

10-

-10¹

1.5

-1.5

One-sided limits, $\lim_{x\to a^+}$ or $\lim_{x\to a^-}$, are also allowed.

Moreover, we have the same result if $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ are both $\pm\infty$ [even if one is $+\infty$ and the other $-\infty$], rather than both being 0.

[To see that it works for infinite limits: consider $\frac{1}{f(x)}$ and $\frac{1}{g(x)}$, which both tend to 0 at a]

Examples:

•
$$\lim_{x\to 0} \frac{\sin(x)}{x^2-4x} = \lim_{x\to 0} \frac{\cos(x)}{2x-4} = -\frac{1}{4}$$
.

•
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{2x}{1} = 2$$

•
$$\lim_{x \to +\infty} \frac{e^x}{x} = \lim_{x \to +\infty} \frac{e^x}{1} = +\infty$$

•
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty$$

.

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} \frac{1}{x}}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}$$

$$= \lim_{x \to 0^{+}} -x$$

$$= 0$$

Sketching curves

Examples.