
Mean Value Theorem

Theorem [Rolle’s Theorem]: “What goes up and then comes down must
hover instantaneously in between”

Suppose f is differentiable on (a, d) and continuous at the endpoints a
and d.

Suppose f (a) = f (d).
Then f has a critical point in (a, d).

Example: f (x) = sin (ex): f (ln (π)) = f (ln (2π)), so f ′ (x) = 0 for some
x in (π, 2π).
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Proof: f has a maximum and a minimum value.
If they are equal, then f is constant, and any point is critical.
Else, f has a global min/max in (a, d), which is a local min/max, hence

a critical point.

Theorem [MVT]: ”slanted Rolle”
Suppose f is differentiable on (a, d) and continuous at the endpoints a

and d.
Let s = f(d)−f(a)

d−a .
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Then for some b in (a, d),

f ′ (b) = s.

In other words: for some b in (a, d), the tangent line at b is parallel to the
straight line between the points on the graph (a, f (a)) and (d, f (d)).

Example: f (x) = sin (ex): f
(
ln
(
π
2

))
= 1, f (ln (π)) = 0. So for some x in(

ln
(
π
2

)
, ln (π)

)
, f ′ (x) = 0−1

ln(π)−ln(π2 )
= −1.44.

Proof: Let g (x) = f (x)− s (x− a).

Then g (a) = f (a) and g (d) = f (d)−f(d)−f(a)
d−a (d− a) = f (d)−(f (d)− f (a)) =

f (a) = g (a).
By Rolle’s theorem, g′ (b) = 0 for some b in (a, d).
But g′ (x) = f ′ (x)− s, so

f ′ (b) = g′ (b) + s = s.
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We can use the MVT “backwards” to deduce information about f (x)
from information about f ′ (x).

2



Example: Suppose a train travels along a straight track, and s (t) is its
distance in metres from its starting station t seconds after it leaves.

If s (600) = 10000 and between t = 600 and t = 1200 the train’s speed
never drops below 30ms−1, what is the least s (1200) could be?

Answer: s (1200) can’t be less than s (600)+30∗(1200− 600) = 28000,
since otherwise by the MVT s′ (t) would, for some t between 600 and 1200,
be less than 28000−10000

1200−600 = 30.

Increasing/Constant/Decreasing: Let f (x) be a function.

(i) If f ′ (x) > 0 for all x in an interval, then f (x) is increasing on the
interval.

(ii) If f ′ (x) = 0 for all x in an interval, then f (x) is constant on the
interval.

(iii) If f ′ (x) < 0 for all x in an interval, then f (x) is decreasing on the
interval.

Proof:

(i) If b and c are in the interval with b < c and f (c) ≤ f (b), then by MVT

f ′ (x) = f(c)−f(b)
c−b ≤ 0 for some x in [b, c].

(ii) If b and c are in the interval with b < c and f (c) 6= f (b), then by MVT

f ′ (x) = f(c)−f(b)
c−b 6= 0 for some x in [b, c].

(iii) If b and c are in the interval with b < c and f (c) ≥ f (b), then by MVT

f ′ (x) = f(c)−f(b)
c−b ≥ 0 for some x in [b, c].
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Classifying critical points: If c is a critical point of f (x), then

• if f ′ (x) < 0 just to the left of c and f ′ (x) > 0 just to the right of c,
then c is a local minimum;

• if f ′ (x) > 0 just to the left of c and f ′ (x) < 0 just to the right of c,
then c is a local maximum;

• if f ′ (x) is positive on both sides of c, or if it is negative on both sides
of c, then c is not a local min/max.
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Second derivatives and “concave up/down”: If f ′′ (x) > 0 on an in-
terval, then f ′ (x) is increasing. So the slope of f (x) is increasing.

We say a graph is concave upward on an interval where its slope is in-
creasing

We say a graph is concave downward on an interval where its slope is
decreasing.

So:

• If f ′′ (x) > 0 on an interval, then f (x) is concave upward on that
interval.

• If f ′′ (x) < 0 on an interval, then f (x) is concave downward on that
interval.

An inflection point is a point where f (x) switches from being concave
upward to being concave downward, or vice versa.

So if f ′′ changes sign at b, then b is an inflection point of f .
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Sketching graphs, part I

Example: Let’s sketch the graph of

f (x) = x4 − 2x2.

Note f (0) = 0.
f ′ (x) = 4x3 − 4x = 4x (x2 − 1), so f ′ (x) = 0 at -1,0,1, and

• On (−∞,−1), f ′ (x) < 0 so f is decreasing;

• On (−1, 0), f ′ (x) > 0 so f is increasing;

• On (0, 1), f ′ (x) < 0 so f is decreasing;

• On (1,+∞), f ′ (x) > 0 so f is increasing.

So -1 and 1 are local minima, and 0 is a local maximum.
f ′′ (x) = 12x2 − 4, so f ′′ (x) = 0 at − 1√

3
and 1√

3
, and

• On
(
−∞,− 1√

3

)
, f ′′ (x) > 0 so f is concave upward;

• On
(
− 1√

3
, 1√

3

)
, f ′′ (x) < 0 so f is concave downward;

• On
(

1√
3
,∞

)
, f ′′ (x) > 0 so f is concave upward.

So − 1√
3

and 1√
3

are inflection points of f .
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Example of graph we can’t yet sketch:

f (x) =
sin (x)

x2 − 4x

What happens near 0?
i.e., what is limx→0 f (x)?

L’Hôpital

Near 0, sin (x) is well approximated by x [this is the equation of the tangent
line at 0, since sin′ (0) = cos (0) = 1], and x2 − 4x is well approximated by
−4x [since d

dx
x2 − 4x �0= 2x− 4 �0= −4]

So near 0, sin(x)
x2−4x ≈

x
−4x = −1

4
.

So we expect limx→0
sin(x)
x2−4x = −1

4
. Indeed:

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-3 -2 -1  0  1  2  3

sin(x)/(x**2-4*x)

This kind of reasoning yields: Theorem: [L’Hôpital’s Rule] Suppose
limx→a f (x) = 0 = limx→a g (x).

Then limx→a
f(x)
g(x)

= limx→a
f ′(x)
g′(x)

, assuming the right hand limit exists.
Here, a is allowed to be +∞ or −∞, and so is the right hand limit.
One-sided limits, limx→a+ or limx→a− , are also allowed.
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Moreover, we have the same result if limx→a f (x) and limx→a g (x) are
both ±∞ [even if one is +∞ and the other −∞], rather than both being 0.

[To see that it works for infinite limits: consider 1
f(x)

and 1
g(x)

, which both

tend to 0 at a]

Examples:

• limx→0
sin(x)
x2−4x = limx→0

cos(x)
2x−4 = −1

4
.

• limx→1
x2−1
x−1 = limx→1

2x
1

= 2

• limx→+∞
ex

x
= limx→+∞

ex

1
= +∞

• limx→+∞
ex

x2
= limx→+∞

ex

2x
= limx→+∞

ex

2
= +∞

•

lim
x→0+

x lnx = lim
x→0+

lnx
1
x

= lim
x→0+

d
dx

lnx
d
dx

1
x

= lim
x→0+

1
x
−1
x2

= lim
x→0+

−x

= 0
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•

lim
x→0+

cot (x)− 1

x
= lim

x→0+

cos (x)

sin (x)
− 1

x

= lim
x→0+

x cos (x)− sin (x)

x sin (x)

= lim
x→0+

cos (x)− x sin (x)− cos (x)

sin (x) + x cos (x)

= lim
x→0+

x sin (x)

sin (x) + x cos (x)

= lim
x→0+

sin (x) + x cos (x)

cos (x) + cos (x)− x sin (x)

=
0

2
= 0
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•

lim
x→0+

(1 + x)
1
x = lim

x→0+

(
eln(1+x)

) 1
x

= lim
x→0+

e
1
x
ln(1+x)

= elimx→0+
ln(1+x)

x

= elimx→0+

1
1+x
1

= e1 = e

1.00001100000 = 2.7182682371922975
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