

Second derivatives and "concave up/down": If f''(x) > 0 on an interval, then f'(x) is increasing. So the slope of f(x) is increasing.

We say a graph is <u>concave upward</u> on an interval where its slope is increasing

We say a graph is <u>concave downward</u> on an interval where its slope is decreasing.

So:

- If f''(x) > 0 on an interval, then f(x) is concave upward on that interval.
- If f''(x) < 0 on an interval, then f(x) is concave downward on that interval.

An inflection point is a point where f(x) switches from being concave upward to being concave downward, or vice versa.

So if f'' changes sign at b, then b is an inflection point of f.

Sketching graphs, part I

Example: Let's sketch the graph of $x^{2}(x^{2}-2)$

$$f\left(x\right) = x^4 - 2x^2.$$

£(-1)=1-2=-1 Note f(0) = 0. $f'(x) = 4x^3 - 4x = 4x(x^2 - 1)$, so f'(x) = 0 at -1,0,1, and

• On
$$(-1,0)$$
, $f'(x) > 0$ so f is increasing;

• On
$$(0,1)$$
, $f'(x) < 0$ so f is decreasing;

• On
$$(1, +\infty)$$
, $f'(x) > 0$ so f is increasing.

So -1 and 1 are local minima, and 0 is a local maximum. $f''(x) = 12x^2 - 4$, so f''(x) = 0 at $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$, and

• On
$$\left(-\infty, -\frac{1}{\sqrt{3}}\right)$$
, $f''(x) > 0$ so f is concave upward;

• On
$$\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
, $f''(x) < 0$ so f is concave downward;

• On
$$\left(\frac{1}{\sqrt{3}}, \infty\right)$$
, $f''(x) > 0$ so f is concave upward.

So $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$ are inflection points of f.

Example of graph we can't yet sketch:

$$f\left(x\right) = \frac{\sin\left(x\right)}{x^2 - 4x}$$

What happens near 0? i.e., what is $\lim_{x\to 0} f(x)$?

L'Hôpital

Near 0, $\sin(x)$ is well approximated by x [this is the equation of the tangent line at 0, since $\sin'(0) = \cos(0) = 1$, and $x^2 - 4x$ is well approximated by $-4x \left[\text{since } \frac{d}{dx}x^2 - 4x \right]_0 = 2x - 4 = -4$ So near 0, $\frac{\sin(x)}{x^2 - 4x} \approx \frac{x}{-4x} = -\frac{1}{4}$.

So we expect $\lim_{x\to 0} \frac{\sin(x)}{x^2-4x} = -\frac{1}{4}$. Indeed:

This kind of reasoning yields: Theorem: [L'Hôpital's Rule] Suppose

 $\lim_{x\to a} f\left(x\right) = 0 = \lim_{x\to a} g\left(x\right).$ Then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$, assuming the right hand limit exists. ists.

Here, a is allowed to be $+\infty$ or $-\infty$, and so is the right hand limit.