Sketching curves

Things to work out (or estimate) when sketching a graph:

- zeroes;
- symmetry;
- inc/dec; min/max;
- concavity;
- behaviour at $\pm \infty$;
- limits at points of undefinedness / discontinuity.

Examples:

•

$$f(x) = \frac{x^2 - 1}{(x - 1)(x - 2)(x - 3)}$$

 $f\left(x\right) = e^{\frac{1}{x}}$

•

$$\frac{x^2}{1+x}$$

•

Optimisation

Example: You want to construct a box with a square base and an open top. The volume should be $1m^3$, and you want to minimise the material used. What should be the dimensions of the box?

Example: What are the points on the ellipse furthest away from (1,0)?

$$4x^2 + y^2 = 4?$$

$$\left(-\frac{1}{3},\pm\frac{4}{3}\sqrt{2}\right)$$

Antiderivatives

Given f'(x), what could f(x) be?

Example: A particle is accelerated along a line with acceleration a(t) = t. What is its velocity v(t) at time t?

One possible answer: $v(t) = \frac{t^2}{2}$ (particle starts from rest).

Another possible answer: $v(t) = \frac{t^2}{2} - 37$ (particle starts with velocity -37).

Definition: f is an <u>antiderivative</u> of g if f' = g (i.e. f'(x) = g(x) for all x).

Uniqueness: "Antiderivatives are unique up to addition of a constant".

If f_1 and f_2 are antiderivatives of g, then for some constant c, $f_2(x) = f_1(x) + c$.

Proof:

$$(f_2(x) - f_1(x))' = f'_2(x) - f'_1(x) = g(x) - g(x) = 0$$

so (by MVT) $f_2(x) - f_1(x)$ is constant, say $f_2(x) - f_1(x) = c$ for all x.

So knowing the value of an antiderivative at a single point determines the antiderivative uniquely.

Example: If f(x) is an antiderivative of $\sin(x)$, and $f(\pi) = 0$, what is f(x)?

Solution: We know that $-\cos(x)$ is an antiderivative of $\sin(x)$, so

$$f\left(x\right) = -\cos\left(x\right) + c$$

for some real number c.

Now $0 = f(\pi) = -\cos(\pi) + c = -(-1) + c = 1 + c$, so c = -1. So $f(x) = -\cos(x) - 1$.

Example: A lunar astronaut throws a ball; it experiences vertical acceleration y''(t) = -1.62, but no air resistence. If the initial vertical velocity is y'(0) = 1 and the initial horizontal velocity is x'(0) = 2, and its initial position is (x(0), y(0)) = (0, 1), and the ground is at y = 0, what is the ball's trajectory? How high does it go, and when and where does it hit the ground?

Solution: y''(t) = -1.62, so $y'(t) = -1.62t + c_1$. But y'(0) = 1, so $c_1 = 1$ and y'(t) = 1 - 1.62t. So $y(t) = t - 0.81t^2 + c_2$, and since y(0) = 1 we have $y(t) = 1 + t - 0.81t^2.$

Meanwhile, x''(t) = 0, so x'(t) = x'(0) = 2, so $x(t) = 2t + c_3$, and x(0) = 0 so x(t) = 2t. So

$$(x(t), y(t)) = (2t, 1 + t - 0.81t^2)$$

Max height: $y'(t) = 1 - 1.62t = 0 \Leftrightarrow t = \frac{1}{1.62} = 0.62$, so at t = 0.62 the

ball achieves its maximum height $y(0.62) = 1 + 0.62 - 0.81(0.62)^2 = 1.31$. Hits ground: $y(t) = 0 \leftrightarrow t = \frac{-1\pm\sqrt{1^2+4(0.81)}}{2(-0.81)} \leftrightarrow t = -0.65 \text{ or } t = 1.89$; negative time is irrelevant to the problem; the ball hits the ground at t = 1.89, x = 2(1.89) = 3.78.

Plotting trajectory: $t = \frac{x}{2}$, so $y(x) = 1 + \frac{x}{2} - 0.81 \left(\frac{x}{2}\right)^2$.

