Implicit differentiation

Suppose we know some relation between x and y, e.g.

$$
x^{2}+y^{2}=1 \text {. }
$$

Here, y isn't a function of x.
But if we restrict attention to $y \geq 0$, then y is a function of x; similarly for $y \leq 0$. These functions are implicitly defined by $x^{2}+y^{2}=1$.

Restricting to a function in this way, it makes sense to differentiate with respect to x -

$$
0=\frac{d}{d x} 1=\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x} x^{2}+\frac{d}{d x} y^{2}=2 x+\frac{d y}{d x} 2 y
$$

and we conclude that, whichever function we chose,

$$
\frac{d y}{d x}=\frac{-2 x}{2 y}=-\frac{x}{y}
$$

for all x at which the function is differentiable.
Confirm this agrees with the chain rule.

Hyperbolic functions

$$
\begin{aligned}
& \sinh (x)=\frac{e^{x}-e^{-x}}{2} \\
& \cosh (x)=\frac{e^{x}+e^{-x}}{2} \\
& \tanh (x)=\frac{\sinh (x)}{\cosh (x)}
\end{aligned}
$$

Catenary; hanging string/cable; sturdy arch.

Fundamental identity:

$$
\cosh ^{2}-\sinh ^{2}=1
$$

Derivatives:

$$
\frac{d}{d x} \cosh (x)=\frac{e^{x}-e^{-x}}{2}=\sinh (x)
$$

$$
\frac{d}{d x} \sinh (x)=\frac{e^{x}+e^{-x}}{2}=\cosh (x)
$$

$\left(\right.$ So $\cosh ^{\prime \prime}=\cosh$ and $\left.\sinh ^{\prime \prime}=\sinh \right)$

$$
\frac{d}{d x} \tanh (x)=\frac{\sinh ^{\prime}(x) \cosh (x)-\sinh (x) \cosh ^{\prime}(x)}{\cosh ^{2}(x)}=\frac{\cosh ^{2}(x)-\sinh ^{2}(x)}{\cosh ^{2}(x)}=\frac{1}{\cosh ^{2}(x)}
$$

Inverses: arccosh domain $[1,+\inf)$, range $[0,+\inf)$;

$\operatorname{arcsinh}$ domain \mathbb{R}, range \mathbb{R};
arctanh domain $(-1,1)$, range \mathbb{R}.

$$
\begin{aligned}
y & =\cosh (x)=\frac{e^{x}+e^{-x}}{2} \\
\left(e^{x}\right)^{2}-2 y e^{x}+1 & =0 \\
e^{x} & =\frac{2 y \pm \sqrt{4 y^{2}-4}}{2} \\
e^{x} & =y \pm \sqrt{y^{2}-1} \operatorname{arccosh}(y) \quad=x=\ln \left(y+\sqrt{y^{2}-1}\right)
\end{aligned}
$$

(taking positive square root since negative would give us negative x)

$$
\operatorname{arccosh}^{\prime}(\cosh (x))=\frac{1}{\cosh ^{\prime}(x)}=\frac{1}{\sinh (x)}
$$

but $\sinh (x)=\sqrt{\cosh ^{2}(x)-1}$, so

$$
\operatorname{arccosh}^{\prime}(x)=\frac{1}{\sqrt{x^{2}-1}}
$$

Similarly,

$$
\begin{gathered}
\operatorname{arcsinh}^{\prime}(\sinh (x))=\frac{1}{\cosh (x)}=\frac{1}{\sqrt{1+\sinh ^{2}(x)}} \\
\operatorname{arcsinh}^{\prime}(x)=\frac{1}{\sqrt{1+x^{2}}}
\end{gathered}
$$

and

$$
\operatorname{arctanh}^{\prime}(\tanh (x))=\frac{1}{\tanh ^{\prime}(x)}=\cosh ^{2}(x)
$$

but $1-\frac{\sinh ^{2}}{\cosh ^{2}}=\frac{1}{\cosh ^{2}}$ so $\cosh ^{2}=\frac{1}{1-\tanh ^{2}}$ so

$$
\operatorname{arctanh}^{\prime}(x)=\frac{1}{1-x^{2}}
$$

$f(x)^{g(x)}$

$$
\begin{aligned}
\frac{d}{d x} x^{x} & =\frac{d}{d x}\left(\left(e^{\ln x}\right)^{x}\right) \\
& =\frac{d}{d x} e^{x \ln x} \\
& =\left(\frac{d}{d x}(x \ln x)\right) e^{x \ln x} \\
& =(1+\ln x) e^{x \ln x} \\
& =(1+\ln x) x^{x}
\end{aligned}
$$

$$
\frac{d}{d x} f(x)^{g(x)}=\frac{d}{d x}\left(\left(e^{\ln f(x)}\right)^{g(x)}\right)
$$

$$
=\frac{d}{d x}\left(e^{g(x) \ln f(x)}\right)
$$

$$
=\left(g^{\prime}(x) \ln f(x)+\frac{g(x) f^{\prime}(x)}{f(x)}\right)\left(e^{g(x) \ln f(x)}\right)
$$

$$
=\left(g^{\prime}(x) \ln f(x)+\frac{g(x) f^{\prime}(x)}{f(x)}\right) f(x)^{g(x)}
$$

Minima and maxima

Definition: $\quad c$ is the minimum value of f if $f(x)=c$ for some x, and $f(x) \geq$ c for all x in $\operatorname{dom}(f)$. We say then that f has its global / absolute minimum at x, and that f attains its minimum value at x.

Examples: 0 is minimum value of x^{2}, but it has no maximum value.
x^{2} restricted to have domain $[-2,2]$ has maximum value 4 , attained at both -2 and 2 .
e^{x} has no minimum value nor maximum value.

Definition: f has a local minimum at b in $\operatorname{dom}(f)$ if there is an interval around b on which f is defined and $f(x) \geq f(b)$.
(Here, an "interval around b " is one which contains b and which doesn't have b as an endpoint. e.g. $(-1,1)$ is an interval around 0 , but $[0,1)$ isn't.)

Example: $x^{3}-3 x$ has a local minimum at 1 and a local maximum at -1 .

$\cos (x)$ has a local maximum at $2 k \pi$.

Definition: A critical point (or critical number) of f is a solution to $f^{\prime}(x)=$ 0 , or a point in $\operatorname{dom}(f)$ where f is not differentiable.

Fact: If f has a local min/max at b and f is differentiable at b, then $f^{\prime}(b)=$ 0.

So if f has a local min/max at b, then b is a critical point of f.

Remark: 0 is a critical point of x^{3}, but it is not a local min/max.
Fact: If $\operatorname{dom}(f)$ is a closed interval $[a, d]$ and f is continuous on $[a, d]$, then f has a minimum value and has a maximum value.

Remark: If f has a global minimum at b, then it has a local minimum at b unless b is in the boundary of $\operatorname{dom}(f)$.

Conclusion: So if $\operatorname{dom}(f)$ is a closed interval $[a, d]$, and if f is continuous on $[a, d]$, then the minimum value of f is the least of the values at the endpoints and at any local minima.

So if furthermore f is differentiable on (a, d), we can find the minimum value by

- Finding the zeros of f^{\prime}
- Evaluating f at each such zero and at a and d
- The minimum value is the least of these numbers.

If f is differentiable except at a few points, we just need to also check the value of f at those points.

Example: Find the minimum value and maximum value of $f(x)=\cosh (x) \sin (x)$ as x varies between -3 and 4 .

$f^{\prime}(x)=\sinh (x) \sin (x)+\cosh (x) \cos (x)$. Use Newton's method to find zeroes.

$\left(f^{\prime \prime}(x)=\cosh (x) \sin (x)+\sinh (x) \cos (x)+\sinh (x) \cos (x)-\cosh (x) \sin (x)\right)$
Critical points are ± 2.347
$f(2.347)=3.764$ (this is the global max)
$f(-2.347)=-3.764$
$f(-3)=-1.421$
$f(4)=-20.67$ (this is the global min)

MVT

Theorem [Rolle's Theorem]: "What goes up and then comes down must hover instantaneously in between"

Suppose f is differentiable on (a, d) and continuous at the endpoints a and d.

Suppose $f(a)=f(d)$.
Then f has a critical point in (a, d).

Proof: f has a maximum and a minimum value.
If they are equal, then f is constant, and any point is critical.
Else, f has a global min/max in (a, d), which is a local min/max, hence a critical point.

Theorem [MVT]: "Rolle's theorem at an angle"
Suppose f is differentiable on (a, d) and continuous at the endpoints a and d.

Let $s=\frac{f(d)-f(a)}{d-a}$

Then for some b in (a, d),

$$
f^{\prime}(b)=s
$$

Proof: Let $g(x)=f(x)-s(x-a)$.
Then $g(a)=f(a)$ and $g(d)=f(d)-\frac{f(d)-f(a)}{d-a}(d-a)=f(d)-(f(d)-$ $f(a))=f(a)=g(a)$.

By Rolle's theorem, $g^{\prime}(b)=0$ for some b in (a, d).
But $g^{\prime}(x)=f^{\prime}(x)-s$, so

$$
f^{\prime}(b)=g^{\prime}(b)+s=s
$$

Midterm information:

The test will be 90 minutes long and consist of have 20 multiple choice questions.

It will cover sections 1.6 (including inverse trig), 2.5, 2.7, 2.8, 3.1, 3.2, $3.3,3.4,3.5,3.6,3.11,4.1,4.8$. There will be a question or two explicitly addressing Maple.

There will be two seatings for the exam on the Thursday evening; 6:308:00 and 8:15-9:45. See course website to find out which sitting and which room you'll be in.

There will be an early seating for the exam on the Wednesday, at 2:30. If you are unable to make the Thursday seatings, you can request the early seating time on the homework website.

Midterm 1 syllabus in some detail

- Inverse functions - concept; invertible $\leftrightarrow 1$-1.
- Limits - concept, calculation.
- Continuity.
- IVT - statement; use.
- Derivatives - limit definition; tangent lines; differentiability; diffble \rightarrow conts; higher derivatives.
- Differentiation techniques: linearity; product rule; chain rule; differentiating polynomials, powers $\left(x^{b}\right)$, exponentials $\left(b^{x}\right)$, logarithms, $f(x)^{g(x)}$, trig/hyp, inverse trig/hyp.
- trig/hyp: definitions (triangles for trig, $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ etc for hyp); fundamental identities $\left(\cos ^{2}+\sin ^{2}=1=\cosh ^{2}-\sinh ^{2}\right)$, inverses (arcfoo), differentiating.
- Implicit differentiation
- Newton's method.
- Minima and maxima: finding local and global mins/maxes; critical points

