Mean Value Theorem

Theorem [Rolle’s Theorem]: “What goes up and then comes down must

hover instantaneously in between”
Suppose f is differentiable on (a.d) and continuous
andd. (hence cIRGAUGU S O~ [ Ca C[j ¢

Suppose f (a) = f(d).
Then f has a critical point in (a,d).

Example: f(x) = sin( )_ f(ln (m)) = f(In(27)), so
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Proof: f has a maximum and a minimum value.

If they are equal, then f is constant, and any point i
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Else, f has a global min/max in (a,d), which is a lo¢al min/max, hence

a critical point.

Theorem [MVT]: ”slanted Rolle”
Suppose f is differentiable on (a,d) and continuous

and d.
Let s = £@-/@

at the endpoints a




