Š

Minima and maxima

Definition: c is the <u>minimum value</u> of f if f(x) = c for some x, and $f(x) \ge c$ for all x in dom(f). We say then that f has its <u>global</u> / <u>absolute minimum at</u> x, and that f <u>attains</u> its minimum value at x.

Examples: 0 is minimum value of x^2 , but it has no maximum value.

 x^2 restricted to have domain [-2,2] has maximum value 4, attained at both -2 and 2.

 e^x has no minimum value nor maximum value.

Definition: f has a <u>local minimum at</u> b in dom(f) if there is an interval around b on which f is defined and $f(x) \ge f(b)$.

(Mere, an "interval around b" is one which contains b and which doesn't have b as an endpoint. e.g. (-1,1) is an interval around 0, but [0,1) isn't.)

Re

Example: $x^3 - 3x$ has a local minimum at 1 and a local maximum at -1.

local max and global max

cos(x) has a local maximum at $2k\pi$.

Definition: A <u>critical point</u> (or <u>critical number</u>) of f is a solution to f'(x) = 0.

Fact: If f has a local min/max at b and f is differentiable on an interval around b, then b is a critical point of f.

Remark: -0 is a critical point of x^3 , but it is **not** a local min/max.

73

dx3=3x2

