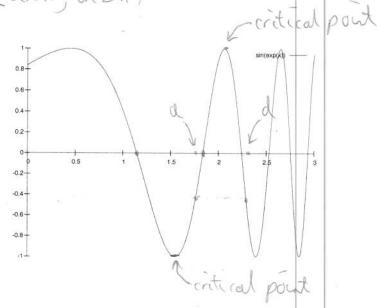
Mean Value Theorem

Theorem [Rolle's Theorem]: "What goes up and then comes down must hover instantaneously in between"

Suppose f is differentiable on (a,d) and continuous at the endpoints aSuppose f is differentiable on (a, a) and d. (hence continuous on [a, d] since diff b e Suppose f(a) = f(d).

Then f has a critical point in (a, d).

Example: $f(x) = \sin(e^x)$: $f(\ln(\pi)) = f(\ln(2\pi))$, so f'(x) = 0 for some x in $(\pi, 2\pi)$. (LT) $(n \ge \pi)$



Proof: f has a maximum and a minimum value.

If they are equal, then f is constant, and any point is critical.

Else, f has a global min/max in (a, d), which is a local min/max, hence a critical point.

Theorem [MVT]: "slanted Rolle"

Suppose f is differentiable on (a,d) and continuous at the endpoints a

Let $s = \frac{f(d) - f(a)}{d - a}$.