
Tractability and learnability arising from algebras with few subpowers

Paweł Idziak
Jagiellonian University

Theoretical Computer Science Department
Kraków, Poland

idziak@tcs.uj.edu.pl

Petar Marković
Department of Mathematics and Informatics

University of Novi Sad
Novi Sad, Serbia

pera@im.ns.ac.yu

Ralph McKenzie
Vanderbilt University

Department of Mathematics
Nashville, Tennessee USA

ralph.n.mckenzie@vanderbilt.edu

Matthew Valeriote
Department of Mathematics and Statistics

McMaster University
Hamilton, Ontario
Canada L8S 4K1

matt@math.mcmaster.ca

Ross Willard
Department of Pure Mathematics

University of Waterloo
Waterloo, Ontario

Canada
rdwillar@uwaterloo.ca

Abstract

A k-edge operation ϕ on a finite set A is a k + 1-ary
operation that satisfies the identities

ϕ(x, x, y, . . . , y) ≈ ϕ(x, y, x, y, . . . , y) ≈ y,

ϕ(y, y, y, x, y, . . . , y) ≈ ϕ(y, y, y, y, x, y, . . . , y) ≈ · · ·
· · · ≈ ϕ(y, y, y, . . . , y, x) ≈ y.

We prove that any constraint language Γ that, for some
k > 1, has a k-edge operation as a polymorphism is
globally tractable. We also show that the set of relations
definable over Γ using quantified generalized formulas is
polynomially exactly learnable using improper equivalence
queries.

Special instances of k-edge operations are Mal’cev and
near-unanimity operations and so this class of constraint
languages includes many well known examples.

1. Introduction

A wide variety of combinatorial problems can be ex-
pressed within the framework of the Constraint Satisfaction

Problem (CSP). Given an instance of the CSP the aim is to
determine if there is an assignment of values to the variables
of the instance that satisfies all of its constraints. While
the class of all CSPs forms an NP-complete class of prob-
lems there are many naturally defined subclasses that are
tractable (i.e., lie in the class P). A main research goal is to
identify the subclasses of the CSP that are tractable.

One common way to define a subclass of the CSP is to
restrict the relations that appear in the constraints of an in-
stance to a specified set of relations over some fixed domain,
called a constraint language. The Dichotomy Conjecture of
Feder and Vardi [14] states that for any constraint language
Γ, the corresponding subclass of the CSP, denoted CSP(Γ),
is either NP-complete or tractable. The Dichotomy Con-
jecture has been verified in a number of special cases, most
notably over domains of size 2 [20] and size 3 [4]. Over
larger domains, a number of general results have been ob-
tained [7, 3, 12].

In this paper we introduce a condition that when satis-
fied by a constraint language Γ, guarantees that the sub-
class CSP(Γ) is tractable. The polynomial-time algorithm
that we use to establish tractability is essentially that pre-
sented by Dalmau in [12] and our result generalizes his and
also generalizes earlier results of Feder and Vardi, Bulatov,

1

and Jeavons, Cohen and Cooper [14, 6, 17]. The class of
constraint languages that satisfy our condition is quite large
and includes some well known constraint languages such as
those that have Mal’cev or near unanimity polymorphisms.

A polymorphism of a set of relations Γ over some set A
is a finitary operation on A that preserves all of the relations
in Γ. Work of Jeavons and his co-authors has shown that the
tractability of a constraint language is determined by the set
of its polymorphisms and many tractability results can be
expressed in terms of the existence of certain kinds of poly-
morphisms [8]. A benefit of focusing on polymorphisms is
that it allows the introduction of ideas and techniques from
universal algebra into the study of tractability and in this
paper we adopt this algebraic approach.

Our main result is that if a constraint language Γ has a k-
edge operation (see Definition 3.2) as a polymorphism then
Dalmau’s algorithm can be used to solve in polynomial time
all instances in CSP(Γ). This algorithm can be regarded as a
natural generalization of the familiar Gaussian elimination
algorithm for solving systems of linear equations since it
makes essential use of the fact that, in this case, all solution
sets of instances of CSP(Γ) have small generating sets (akin
to bases of vector spaces) when considered as universes of
particular algebras.

On the other hand, we argue that if a constraint lan-
guage Γ fails to have a k-edge operation as a polymorphism
then no “Gaussian-like” algorithm can solve all instances of
CSP(Γ) in polynomial-time. So, in some sense, our result
sharply determines the scope of algorithms like Dalmau’s
to quickly settle instances of the CSP.

In Section 5 we establish that if Γ is a set of relations
over a finite set that is invariant under a k-edge operation
then the set of relations defined by quantified generalized
formulas over Γ is exactly learnable, in polynomial time,
via an algorithm that makes improper equivalence queries.
This extends the result of Bulatov, Chen, and Dalmau in [5]
and earlier results of Dalmau and Jeavons [13].

2. Preliminaries

Definition 2.1 An instance of the constraint satisfaction
problem is a triple P = (V,A, C) with

• V a non-empty, finite set of variables,

• A a non-empty, finite set (or domain),

• C a set of constraints {C1, . . . , Cq} where each Ci is a
pair (~si, Ri) with

– ~si a tuple of variables of length mi, called the
scope of Ci, and

– Ri an mi-ary relation over A, called the con-
straint relation of Ci.

Given an instance P of the CSP we wish to answer the
following question:

Is there a solution to P , i.e., is there a function
f : V → A such that for each i ≤ q, the mi-tuple
f(~si) ∈ Ri?

In general, the class of CSPs is NP-complete (see [17]),
but by restricting the nature of the constraint relations that
are allowed to appear in an instance of the CSP, it is possible
to find natural subclasses of the CSP that are tractable.

Definition 2.2 Let A be a domain and Γ a set of finitary
relations over A. CSP(Γ) denotes the collection of all in-
stances of the CSP with domain A and with constraint rela-
tions coming from Γ. Γ is called the constraint language of
the class CSP(Γ).

Definition 2.3 Call a finite constraint language Γ tractable
if the class of problems CSP(Γ) is tractable (i.e., lies in P).
If Γ is infinite and each finite subset Γ′ of Γ is tractable then
we say that Γ is tractable. If Γ is infinite and the entire class
CSP(Γ) is in P then we say that Γ is globally tractable.

Γ is said to be NP-complete if for some finite subset Γ′

of Γ, the class of problems CSP(Γ′) is NP-complete.

A key problem in this area is to classify the (globally)
tractable constraint languages. Note that in this paper we
will assume that P 6= NP. Feder and Vardi [14] conjecture
that every finite constraint language is either tractable or is
NP-complete.

The natural duality between sets of relations (constraint
languages) over a set A and sets of operations (algebras) on
A has been studied by algebraists for some time. Jeavons
and his co-authors [16] have shown how this link between
constraint languages and algebras can be used to transfer
questions about tractability into equivalent questions about
algebras. In the remainder of this section we present a con-
cise overview of this connection.

Definition 2.4 Let A be a non-empty set.

1. Let R be an n-ary relation over A and f(x̄) an m-
ary function over A for some n, m ≥ 0. We say that
R is invariant under f and that f is a polymorphism
of R if for all ~ai ∈ R, for 1 ≤ i ≤ m, the n-tuple
f(~a1, . . . ,~am) ∈ R whose i-th coordinate is equal to
f(~a1(i), . . . ,~am(i)).

2. For Γ a set of relations over A, Pol (Γ) denotes the
set of functions on A that are polymorphisms of all the
relations in Γ.

3. For F a set of finitary operations on A, Inv(F) denotes
the set of all finitary relations on A that are invariant
under all operations in F .

4. For Γ a constraint language over A, 〈Γ〉 denotes
Inv(Pol (Γ)), the relational clone on A generated by
Γ.

We note that given a set of relations Γ over a finite set
A, the relational clone generated by Γ is equal to the set
of relations over A definable via Γ using primitive-positive
formulas (or conjunctive queries) (see [16]).

Theorem 2.5 ([16]) Let Γ be a constraint language on a
finite set. If Γ is tractable then so is 〈Γ〉. If 〈Γ〉 is NP-
complete then so is Γ.

We refer the reader to [9] or [19] for the basics of univer-
sal algebra, in particular to the notions of a cartesian power
and a subuniverse of an algebra. By an algebra we mean the
following:

Definition 2.6 An algebra A is a pair (A,F) where A is
a non-empty set and F is a (possibly infinite) collection of
finitary operations on A. The operations in F are called the
basic operations of A. A term operation of an algebra A is
a finitary operation on A that can be obtained by repeated
compositions of the basic operations of A.

Definition 2.7 Let A = (A,F) be a finite algebra and Γ a
constraint relation over A.

1. AΓ denotes the algebra (A,Pol (Γ)) and ΓA denotes
the constraint language Inv(F).

2. We call the algebra A tractable, globally tractable, or
NP-complete if the constraint language ΓA is.

Note that if A is an algebra, then Inv(A) coincides with
the set of all subuniverses of finite cartesian powers of A.

In algebraic terms, Theorem 2.5 states that a constraint
language Γ is tractable (or NP-complete) if and only if
the algebra AΓ is. So, the problem of characterizing the
tractable constraint languages can be reduced to the prob-
lem of characterizing the tractable finite algebras.

3. Algebras with few subpowers

Given a finite algebra A we can associate to it a function
that counts the number of subalgebras of finite powers of
A. The main results of this paper rely on the companion pa-
per [2], wherein this function is extensively studied. Earlier
work by Dalmau and Jeavons [11, 13] and Chen [10] deal
with notions closely related to this function.

Definition 3.1 Let A be a finite algebra.

1. For n a positive integer, define sA(n) to be the loga-
rithm, base 2, of the cardinality of the set of all subuni-
verses of the algebra An.

2. We say that A has few subpowers if the function sA can
be bounded by some polynomial.

We note that in [10] algebras (or sets of operations over
a finite set) with few subpowers are said to be polynomially
expressive.

In this paper we rely on the following definition and re-
sult from [2] that characterize finite algebras with few sub-
powers.

Definition 3.2 A k-edge operation on a set A is a k+1-ary
operation e(x̄) on A that satisfies the equations

e(x, x, y, y, y, . . . , y, y) ≈ y

e(x, y, x, y, y, . . . , y, y) ≈ y

e(y, y, y, x, y, . . . , y, y) ≈ y

e(y, y, y, y, x, . . . , y, y) ≈ y

...

e(y, y, y, y, y, . . . , x, y) ≈ y

e(y, y, y, y, y, . . . , y, x) ≈ y

A term e of an algebra A is a k-edge term for A if eA is a
k-edge operation on A.

Examples 3.3 Let A be a set.

1. A Mal’cev operation on A is a ternary operation
p(x, y, z) that satisfies the equations p(y, x, x) ≈
p(x, x, y) ≈ y. It is clear that a ternary operation
p(x, y, z) on A is Mal’cev if and only if p(y, x, z) is a
2-edge operation on A.

2. A k-ary near unanimity operation on A is a k-ary op-
eration t(x̄) that satisfies the equations

t(x, y, . . . , y) ≈ t(y, x, y, . . . , y) ≈ · · ·
· · · ≈ t(y, y, . . . , x) ≈ y.

If t is a k-ary near unanimity operation then the k +1-
ary operation e(x̄) = t(x2, x3, . . . , xk+1) is a k-edge
operation.

3. A k-ary operation g on A is a generalized majority-
minority (gmm) operation ([5, 12]) if for all a, b ∈ A,
we have that either for all x, y ∈ {a, b},

g(x, y, . . . , y) = g(y, x, y, . . . , y) = · · ·
· · · = g(y, y, . . . , x) = y

or for all x, y ∈ {a, b},

g(y, x, . . . , x) = g(x, x, . . . , x, y) = y.

From [2] we know that any algebra with a k-ary gmm
term operation also has a k-edge term operation.

Theorem 3.4 ([2]) Let A be a finite algebra. Then A has
few subpowers if and only if for some k > 0, A has a k-edge
term. In this case, sA(n) is bounded above by a polynomial
of degree k.

We note that in [2] it is established that if a finite alge-
bra A fails to have few subpowers then the function sA is
bounded below by an exponential function. This extends
the result of Chen for two element algebras found in [10].

One direction of the proof of Theorem 3.4 establishes
that in the presence of a k-edge term, all subalgebras of
finite powers of a finite algebra A have rather small gener-
ating sets. The proof utilizes three auxiliary terms that are
derivable from a k-edge term.

Lemma 3.5 ([2]) Let A be a finite algebra with a k-edge
term e. Then A also has terms d(x, y), p(x, y, z) and
s(x1, x2, . . . , xk) satisfying

p(x, y, y) ≈ x

p(x, x, y) ≈ d(x, y)
d(x, d(x, y)) ≈ d(x, y)

s(x, y, y, y, . . . , y, y) ≈ d(y, x)
s(y, x, y, y, . . . , y, y) ≈ y

s(y, y, x, y, . . . , y, y) ≈ y

...

s(y, y, y, y, . . . , y, x) ≈ y.

The following two definitions are extensions of those
given in [5, 12] in the context of generalized majority-
minority operations.

Definition 3.6 Suppose A is an algebra with k-edge term e
and terms d, p, s as in Lemma 3.5. A pair (a, b) ∈ A2 is a
minority pair if d(a, b) = b.

By an index (of rank n) we mean a triple I = (i, a, b)
where 1 ≤ i ≤ n and a, b ∈ A. It is said to be a minority
index if (a, b) is a minority pair. If S ⊆ An, we say that I
is witnessed in S if there exist f , g ∈ S satisfying

• f(j) = g(j) for all j < i.

• f(i) = a and g(i) = b.

In this case we call f , g witnesses to I .

Definition 3.7 Let A be an algebra with k-edge term e and
terms d, p, s as in Lemma 3.5 and suppose R ⊆ B ⊆ An

for some n > 0.

1. The signature of B, denoted by SigB , is the set of all
minority indices of rank n that are witnessed in B.

2. We say that R is a representation of B if

• For all T ⊆ [n] with |T | < k, projT (B) =
projT (R). ([n] denotes the set {1, 2, . . . , n})

• SigR = SigB .

3. 〈R〉e denotes the closure of R under the operation e
(or equivalently the smallest n-ary relation on A that
contains R and is invariant under e.)

Lemma 3.8 Let A be a finite algebra with k-edge term e
and terms d, p, s as in Lemma 3.5. Suppose B is a subalge-
bra of An, R is a representation of B, and I = (i, a, b) is a
minority index witnessed in B. Then for all f ∈ 〈R〉e with
f(i) = a, there exists g ∈ 〈R〉e such that f , g witness I .

PROOF: Because I is minority and witnessed in B, we can
choose f∗, g∗ ∈ R witnessing I . Define

g = p(f, f∗, g∗).

Because p(x, y, y) ≈ x we have f(j) = g(j) for all j < i.
At coordinate i,

g(i) = p(a, a, b) = d(a, b) = b

where the last equality holds because (a, b) is minority. •

The proof of the following theorem may be found in [2].

Theorem 3.9 Suppose A is a finite algebra with k-edge
term e and terms d, p, s as in Lemma 3.5. If B is a subalge-
bra of An and R is a representation of B, then 〈R〉e = B.

As observed in [5] and [12], every subset B of An has
a representation whose size is bounded above by a poly-
nomial in n. In fact, if we set m = min(k − 1, n)
then B has a representation of size at most 2|SigB | +∑

T⊆[n],|T |=m |projT (B)|. We will call a representation
with this property a compact representation of B. A
straightforward computation (noted in Lemma 4 of [5]) es-
tablishes that every subset of An has a compact representa-
tion of size bounded above by a (k − 1)-degree polynomial
in n.

Following [11], let us say that an algebra A is polynomi-
ally generated (of degree m) if every subuniverse of An has
a generating set whose size is bounded above by a polyno-
mial in n of degree at most m. We conclude that if A has
a k-edge term then it is polynomially generated of degree
k − 1. The converse to this statement is proved in [2].

Note that given a subset R of An, R will be a com-
pact representation of some subset of An if and only if
it is a compact representation of itself. This can be de-
termined by comparing the size of R with 2|SigR| +∑

T⊆[n],|T |=m |projT (R)|, where m = min(k − 1, n), a
calculation that can be carried out in time bounded by a
polynomial in n and the size of R.

4. Tractability

In this section we argue that, with slight modifications,
the polynomial-time algorithm presented in [12] for alge-
bras having a gmm term works for finite algebras having
few subpowers. Thus we claim the following result:

Theorem 4.1 Let A be a finite algebra with few subpowers.
The constraint language ΓA consisting of all subuniverses
of finite cartesian powers of A is globally tractable.

Corollary 4.2 Any constraint language over a finite set A
that has, for some k > 1, a k-edge operation as a polymor-
phism is globally tractable.

Note that this settles a conjecture posed by Chen in [10]
and Conjecture 1 from Dalmau’s thesis [11], namely that
any algebra that is polynomially generated is tractable.

For the remainder of this section, we assume that A is a
finite algebra of the form 〈A,ϕ(x1, . . . , xk+1)〉, where ϕ is
a k-edge operation. Note that in order to prove Theorem 4.1
it will suffice to consider algebras of this form.

For P = ({v1, . . . , vn}, A, {C1, . . . , Cm}) an in-
stance of CSP(ΓA), and for 0 ≤ l ≤ m, let
Pl = ({v1, . . . , vn}, A, {C1, . . . , Cl}), be the instance of
CSP(ΓA) obtained from P by only using the first l con-
straints of P and let Rl denote the set of solutions of Pl.

In essence, the Dalmau Algorithm starts off with a com-
pact representation of R0 (= An) and then recursively con-
structs compact representations for Rl, for 0 < l ≤ m. At
the end of this recursion, we have Rm, a compact represen-
tation for the set of solutions of P , and so P will have a
solution if and only if Rm is non-empty. Of course, the al-
gorithm can be easily modified so that it outputs a solution
of P if one exists.

Algorithm Dalmau(({v1, . . . , vn}, A, {C1, . . . , Cm}))
Step 1 set R′

0 some compact representation of An

Step 2 for each l ∈ {0, . . . ,m− 1} do
(let Cl+1 be ((vi1 , . . . , vikl+1

), Sl+1))
Step 2.1 set R′

l+1 := Next(R′
l, i1, . . . , ikl+1 , Sl+1)

end for each
Step 3 if R′

m 6= ∅ return yes
Step 4 return no

The Dalmau algorithm makes use of a number of proce-
dures that are defined and analyzed in [12]. We now present
a description of these procedures, pointing out any neces-
sary modifications, along with estimates of their run-times.
Unless otherwise noted, justifications for the correctness
and bounds on run-times can be found in Section 4 of [12].

• Nonempty(R′, i1, . . . , ij , S) receives as input a com-
pact representation R′ of a subuniverse R of An for
some n, a sequence of elements i1, . . . , ij from [n],
and a subuniverse S of Aj . If there is some element
t ∈ R such that proj{i1,...,ij}(t) ∈ S then Nonempty
outputs some member of R with this property and if
not, returns the answer “no”.

The running time of Nonempty can be bounded by
O(((n|A|)k + |proj{i1,...,ij}(R)|)k+2|S|n).

• Fix-values(R′, a1, . . . , am) receives as input a
compact representation R′ of a subuniverse R of An

for some n and a sequence of elements a1, . . . , am

from A and outputs a compact representation of the
subuniverse

{t ∈ R : proj[m](t) = (a1, a2, . . . , am)}.

The only change in the definition of Fix-values
found in Section 4.2 of [12] is that Step 2.2.1.2 has
been removed and Step 2.2.1.1 changed to

set t5 := p(t1, t2, t3)

where p(x, y, z) is the term derived from the k-edge
operation ϕ using Lemma 3.5. See Figure 1 for
a presentation of the modified Fix-values. The
proof of the correctness of this modified version of
Fix-values is similar to the proof found in Section
4.2 of [12] but makes use of our Lemma 3.8.

The running time of Fix-values can be bounded by
O((n|A|)(k+1)(k+2)).

• Next(R′, i1, . . . , ij , S) receives as input a compact
representation R′ of a subuniverse R of An for some n,
a sequence of elements i1, . . . , ij from [n], and a sub-
universe S of Aj . It outputs a compact representation
of the subuniverse

R∗ = {t ∈ R : proj{i1,...,ij}(t) ∈ S}.

Note that Next makes use of a similar procedure,
called Next-beta, but which has a potentially worse
running time.

As noted in Section 4.3 of [12], the running time of
each call to Next in line 2.1 of the DalmauAlgorithm
is bounded by O((n|A||S|)(k+2)2).

Corollary 4.3 The algorithm Dalmau correctly decides
if an instance P of CSP(ΓA) has a solution in time
O(m(n|A||S∗|)(k+2)2), where n is the number of variables
of P , m is the number of constraints of P , and S∗ is the
largest constraint relation occurring in P .

Algorithm Fix-values(R′, a1, . . . , am)
Step 1 set j := 0; Uj := R′

Step 2 while j < m do
Step 2.1 set Uj+1 := ∅
Step 2.2 for each (i, a, b) ∈ [n]×A2, with {a, b} a minority pair, do
Step 2.2.1 if Nonempty(Uj , j + 1, i, {(aj+1, a)}) 6= “no” and

∃t2, t3 ∈ Uj witnessing (i, a, b) and
i > j + 1 then

(let t1 be the tuple returned by Nonempty(Uj , j + 1, i, {aj+1, a}))
Step 2.2.1.1 set t5 := p(t1, t2, t3)
Step 2.2.1.2 set Uj+1 := Uj+1 ∪ {t1, t5}

end for each
Step 2.3 for each k′ ∈ [k − 1]

for each l1, . . . , lk′ ∈ [n] with l1 < l2 < · · · < lk′
for each d1, . . . , dk′ ∈ A do

Step 2.3.1 if Nonempty(Uj , l1, . . . , lk′ , j + 1, {(d1, . . . , dk′ , aj+1)}) 6= “no” then
(let t6 be the tuple returned by Nonempty(Uj , l1, . . . , lk′ , j + 1, {(d1, . . . , dk′ , aj+1)}))
set Uj+1 := Uj+1 ∪ {t6}

end for each
Step 2.4 set j := j + 1

end while
Step 3 return Um

Figure 1. The Fix-values Algorithm

To conclude this section, we note that if A is a finite alge-
bra that fails to have few subpowers then it is still possible
for ΓA to be a tractable constraint language, but even so, no
algorithm based on some notion of a “small” generating set
for finite subpowers of A can correctly solve all instances
of CSP(ΓA) in polynomial time. This is because, as noted
earlier, in [2] it is shown that if A fails to have few subpow-
ers then it is not polynomially generated. In fact, if A fails
to have few subpowers then the function gA(n) defined to
be the least integer k such that each subuniverse of An has
an at most k-element generating set is bounded below by an
exponential function.

5. Learnability

In this section we show how to modify the proof of Bula-
tov, Chen, and Dalmau found in [5] to show that when f is a
k-edge operation on a finite set A, there is an algorithm that
exactly learns, in polynomial time, the set Inv(f), encoded
by compact representations.

First we give a brief overview of the learning model
that is used. More details may be found in Angluin and
Kharitonov [1], or in [13, 5]. We fix a finite set A and de-
fine X to be the set of all finitary tuples over A. A concept
c is simply a subset of X along with some sort of encoding
of it, while a concept class is just a set of concepts.

A learning algorithm for a concept class C is a procedure
that, by making specific kinds of queries to an oracle, even-
tually produces an encoding of a given target concept t from
C. The model that we adopt is called the exact model with
equivalence queries. Learning algorithms in this model are
allowed to provide the oracle with a hypothetical encoding
h of the target concept t and the oracle either confirms that
h indeed encodes t or it returns a counterexample from the
symmetric difference of t and the concept coded by h. If
the hypothesis h codes a concept that does not belong to
the class C then the query made to the oracle is said to be
improper.

A learning algorithm is said to learn a concept class C if
for every target concept t from C, it halts with an encoding
of t. The algorithm runs in polynomial time if its run-time
can be bounded by a polynomial in the size of the encod-
ing of the target concepts and the largest counterexample
returned by the oracle. A concept class C is polynomi-
ally learnable with equivalence queries if there is a learning
algorithm that learns C and that runs in polynomial time.
If there is a polynomial time learning algorithm that only
makes proper equivalence queries to the oracle then C is
said to be polynomially learnable with proper equivalence
queries; otherwise, C is said to be polynomially learnable
with improper equivalence queries.

A related notion is that of being polynomially evaluable

([13]). A concept class C has this property if there is a poly-
nomial time algorithm that, on input the code of a concept c
from C and a tuple x from X , determines if x is in c or not.

For the remainder of this section, let A be a finite set,
f(x1, . . . , xk+1) a k-edge operation on A, and d, p, and s
the terms derived from f as in Lemma 3.5. We let Inv(f)
denote the set of all finitary relations over A that are in-
variant under f . As in Definition 3.7, for R ⊆ An, 〈R〉f
denotes the smallest relation invariant under f that contains
R (or equivalently, the subuniverse of (A, f)n generated by
R).

For Inv(f) to be considered as a concept class, we need
to specify an encoding for each of its members and for con-
venience, rather than using the notion of a signature devel-
oped in Section 4 of [5], we will use compact representa-
tions. In what follows, we could just as easily adopt the
signature formalism from [5].

Recall that every n-ary relation R over A has a com-
pact representation (relative to f , d, p and s) and that if R
is invariant under f then every one of its compact repre-
sentations generates R as a subuniverse of (A, f)n. Thus,
we may use compact representations to code members of
Inv(f).

An example presented in Section 4 of [5] shows that not
all compact representations of relations over A are neces-
sarily compact representations of relations invariant under
f . This necessitates expanding our concept class to include
arbitrary relations over A, encoded by compact representa-
tions via a variation of the Fix-values routine from the
previous section.

The following Lemma establishes an interpolation prop-
erty that we use to modify Fix-values.

Lemma 5.1 Suppose R ⊆ An is a compact representation,
i ∈ [n], a ∈ Ai, b ∈ R satisfying aj = bj for all 1 ≤ j < i,
and ci = d(ai, bi). Suppose further that

1. For each I ⊆ [i] with |I| = min(k−1, i) and i ∈ I we
have an element cI ∈ R with projI(cI) = projI(a).

2. If ci 6= ai, then (i, ai, ci) is witnessed in R, say by
u,v.

Then {t ∈ 〈R〉f : tj = aj for 1 ≤ j ≤ i} 6= ∅.

PROOF: For notational convenience, if ci = ai then let
u = v = c[k−2]∪{i}. We claim that the algorithm
Interpolate found in Figure 2 returns an element in
{t ∈ 〈R〉f : tj = aj for 1 ≤ j ≤ i}. For i ≥ k, we
prove by induction on j = 0, 1, . . . , i − k + 1 that if
I ⊆ {j + 1, j + 2, . . . , i} with |I| = k − 1 and i ∈ I ,
then cj,I

t = at for all t ∈ [j] ∪ I .
The base of the induction, when j = 0, follows since

projI(cI) = projI(a) and c0,I = cI . Assume that j > 0

and that the cj−1,L have the desired property for all L ⊆
{j, j+1, . . . , i}with |L| = k−1 and i ∈ L. Straightforward
calculations show that the elements d and cj,I produced in
Steps 3.1.3 and 3.1.5 of Interpolate are such that dl =
al for l ∈ [j]∪ (I \ {i}), di = ci and that proj[j]∪I(cj,I) =
proj[j]∪I(a), as required.

We note that the run-time of Interpolate is O(nk)
and so can be bounded by a polynomial in n. •

Using the Interpolate algorithm we define the
algorithm New-Fix-values as in Figure 3. Using
New-Fix-values, we can define a relation (concept)
from a given compact representation as follows:

Let R be a compact representation of some n-ary
relation over A. The concept encoded by R is de-
fined to be the set of all (a1, . . . , an) ∈ An such
that New-Fix-values(R, a1, . . . , an) returns
a non-empty set.

While the output of New-Fix-values may be hard to
pin down when its input is a compact representation of no
relation that is invariant under f , we can nevertheless state
some useful properties of it.

Proposition 5.2 Let R′ be a compact representation of
some n-ary relation R over A and let a = (a1, . . . , an) ∈
An.

1. The concept encoded by R′ is contained in 〈R′〉f .

2. If R is invariant under f then a ∈ R if
and only New-Fix-values(R′, a1, . . . , an) is non-
empty. Thus, if R is invariant under f then the concept
encoded by R′ is equal to R.

PROOF: A careful inspection of the definitions of
Fix-values and New-Fix-values should convince
the reader of the correctness of statement 1. If R is invari-
ant under f then by design, Fix-values(R′, a1, . . . , an)
(and hence New-Fix-values(R′, a1, . . . , an)) returns a
compact representation of the subuniverse of R that con-
sists of all elements b of R with bi = ai for 1 ≤ i ≤ n. Of
course, this subuniverse is either empty (iff a /∈ R) or {a}
and so a ∈ R if and only if New-Fix-values returns a
non-empty set (which must be equal to {a}). So, if R is
invariant under f then the concept encoded by R′ is equal
to R. •

Theorem 5.3 The concept class of relations over A, en-
coded by compact representations, is polynomially evalu-
able.

PROOF: Let R ⊆ An be a compact representation. Since
the run-times of Fix-values and Interpolate can

Algorithm Interpolate(i,b, (cI)I ,u,v)
Step 1 if i < k then return c[i]

Step 2 for I ⊆ [i] with |I| = k − 1 and i ∈ I
Step 2.1 set c0,I := cI

next I
Step 3 for j = 1, 2, . . . , i− k + 1
Step 3.1 for I ⊆ {j + 1, . . . , i} with |I| = k − 1 and i ∈ I
Step 3.1.1 enumerate I = {`1, `2, . . . , `k−2, i} with `1 < `2 < · · · < `k−2 < i
Step 3.1.2 for t = 1, 2, . . . , k − 2
Step 3.1.2.1 set Jt := (I \ {`t}) ∪ {j}

next t
Step 3.1.3 set d := s(b, cj−1,I , cj−1,J1 , cj−1,J2 , . . . , cj−1,Jk−2)
Step 3.1.4 set e := p(cj−1,I ,u,v)
Step 3.1.5 set cj,I := f(e,d, cj−1,I , cj−1,J1 , cj−1,J2 , . . . , cj−1,Jk−2)

next I
next j

Step 4 set j := i− k + 1
Step 5 return cj,{j+1,...,i}

Figure 2. The Interpolate Algorithm

be bounded by some polynomial in n it is not hard to see
that the run-time of New-Fix-values(R, a1, . . . , an)
can also be bounded by a polynomial in n, for any a ∈ An.
From this it follows that membership in the relation encoded
by R can be determined in time bounded by a polynomial
in n. •

In Figure 4 we present a learning algorithm for the con-
cept class of all finitary relations of A invariant under f ,
coded by compact representations. We note that this algo-
rithm is essentially the same as that found in [5]. In Step 2
of the algorithm, EQ(R′) represents the call to the oracle
with hypothesis R′. If R′ does not code the target concept
then EQ returns a tuple from the symmetric difference of
the target concept and the concept encoded by R′. It can
be shown inductively that R′ is always a subset of the tar-
get concept and so EQ will always return a tuple that lies
in the target concept. Since in general, compact representa-
tions do not code relations invariant under f , this algorithm
makes improper equivalence queries. We have:

Theorem 5.4 Let A be a finite set and f a k-edge operation
on A. Then there exists an algorithm that exactly learns
Inv(f), encoded by compact representations, with improper
equivalence queries and whose run-time is bounded by a
polynomial in the arity of the target relation.

PROOF: Let n be the arity of the target concept T . We will
argue by induction that at any point in the execution of the
learning algorithm the set R′ is a compact representation of
some n-ary relation contained in T and that for each pass

through the while-loop, the size of R′ increases by one or
two. Since the size of any compact representation of an n-
ary relation over A can be bounded by a polynomial in n,
it follows that the run-time of the learning algorithm can be
bounded by a polynomial in the arity of the target concept
and that the output of the algorithm will encode the target
concept.

Initially, R′ = ∅, a compact representation of the empty
relation. Assume that at some later stage of the execution
of the learning algorithm we have that R′ is a compact rep-
resentation. In Step 2, if the oracle returns the answer “yes”
then the algorithm has successfully learned a code for the
target concept. If, instead, the oracle returns an n-tuple
a = (a1, . . . , an) then a ∈ T (but not in the relation coded
by R′) and R′ will be increased in one of two ways.

If some projection of a onto a subset I of coordinates
of size < k is not contained in projI(R′) then a is added
to R′ and control passes again to Step 2. The new R′ is
still a compact representation since we have simply added
an n-tuple to R′ that witnesses that projI(a) ∈ projI(T).

If on the other hand, all projections of a onto small sets
of coordinates are witnessed by members of R′ then con-
trol passes to Step 2.2 and then we compute the smallest
i ≤ n such that New-Fix-values(R′, a1, . . . , ai) re-
turns the empty set. Such an i exists and i > 0 since
New-Fix-values(R′, a1, . . . , an) returns the empty set
and New-Fix-values(R′) returns R′.

Since New-Fix-values(R′, a1, . . . , ai) re-
turns the empty set then one of the conditions
in the if statement in Step 4 of the execution of

Algorithm New-Fix-values(R, a1, . . . , ai)
Step 1 if i = 0 then return R
Step 2 set U := Fix-values(R, a1, . . . , ai)
Step 3 if U 6= ∅ then return U
Step 4 if there exists b ∈ New-Fix-values(R, a1, . . . , ai−1) with ci := d(ai, bi),

and for every I ⊆ [i] with |I| = k − 1 and i ∈ I there exists
cI ∈ R with projI(cI) = projI(a), and there exist u,v ∈ R witnessing
(i, ai, ci) (permitting ai = ci, in which case u = v = c[k−2]∪{i}), then

Step 4.1 choose such b, (cI)I ,u,v
Step 4.2 return {Interpolate(i,b, (cI)I ,u,v)}

else
Step 4.3 return ∅

endif

Figure 3. The New-Fix-values Algorithm

Step 1 set R′ := ∅
Step 2 while EQ(R′) = “no” do

let a = (a1, . . . , an) be the counterexample returned by EQ
Step 2.1 if there is some k′ < k and I = {i1, . . . , ik′} ⊆ [n] with projI(a) /∈ projI(R′) then
Step 2.1.1 set R′ := R′ ∪ {a}
Step 2.2 else
Step 2.2.1 compute the least i such that New-Fix-values(R′, a1, . . . , ai) returns the empty set
Step 2.2.2 select b = (a1, . . . , ai−1, bi, . . . , bn) from the set returned by New-Fix-values(R′, a1, . . . , ai−1)
Step 2.2.3 set R′ := R′ ∪ {a, d(a,b)}

endif
endwhile

Step 3 return R’

Figure 4. The Learning Algorithm

New-Fix-values(R′, a1, . . . , ai) must fail. Note
that since we are executing Step 2.2 of the learning
algorithm at this point, it must be the case that for every
I ⊆ [i] with |I| = k − 1 and i ∈ I there exists cI ∈ R
with projI(cI) = projI(a). By choice of i we know
that New-Fix-values(R′, a1, . . . , ai−1) returns a
non-empty set and for any b in this set, the element
ci = d(ai, bi) is not equal to ai and the minority index
(i, ai, ci) is not witnessed in R. Thus for any selection of
b in Step 2.2.2 of the learning algorithm we have that the
minority index (i, ai, d(ai, bi)) is not witnessed in R′ and
hence, in Step 2.2.3, the set R′ ∪ {a, d(a,b)} is a compact
representation that is strictly bigger than R′ and that is
contained in T . •

Definition 5.5 Let Γ be a set of finitary relations over the
finite set A. The set of quantified generalized formulas over
the basis Γ, denoted by ∀∃-Form(Γ), is the smallest set

of first-order formulas over the variables {x1, x2, . . .} that
is closed under conjunction and universal and existential
quantification over the xi and that contains, for each R ∈ Γ
and sequence of variables y, the formula R(y) (where the
arity of R = the length of y).

Using the usual semantics of first-order logic, each mem-
ber Φ of ∀∃-Form(Γ) defines a relation RΦ on A. With this
in mind, we also use ∀∃-Form(Γ) to denote the concept class
of all relations of the form RΦ, for Φ ∈ ∀∃-Form(Γ), coded
by Φ.

Corollary 5.6 Let A be a set and f a k-edge operation on
A. If Γ is a subset of Inv(f) then ∀∃-Form(Γ) is polynomi-
ally exactly learnable with improper equivalence queries.

PROOF: Lemma 1 from [5] establishes that RΦ is a member
of Inv(f) for any Φ ∈ ∀∃-Form(Γ). From this, the result
follows from the previous theorem. •

We note that Theorem 5.4 and Corollary 5.6 extend re-
sults found in [13] and [5]. They also settle one direction of
a conjecture found in [11] and [10].

6. Conclusion

The study of algebras with few subpowers has led to a
number of surprising algebraic results and has helped to
further work on the Dichotomy Conjecture for constraint
languages. As noted earlier, our results delimit the scope
of Dalmau-like algorithms for solving instances of the CSP
and so new algorithms will need to be devised to deal with
finite algebras that support non-trivial term operations more
general than k-edge terms.

Given a finite algebra (or constraint language) there is
a fairly straightforward, but inefficient algorithm to deter-
mine if it has a Mal’cev term operation (or Mal’cev poly-
morphism). In [15] a polynomial time algorithm to test for
a Mal’cev term is presented that works for idempotent al-
gebras. It is apparently much more difficult to test for the
presence of a near unanimity term, but at least we know
from a recent result of Maróti [18] that this question is de-
cidable.

Question 1: Is there an algorithm to determine, given a
finite algebra (or finite constraint language), whether it has
a k-edge term operation (polymorphism) for some k > 1?

A more direct approach to learnability would be to use
generating sets as codes for subpowers of a finite alge-
bra, rather than compact representations. Theorem 5.4 and
Corollary 5.6 would have much cleaner proofs if the follow-
ing question has an affirmative answer.

Question 2: Let A be a finite algebra with few subpowers.
Is there a polynomial time algorithm that takes as input a
subset R and an n-tuple a from An for some n, and deter-
mines if a is in the subuniverse of An generated by R? An
algebra with this property is said to be polynomially evalu-
able (see [13]).

References

[1] D. Angluin and M. Kharitonov. When won’t membership
queries help? J. Comput. System Sci., 50(2):336–355, 1995.
23rd Symposium on the Theory of Computing (New Or-
leans, LA, 1991).

[2] J. Berman, P. Idziak, P. Markovic, R. McKenzie, M. Valeri-
ote, and R. Willard. Varieties with few subalgebras of pow-
ers. preprint, 2006.

[3] A. Bulatov. Tractable conservative constraint satisfaction
problems. In P. G. Kolaitis, editor, Proceedings of the Eigh-
teenth Annual IEEE Symp. on Logic in Computer Science,
LICS 2003, pages 321–330. IEEE Computer Society Press,
June 2003.

[4] A. Bulatov. A dichotomy theorem for constraint satisfaction
problems on a 3-element set. J. ACM, 53(1):66–120 (elec-
tronic), 2006.

[5] A. Bulatov, H. Chen, and V. Dalmau. Learning intersection-
closed classes with signatures. to appear in Theoretical
Computer Science.

[6] A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev
constraints. SIAM J. Comput., 36(1):16–27 (electronic),
2006.

[7] A. Bulatov and P. Jeavons. Algebraic structures in combina-
torial problems. submitted for publication.

[8] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the
complexity of constraints using finite algebras. SIAM J.
Comput., 34(3):720–742 (electronic), 2005.

[9] S. Burris and H. P. Sankappanavar. A course in univer-
sal algebra, volume 78 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1981.

[10] H. Chen. The expressive rate of constraints. Ann. Math.
Artif. Intell., 44(4):341–352, 2005.

[11] V. Dalmau. Computational complexity of problems over gen-
eralized formulas. PhD thesis, Universitat Politécnica de
Catalunya, 2000.

[12] V. Dalmau. Generalized majority-minority operations are
tractable. In P. Panangaden, editor, Proceedings of the Twen-
tieth Annual IEEE Symp. on Logic in Computer Science,
LICS 2005, pages 438–447. IEEE Computer Society Press,
June 2005.

[13] V. Dalmau and P. Jeavons. Learnability of quantified formu-
las. Theoret. Comput. Sci., 306(1-3):485–511, 2003.

[14] T. Feder and M. Y. Vardi. The computational structure
of monotone monadic SNP and constraint satisfaction: a
study through Datalog and group theory. SIAM J. Comput.,
28(1):57–104 (electronic), 1999.

[15] R. S. Freese and M. A. Valeriote. Mal’cev conditions and
idempotent algebras. preprint, 2006.

[16] P. Jeavons. On the algebraic structure of combinatorial prob-
lems. Theoret. Comput. Sci., 200(1-2):185–204, 1998.

[17] P. Jeavons, D. Cohen, and M. C. Cooper. Constraints, con-
sistency and closure. Artificial Intelligence, 101(1-2):251–
265, 1998.

[18] M. Maróti. The existence of a near-unanimity term in a finite
algebra is decidable. preprint, 2005.

[19] R. McKenzie, G. McNulty, and W. Taylor. Algebras, Lat-
tices, Varieties Volume 1. Wadsworth and Brooks/Cole,
Monterey, California, 1987.

[20] T. J. Schaefer. The complexity of satisfiability problems. In
Conference Record of the Tenth Annual ACM Symposium on
Theory of Computing (San Diego, Calif., 1978), pages 216–
226. ACM, New York, 1978.

