Sketching curves

Things to work out (or estimate) when sketching a graph:

- zeroes;
- symmetry;
- inc/dec; min/max;
- concavity;
- behaviour at $\pm \infty$;
- limits at points of undefinedness / discontinuity.

Examples:

$$
f(x)=\frac{x^{2}-1}{(x-1)(x-2)(x-3)}
$$

-

$$
f(x)=e^{\frac{1}{x}}
$$

Optimisation

Example: You want to construct a box with a square base and an open top. The volume should be $1 m^{3}$, and you want to minimise the material used. What should be the dimensions of the box?

Example: What are the points on the ellipse furthest away from $(1,0)$?

$$
4 x^{2}+y^{2}=4 ?
$$

$$
\left(-\frac{1}{3}, \pm \frac{4}{3} \sqrt{2}\right)
$$

Antiderivatives

Given $f^{\prime}(x)$, what could $f(x)$ be?
Example: A particle is accelerated along a line with acceleration $a(t)=t$. What is its velocity $v(t)$ at time t ?

One possible answer: $v(t)=\frac{t^{2}}{2}$ (particle starts from rest).
Another possible answer: $v(t)=\frac{t^{2}}{2}-37$ (particle starts with velocity -37).

Definition: f is an antiderivative of g if $f^{\prime}=g$ (i.e. $f^{\prime}(x)=g(x)$ for all $x)$.

Uniqueness: "Antiderivatives are unique up to addition of a constant".
If f_{1} and f_{2} are antiderivatives of g, then for some constant $c, f_{2}(x)=$ $f_{1}(x)+c$.

Proof:

$$
\left(f_{2}(x)-f_{1}(x)\right)^{\prime}=f_{2}^{\prime}(x)-f_{1}^{\prime}(x)=g(x)-g(x)=0
$$

so (by MVT) $f_{2}(x)-f_{1}(x)$ is constant, say $f_{2}(x)-f_{1}(x)=c$ for all x.
So knowing the value of an antiderivative at a single point determines the antiderivative uniquely.

Example: If $f(x)$ is an antiderivative of $\sin (x)$, and $f(\pi)=0$, what is $f(x)$?

Solution: We know that $-\cos (x)$ is an antiderivative of $\sin (x)$, so

$$
f(x)=-\cos (x)+c
$$

for some real number c.
Now $0=f(\pi)=-\cos (\pi)+c=-(-1)+c=1+c$, so $c=-1$.
So $f(x)=-\cos (x)-1$.
Example: A lunar astronaut throws a ball; it experiences vertical acceleration $y^{\prime \prime}(t)=-1.62$, but no air resistence. If the initial vertical velocity is $y^{\prime}(0)=1$ and the initial horizontal velocity is $x^{\prime}(0)=2$, and its initial position is $(x(0), y(0))=(0,1)$, and the ground is at $y=0$, what is the ball's trajectory? How high does it go, and when and where does it hit the ground?

Solution: $\quad y^{\prime \prime}(t)=-1.62$, so $y^{\prime}(t)=-1.62 t+c_{1}$. But $y^{\prime}(0)=1$, so $c_{1}=1$ and $y^{\prime}(t)=1-1.62 t$. So $y(t)=t-0.81 t^{2}+c_{2}$, and since $y(0)=1$ we have $y(t)=1+t-0.81 t^{2}$.

Meanwhile, $x^{\prime \prime}(t)=0$, so $x^{\prime}(t)=x^{\prime}(0)=2$, so $x(t)=2 t+c_{3}$, and $x(0)=0$ so $x(t)=2 t$. So

$$
(x(t), y(t))=\left(2 t, 1+t-0.81 t^{2}\right)
$$

Max height: $y^{\prime}(t)=1-1.62 t=0 \leftrightarrow t=\frac{1}{1.62}=0.62$, so at $t=0.62$ the ball achieves its maximum height $y(0.62)=1+0.62-0.81(0.62)^{2}=1.31$.

Hits ground: $y(t)=0 \leftrightarrow t=\frac{-1 \pm \sqrt{1^{2}+4(0.81)}}{2(-0.81)} \leftrightarrow t=-0.65$ or $t=1.89$; negative time is irrelevant to the problem; the ball hits the ground at $t=1.89$, $x=2(1.89)=3.78$.

Plotting trajectory: $\quad t=\frac{x}{2}$, so $y(x)=1+\frac{x}{2}-0.81\left(\frac{x}{2}\right)^{2}$.

