Mean Value Theorem

Theorem [Rolle's Theorem]: "What goes up and then comes down must hover instantaneously in between"

Suppose f is differentiable on (a, d) and continuous at the endpoints a and d.

Suppose $f(a)=f(d)$.
Then f has a critical point in (a, d).
Example: $\quad f(x)=\sin \left(e^{x}\right): f(\ln (\pi))=f(\ln (2 \pi))$, so $f^{\prime}(x)=0$ for some x in $(\pi, 2 \pi)$.

Proof: f has a maximum and a minimum value.
If they are equal, then f is constant, and any point is critical.
Else, f has a global min/max in (a, d), which is a local min/max, hence a critical point.

Theorem [MVT]: "slanted Rolle"

Suppose f is differentiable on (a, d) and continuous at the endpoints a and d.

Let $s=\frac{f(d)-f(a)}{d-a}$.

Then for some b in (a, d),

$$
f^{\prime}(b)=s
$$

In other words: for some b in (a, d), the tangent line at b is parallel to the straight line between the points on the graph $(a, f(a))$ and $(d, f(d))$.

Example: $\quad f(x)=\sin \left(e^{x}\right): f\left(\ln \left(\frac{\pi}{2}\right)\right)=1, f(\ln (\pi))=0$. So for some x in $\left(\ln \left(\frac{\pi}{2}\right), \ln (\pi)\right), f^{\prime}(x)=\frac{0-1}{\ln (\pi)-\ln \left(\frac{\pi}{2}\right)}=-1.44$.

Proof: Let $g(x)=f(x)-s(x-a)$.
Then $g(a)=f(a)$ and $g(d)=f(d)-\frac{f(d)-f(a)}{d-a}(d-a)=f(d)-(f(d)-f(a))=$ $f(a)=g(a)$.

By Rolle's theorem, $g^{\prime}(b)=0$ for some b in (a, d).
But $g^{\prime}(x)=f^{\prime}(x)-s$, so

$$
f^{\prime}(b)=g^{\prime}(b)+s=s
$$

We can use the MVT "backwards" to deduce information about $f(x)$ from information about $f^{\prime}(x)$.

Example: Suppose a train travels along a straight track, and $s(t)$ is its distance in metres from its starting station t seconds after it leaves.

If $s(600)=10000$ and between $t=600$ and $t=1200$ the train's speed never drops below $30 \mathrm{~ms}^{-1}$, what is the least $s(1200)$ could be?

Answer: $s(1200)$ can't be less than $s(600)+30 *(1200-600)=28000$, since otherwise by the MVT $s^{\prime}(t)$ would, for some t between 600 and 1200, be less than $\frac{28000-10000}{1200-600}=30$.

Increasing/Constant/Decreasing: Let $f(x)$ be a function.
(i) If $f^{\prime}(x)>0$ for all x in an interval, then $f(x)$ is increasing on the interval.
(ii) If $f^{\prime}(x)=0$ for all x in an interval, then $f(x)$ is constant on the interval.
(iii) If $f^{\prime}(x)<0$ for all x in an interval, then $f(x)$ is decreasing on the interval.

Proof:

(i) If b and c are in the interval with $b<c$ and $f(c) \leq f(b)$, then by MVT $f^{\prime}(x)=\frac{f(c)-f(b)}{c-b} \leq 0$ for some x in $[b, c]$.
(ii) If b and c are in the interval with $b<c$ and $f(c) \neq f(b)$, then by MVT $f^{\prime}(x)=\frac{f(c)-f(b)}{c-b} \neq 0$ for some x in $[b, c]$.
(iii) If b and c are in the interval with $b<c$ and $f(c) \geq f(b)$, then by MVT $f^{\prime}(x)=\frac{f(c)-f(b)}{c-b} \geq 0$ for some x in $[b, c]$.

Classifying critical points: If c is a critical point of $f(x)$, then

- if $f^{\prime}(x)<0$ just to the left of c and $f^{\prime}(x)>0$ just to the right of c, then c is a local minimum;
- if $f^{\prime}(x)>0$ just to the left of c and $f^{\prime}(x)<0$ just to the right of c, then c is a local maximum;
- if $f^{\prime}(x)$ is positive on both sides of c, or if it is negative on both sides of c, then c is not a local min/max.

Second derivatives and "concave up/down": If $f^{\prime \prime}(x)>0$ on an interval, then $f^{\prime}(x)$ is increasing. So the slope of $f(x)$ is increasing.

We say a graph is concave upward on an interval where its slope is increasing

We say a graph is concave downward on an interval where its slope is decreasing.

So:

- If $f^{\prime \prime}(x)>0$ on an interval, then $f(x)$ is concave upward on that interval.
- If $f^{\prime \prime}(x)<0$ on an interval, then $f(x)$ is concave downward on that interval.

An inflection point is a point where $f(x)$ switches from being concave upward to being concave downward, or vice versa.

So if $f^{\prime \prime}$ changes sign at b, then b is an inflection point of f.

Sketching graphs, part I

Example: Let's sketch the graph of

$$
f(x)=x^{4}-2 x^{2} .
$$

Note $f(0)=0$.
$f^{\prime}(x)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)$, so $f^{\prime}(x)=0$ at $-1,0,1$, and

- On $(-\infty,-1), f^{\prime}(x)<0$ so f is decreasing;
- On $(-1,0), f^{\prime}(x)>0$ so f is increasing;
- On $(0,1), f^{\prime}(x)<0$ so f is decreasing;
- On $(1,+\infty), f^{\prime}(x)>0$ so f is increasing.

So -1 and 1 are local minima, and 0 is a local maximum.
$f^{\prime \prime}(x)=12 x^{2}-4$, so $f^{\prime \prime}(x)=0$ at $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$, and

- On $\left(-\infty,-\frac{1}{\sqrt{3}}\right), f^{\prime \prime}(x)>0$ so f is concave upward;
- On $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), f^{\prime \prime}(x)<0$ so f is concave downward;
- On $\left(\frac{1}{\sqrt{3}}, \infty\right), f^{\prime \prime}(x)>0$ so f is concave upward.

So $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$ are inflection points of f.

Example of graph we can't yet sketch:

$$
f(x)=\frac{\sin (x)}{x^{2}-4 x}
$$

What happens near 0 ?
i.e., what is $\lim _{x \rightarrow 0} f(x)$?

L'Hôpital

Near $0, \sin (x)$ is well approximated by x [this is the equation of the tangent line at 0 , since $\left.\sin ^{\prime}(0)=\cos (0)=1\right]$, and $x^{2}-4 x$ is well approximated by $-4 x\left[\right.$ since $\left.\frac{d}{d x} x^{2}-4 x \Gamma_{0}=2 x-4 \Gamma_{0}=-4\right]$

So near $0, \frac{\sin (x)}{x^{2}-4 x} \approx \frac{x}{-4 x}=-\frac{1}{4}$.
So we expect $\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}-4 x}=-\frac{1}{4}$. Indeed:

This kind of reasoning yields: Theorem: [L'Hôpital's Rule] Suppose $\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)$.

Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, assuming the right hand limit exists.
Here, a is allowed to be $+\infty$ or $-\infty$, and so is the right hand limit.
One-sided limits, $\lim _{x \rightarrow a^{+}}$or $\lim _{x \rightarrow a^{-}}$, are also allowed.

Moreover, we have the same result if $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ are both $\pm \infty$ [even if one is $+\infty$ and the other $-\infty$], rather than both being 0 .
[To see that it works for infinite limits: consider $\frac{1}{f(x)}$ and $\frac{1}{g(x)}$, which both tend to 0 at a]

Examples:

- $\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}-4 x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{2 x-4}=-\frac{1}{4}$.
- $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{2 x}{1}=2$
- $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=\lim _{x \rightarrow+\infty} \frac{e^{x}}{1}=+\infty$
- $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow+\infty} \frac{e^{x}}{2 x}=\lim _{x \rightarrow+\infty} \frac{e^{x}}{2}=+\infty$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x} \frac{1}{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \cot (x)-\frac{1}{x} & =\lim _{x \rightarrow 0^{+}} \frac{\cos (x)}{\sin (x)}-\frac{1}{x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x \cos (x)-\sin (x)}{x \sin (x)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\cos (x)-x \sin (x)-\cos (x)}{\sin (x)+x \cos (x)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x \sin (x)}{\sin (x)+x \cos (x)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\sin (x)+x \cos (x)}{\cos (x)+\cos (x)-x \sin (x)} \\
& =\frac{0}{2} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}}\left(e^{\ln (1+x)}\right)^{\frac{1}{x}} \\
& =\lim _{x \rightarrow 0^{+}} e^{\frac{1}{x} \ln (1+x)} \\
& =e^{\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}} \\
& =e^{\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{1+x}}{1}} \\
& =e^{1}=e \\
1.00001^{100000}= & 2.7182682371922975
\end{aligned}
\end{aligned}
$$

