety and o < 8 such
that typ(a, 8) = 2, then

|Mg(a, B)/ ||| < M,
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Proof (a) Let N, M be traces of the same minimal set U. Let d(z,y,z) be
a pseudo-Mal’cev operation on U. Choose elements n € N and m € M. Then
d(N,n,n) = N and d(N,n,m) = M, which is all we need.
(b) Let U be an («, 3)-minimal set. U is of the form (B, ¢) for some term t(z,y)
which is idempotent in the first variable. Choose a € B. Since B lies in an abelian
variety, ¢(B,a,...,a) is also (a, 8)-minimal. This shows that every («, 3)-minimal
set is parallel to one determined by a binary term.
([l

8.3. Remark The previous proposition applies not only to («, 3)-traces where
a < (3 and typ(a, 3) = 2, but also to (p, y)-traces in our subdirectly irreducible S.

8.4. Lemma Let A be a finite abelian algebra and 0 < «a in Con(A) with
typ(0,) = 2. If Ny and N; are distinct (0,«a)-traces which have a nonempty
intersection then they are not quasi-parallel.

Proof We need to show that there is a polynomial which is constant on pre-
cisely one of N1 and Ny. Let U be a minimal set which contains Ny and let e(z) be
an idempotent polynomial with range U. If e is constant on N; then we are done,
and so we may assume that e is nonconstant on Ny. It follows that e(N;) = Np.

Let 0 lie in N3 N Ny and let a € Ny \ Np. Since e is nonconstant on Ny, then
b = e(a) # 0. Let g(x) be a polynomial with range U and with g(b) and g(a)
distinct members of Ny. If ¢ is constant on one of Ny and N; and one-to-one on
the other, then we are done, and so either g is constant on both Ny and Nj or it is
one-to-one on both of them. If the former holds, then we would have g(a) = g(b)
and so the latter must hold. By suitably iterating g, we may assume that it is
idempotent. Then ¢ = g(a) # g(b) = b in Np.

As A|n, is polynomially isomorphic to a vector space then there is a binary
polynomial — of A which behaves as subtraction on Ny with 0 as the neutral
element. Then e(x) — g(z) is constant on Ng since e(0) — g(0) = 0—0 = 0 and
e(b) —g(b) =b—b=0. But, e(a) — g(a) = b — ¢ # 0, showing that e(x) — g(z) is
nonconstant on N;. We conclude that Ny is not quasi-parallel to Ny. O

8.5. Theorem Let A be a finite abelian algebra and 0 < a with typ(0,a) = 2.
Let Ny and Ny be quasi-parallel (0,a)-traces which lie in the same a-class. If
HSP(A) omits the residually large configuration, then N ||o Ni.

Proof Assume Ny |[f, Ny and let U;, i = 0,1, be (0,a)-minimal sets with
N; C U;. Choose idempotents eg and e; with ranges Uy and U; respectively. Since
e;(N;) = N; and Ny and N; are quasi-parallel and lie in the same a-class, then
e;(No) = e;(N1) = N; for i = 0,1. By suitably iterating these polynomials we may
assume that eg(ei (z)) = x for all z € Ny.

Let Ny be an enumeration of Ny, say Ny € A!, and let N; = e;(Np). As the
type of (0,a) is 2 then A|n, is polynomially equivalent to a vector space and so
has an additive structure. Let 0 € Ny be the neutral element with respect to this
structure and let 0" = e;(0). Let — be a binary polynomial of .4 which acts as
subtraction on Np. Let B be the subalgebra of A’ generated by {No} U {¢| c € A}.

Define ﬂa to be the transitive closure in B of the relation
{(t(No,c),t(No,d)) € B? | t(z,y) a polynomial of A and (c,d) € a} .

Claim: ||, is a congruence of B.
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ﬂa is naturally symmetric and transitive and it is not difficult to show that it
is reflexive (since B is generated by Ny and the constants). We need only show
that the generating set of ﬂa is a subalgebra of B2. That is, we need to show
that if t(x,y) is a polynomial of A, {(¢,d) € a and s(z) is a polynomial of B then
(st(No, c), st(No, d)) Eﬂa. Since B is generated by Ny and the constants, then
s(z) = r(z, No) for some polynomial 7 of A. If we set t'(z,y) = r(t(z,y),z) then
st(No, c) = t'(Ny, c) and st(Ny,d) = t'(Ny,d) as required.

Claim: 0 ﬂa 0.

The pair (0,0') lies in a. With the polynomial (z,y) = y, we get t(No,0) = 0
and t(Np,0') = 0.

Claim: Let C and D be nonconstant members of B with C' ﬂa D. Then the set
of elements of ' is a-parallel to the set of elements of D. Consequently,
No |f, Ni.

Let C' and D be the set of elements of the tuples C' and D, respectively. Then C

and D are (0, «)-traces. By transitivity it suffices to verify this for pairs of the form

C = t(Ny,c) and D = t(Ng,d) with {c,d) € a.

As C and D are traces, then they are polynomially isomorphic to Ny and
so there is some polynomial e(z) with e(C) = Ny. Then C = t(e(C),c) and
D = t(e(C),d), showing that C and D are a-parallel.

To complete the proof, we will show that B/ ﬂa contains the residually large

configuration. Let N = {0, No}/ ﬂa and N' = {0, N}/ ﬂa. The polynomials ey and
e1 provide the required projections between N and N' in B/ ﬂa and the polynomial
s(z,y) = x —y on Ny is a subtraction polynomial on N.
So, we need only show that for all polynomials p(z) of B, if p(0) ﬂa p(No)
or p(0) ﬂa p(Ny) then p(No) ﬂa p(N1). Let’s assume that p(0) ﬂa p(Np). Since
p is a polynomial of B and B is generated by Ny and the constants, there is a
polynomial ¢(z,y) of A such that p(z) = gq(z, Ny). Our assumption now reads
q(O)NO) Ha q(NU>N0)'

By the previous claim, it follows that the sets ¢(0, No) and {g(w,w) | w € No}
are a-parallel in A and hence are quasi-parallel. Since ¢(0,0) lies in both sets,

q(0,No) = {q(w,w) | w € No}
by Lemma 8.4.
Claim: IfY,Z € B with Y ﬂa Z and for some i, Y; = Z;, then Y = Z.

Let Y and Z be the elements of the tuples Y and Z respectively. If either of Y’
or Z is constant, then both are and so Y = Z in this case. Otherwise, both Y and Z
are quasi-parallel traces with a nonempty intersection. By Lemma 8.4 we conclude
that Y = Z. Let  — y be a polynomial of A whose restriction to Y is subtraction
and let s(z) =z — Y. Then as ||, is a congruence we have that s(V) ||, s(Z). But
5(Y) is constant and so s(Z) must be as well. As Y and Z have a common entry,
then we conclude that Y = Z.

From the previous claim, we can deduce that ¢(0, Ny) = q(No, No), i.e., ¢(0,w) =
q(w,w) for all w € Ny. By abelianness it follows that ¢(0,0) = ¢(w,0) for
all w € Ny. Since Ny || N1, the polynomial ¢(z,0) must be constant on Ny,
i.e., q(0',0) = g(e1(w),0) and by abelianness again, ¢(0',w) = ¢(ei(w),w) for
all w € Ny.
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This means that

and so

p(Wo) = p(0) [l, p(0") = p(W1) . (2)

This establishes that B/ |Aa contains a residually large configuration, contrary
to our assumptions. Thus Ny and N; must be a-parallel. O

8.6. Corollary Let A be a finite simple abelian algebra which generates a
residually small variety. Then any two quasi-parallel minimal sets of A must be
parallel.

The above connection between quasi-parallel and parallel traces in abelian va-
rieties turns out to be crucial in the study of residual smallness. For a complete
illustration of this, the reader is encouraged to consult [KKV99]. Also in that pa-
per can be found a description of an algorithm which determines if a finite algebra
generates a residually small abelian variety.

8.7. Exercise Let A be a finite abelian algebra such that for every congruence
a which covers 04, typ(04, @) = 2. Let a; and as be covers such that M 4(04,a1) =
Ma(04,a2) and let v = a1 V az. Let U be a (04,01) minimal set with e(A) = U
for some idempotent polynomial e(x).

(a) Show that U is a (04, 7y)-minimal set and that if § is any congruence of A
below 7 with d|y = y|y then § = 7.

(b) Show that if 3 is a cover of 04 below 7 then 3|y # Oy and so U is a
(04, #)-minimal set. (What is being established here is that (04,7) is a
tame interval.)

Hint: First show that if V is a (04, 3)-minimal set then a;|ly # Oy
and that S|y < ai|lv V az]y. Next, use the fact that Aly is Mal’cev to
conclude that the interval [04),, 1|y V az|y] in the congruence lattice of
Aly is a height 2 modular lattice, and finally use this to show that the
interval [0 4], , B|v] is perspective to [04), ,;|v]-

(c) Let

0 ={(z,y) € v|ef(x) =ef(y) for all polynomials f of A} .

Show that € is a congruence and in fact § = 04.

(d) Show that if (a,b) € v\ 04 then there is a polynomial of A with range U
which separates a and b. (Note: this fact is needed in order to understand
the structure of (0.4,~)-multitraces.)

8.8. Exercise Use Corollary 8.6 and Lemma 8.4 to show that any 7 element
simple algebra whose minimal sets are all polynomially isomorphic to the 3 ele-
ment vector space and are arranged according to the following picture (with lines
representing the minimal sets) must generate a residually large equational class.
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8.9. Exercise Let A be an algebra which has a Mal’cev polynomial. Show
that if the pair (u,v) is in the congruence of A generated by the pair {a,b) then
there is a polynomial p(z) of A with p(a) = u and p(b) = v.

8.10. Exercise Show that the algebra A defined as follows generates a resid-
ually large equational class. A is the algebra

({0,1,2,3}, +, f(2), g(x))

where
+]0 1 2 3 | flg
0fo 1T 01 o012
1/1 010 1[2(3
20 101 2|13
3|1 010 3|22

8.11. Exercise Let A be a finite simple algebra of type 3, i.e., the (04,14)-
minimal sets are 2 element boolean algebras, and let U be a minimal set of A. Show
that if p(zy,...,x,) is a polynomial of A, then the ‘multitrace’ T' = p(U,...,U)
is primal, i.e., every function on the set T is equal to the restriction of some
polynomial of 4 to T.
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