
Chapter 4
An Analogue-Digital Model of Computation:
Turing Machines with Physical Oracles

Tânia Ambaram, Edwin Beggs, José Félix Costa, Diogo Poças
and John V. Tucker

Abstract We introduce an abstract analogue-digital model of computation that cou-
ples Turing machines to oracles that are physical processes. Since any oracle has the
potential to boost the computational power of a Turing machine, the effect on the
power of the Turing machine of adding a physical process raises interesting ques-
tions. Do physical processes add significantly to the power of Turing machines; can
they break the Turing Barrier? Does the power of the Turing machine vary with
different physical processes? Specifically, here, we take a physical oracle to be a
physical experiment, controlled by the Turing machine, that measures some physical
quantity. There are three protocols of communication between the Turing machine
and the oracle that simulate the types of error propagation common to analogue-
digital devices, namely: infinite precision, unbounded precision, and fixed precision.
These three types of precision introduce three variants of the physical oracle model.
On fixing one archetypal experiment, we show how to classify the computational
power of the three models by establishing the lower and upper bounds. Using new
techniques and ideas about timing, we give a complete classification.

T. Ambaram (B) · J. Félix Costa
Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa,
Lisboa, Portugal
e-mail: taniambaram@gmail.com

J. Félix Costa
e-mail: fgc@math.ist.utl.pt

E. Beggs · J.V. Tucker
College of Science, Swansea University, Singleton Park, Swansea,
SA2 8PP, Wales, UK
e-mail: e.j.beggs@swansea.ac.uk

J.V. Tucker
e-mail: j.v.tucker@swansea.ac.uk

D. Poças
Department of Mathematics and Statistics, McMaster University, Hamilton,
ON L8S 4K1, Canada
e-mail: diogopocas1991@gmail.com; pocasd@math.mcmaster.ca

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_4

73

74 T. Ambaram et al.

4.1 Introduction

Loosely speaking, by an analogue-digital system we mean a system that makes
physical measurements in the course of a digital computation; equivalently, the term
hybrid system may be used. The digital computation can be of any complexity,
though some embedded systems can be modelled by hybrid systems based upon
finite automata. Actually, many processes perform an analogue measurement that
is used in a digital computation of some kind. For example, models of analogue
computation also involve digital elements: this is found in the construction of the
analogue recurrent neural net model (ARNN) (see [1])1; in the optical computer
model (see [2]); and in the mirror system model (see [3]).

Computational dynamical systems that are able to read approximations to real
numbers also behave as analogue-digital systems: they perform digital computa-
tions, occasionally accessing some external values. At the moment of access, the
“computer” executes some task on the analogue device, such as a test for a given
value of a quantity. In the perfect platonic world, this test cab be performed with
infinite or arbitrary precision, in the sense that the machine can obtain as many bits
of the real number as needed; or, less ideally, with a fixed finite precision provided
by the equipment in use.

To analyse the computational capabilities of analogue-digital systems, we intro-
duce an abstract analogue-digitalmodel of computation that couplesTuringmachines
to oracles that are physical processes. Thus, we consider Turing machines with the
ability of making measurements. The Turing machines considered are deterministic,
but in fact they can use the oracle both to get advice and to simulate the toss of a
coin.

Interacting with physical processes takes time. There are cost functions of the
form T : N → N that gives the number of time steps to perform the measurements
that the Turing machine allows. In weighing using a balance scale—as, indeed, in
most measurements—the pointer moves with an acceleration that depends on the
difference of masses placed in the pans. It does so in a way such that the time
needed to detect a mass difference increases exponentially with the precision of the
measurement, no matter how small that difference can be made. This means that
the measurement has an exponential cost that should be considered in the overall
complexity of the analogue-digital computation.2

A possible objection to such a model is that it is not limited in precision; for even
if it is sufficiently precise, it sooner or later finds the obstacle of the atomic structure
of matter. However, measurement has its own theoretic domain and can only be
conceived as a limiting procedure; see [4–6, 8, 9]. It means that measurement is like

1In the ARNN case, a subsystem of about eleven neurones (variables) performs a measurement of a
real-valued weight of the network up to some precision and resumes to a computation with advice
simulated by a system of a thousand rational neurones interconnected with integer and a very few
rational weights.
2In contrast, in the ARNN model, the time of a measurement is linear due to the fact that the
activation function of each neuron is piecewise linear instead of the common analytic sigmoid.

4 An Analogue-Digital Model of Computation … 75

complexity and can only be conceived asymptotically. Once we limit, in absolute
terms, space or time resources of a Turing machine, its complexity vanishes, since
all (now finite) sets can be decided in linear time and constant space.3

A measurement can be fundamental or derived. Measuring distance is funda-
mental, but measuring velocity is derived. Commonly, according to Hempel [8],
fundamental measurement is based on a partial order of comparisons that, taken to
the limit, generates a real number. Comparisons in the sense of Hempel are based on
events in the experimental setup. The most common measurement of some concept
y—position, mass, electric resistance, etc.—consists of performing the experiment
with a test value z, for which we could test one or both of the comparisons “z < y”
and “y < z”; experiments allowing such comparisons are called two-sided.

Experiments in physics provide intuitions about abstract measurements, namely
(a) that they result from comparisons, (b) that they have a cost, (c) that they comewith
errors, and (d) that they are stochastic. Coupling a Turing machine with a physical
experiment, we construct a specific type of analogue-digital machine.

Since any oracle has the potential to boost the computational power of a Turing
machine, the effect on the power of the Turing machine of adding a physical process
is an interesting area to investigate.

Do experiments add significantly to power to the Turing machine, and break the
Turing Barrier? Does the power of the Turing machine vary with different experi-
ments?

We classify computational power. In Sect. 4.2, from a number of physical exper-
iments, the so-called smooth scatter machine, first seen in [13], is selected as rep-
resentative of the analogue-digital of machines of interest. In Sect. 4.3, we sum-
marise the analogue-digital model. Sect. 4.4, we begin by summarising the theory of
non-uniform complexity classes, which allows us to formalise a real number value
for a parameter, by encoding an advice function of some class F�, and reading it
into the memory of the machine. The section continues with lower bounds (starting
Sect. 4.4.3) and upper bounds (starting Sect. 4.4.7).

The role of precision of data has been explicated in our earlier papers, but the
role of precision in time has been less clear. The notion is subtle: there is time in
the physical theory, time that manages the oracle queries, and the runtime of the
computation. In addition to explaining the model and its properties, we develop
some new techniques and results to explore the nature of timing. In Sect. 4.5, we use
a technique, based on knowing time exactly, to lower the upper bounds.

All the concepts will be defined in due course. Among the results proved in this
paper are:

Theorem 1 The classification of the computational power of the analogue-digital
model in the absense and presence of errors is as follows:

3In the same way, we could also say that tapes of Turing machines can have as many cells as the
number of particles in the universe, but in such a case no interesting theory of computability can be
developed.

76 T. Ambaram et al.

1. If B is decidable by a smooth scatter machine with infinite precision and expo-
nential protocol, clocked in polynomial time, then B ∈ P/ log2�.

2. B is decidable by a smooth scattermachinewith infinite precision and exponential
protocol T (k) ∈ �(2k), clocked in polynomial time, if, and only if, B ∈ P/ log�.

3. If B is decidable by a smooth scatter machine with unbounded or fixed precision
and exponential protocol, clocked in polynomial time, then B ∈ BPP// log2�.

4. B is decidable by a smooth scatter machine with unbounded or fixed precision
and exponential protocol, clocked in polynomial time, and having access to exact
physical time if, and only if, B ∈ BPP// log�.

Moreover, wewill argue that such bounds are, to a large extent, really independent
of the analogue system considered.

This paper offers an overview of the development of the analogue-digital model
with technical details and new results. Here we have the first complete analysis of the
analog-digital machine having access to two-sided measurements, including the full
proofs of the lower and upper computational bounds for the polynomial time case.

4.2 Physical Oracles

The substrate of a real number computation is a physical process executed by a
machine; the input data is inmany cases obtained by a physicalmeasurement process.
During a computation, themachinemay have access to external quantities. For exam-
ple, an analogue-digital device controlling the temperature in a building “solves”
differential equations while “calling” thermometers to check the values of the tem-
perature through time.

This idea that both computation and data are in some way physical processes
motivates the theoretical quest for the limits of computational power of a physical
process. We propose the coupling of a Turing machine with a physical oracle. The
idea is to replace the standard oracle, which is just a set, by a physical experiment
that allows the machine to perform a measurement.

A Turing machine coupled with such an oracle becomes a hybrid computation
model, having an analogue component—the experiment—combined with a digital
component—the Turing machine. As the standard Turing machine with oracle, the
Turing machine with physical oracle will use the information given by the physical
oracle in its computations.

4.2.1 Types of Physical Oracles

The physical oracles that we will be considering are physical processes that enable
the Turing machine to measure quantities. As far as we have investigated (see [7]),
measurements can be classified in one of the three types: one-sided—also called
threshold—measurement, two-sided measurement and vanishing measurement.

4 An Analogue-Digital Model of Computation … 77

Fig. 4.1 Threshold Can
only measure y < z. Can
give a sequence of tests
approximating z from below y

z

Fig. 4.2 Can measure both
a < x and x < a. A
bisection method can be used
to find a

a

x

Fig. 4.3 Vanishing Can only
measure (a < x or x < a). A
modified bisection method
will work. Assume
monotonicity on each side
of a

a
x

A one-sided experiment is an experiment that approximates the unknown value
a just from one side, i.e., it approximates an unknown value a either with values x
from above or with values x from below, checking either if a < z or if z < a, but not
both (see Fig. 4.1).

A two-sided experiment is an experiment that approximates the unknown value a
from two sides, i.e., it approximates the unknown value a with values x from above
and with values x from below, checking if a < x and x < a (see Fig. 4.2).

A vanishing experiment is an experiment that approximates the unknown value y
from the physical time taken by the experiment (see Fig. 4.3).

Note that this type of experimental classification is neither in Hempel’s original
work in [8], nor in the developed theory synthesised in [9], since, in a sense, these
authors only consider the two-sided experiments.

In this paper we deal only with the two-sided measurement. Threshold experi-
ments were considered in [10] and vanishing experiments in [11].

We now illustrate this category with a gallery of two-sided experiments of mea-
surement, emphasising the experimental time.

4.2.1.1 Balance Experiment

The balance experiment is intended to measure the (gravitational) mass of some
physical body. To perform the experiment we put the unknown mass mA of body A
in one of the pans and we approximate its value by placing another body, B, in the
other pan. Body B can have a known mass, mB , bigger or smaller than mA. After

78 T. Ambaram et al.

Fig. 4.4 The balance experiment

placing the body B, the balance can display one of the behaviors explained in the
right hand side of Fig. 4.4.

Accordingly to the behavior of the balance, we can change the mass of B in
order to approximate mA, using linear search. Repeating the experiment a number
of times and considering bodies with masses each time closer to mA we get the
desired approximation of the unknown value. The time needed to detect a move in
the pointer of the balance scale is exponential in the number of bits of precision of
the measurement.

4.2.1.2 Elastic Collisions

The collision experiment can be used to measure the (inertial) mass of a body. This
experiment was already studied as a physical oracle in [12]. To perform the exper-
iment, we project a test body B with known mass mB and velocity vB along a line
towards the body A at rest with unknownmassmA. Themass of B,mB , can be bigger
or smaller thanmA. After the collision the bodies acquire new speeds, accordingly to
their relative masses. After the collision we can have one of the behaviors explained
in the right hand side of of Fig. 4.5. According to the behavior of the particles, we can
change the mass of B in order to approximatemA, using linear search. Repeating the
experiment a number of times and considering masses each time closer tomA, we get
an approximation of the unknown value. The time needed to detect a possible motion
of body A is exponential in the number of bits of precision of the measurement.

Fig. 4.5 The collision experiment

4 An Analogue-Digital Model of Computation … 79

4.2.1.3 The Foucault’s Pendulum

The construction of this gedankenexperiment is based on the principles of classical
mechanics (see Fig. 4.6). Themotion of the pendulum exhibits two coupled harmonic
components:

1. A periodic motion of period

T = 2π

√
�

g
,

corresponding to the classical period of the pendulum of length � for small ampli-
tude oscillations.

2. Another periodic motion of period

τ = 24 h

| sin λ| ,

corresponding to a complete rotation of the plane of oscillation at latitude λ.
Moreover, the rotation of the plane of oscillation of the pendulum is clockwise to
the north of equator and counterclockwise to the south of equator.

This two-sided experiment can be designed to locate the equator. The time needed
for the pendulum to cross the angular distance of 1s of arc is given by

tλ = 1

15| sin λ| s,

that, for small values of the angle λ, is of the order of

tλ = 1

|15λ| s,

180◦

90◦

0◦ start here

270◦

pendulum
ω rads−1

P+ counterclockwise flag

P− clockwise flag

plane of oscillation
rads−1 Input: The latitudes λ0 = 0◦ (equator) and λ (test)

if λ > 0 then plane of oscillation crosses the flag P+;
if λ < 0 then plane of oscillation crosses the flag P−;
else the plane of oscillation does not rotate ;

ϖ

Fig. 4.6 Foucault’s machine experiment

80 T. Ambaram et al.

going to infinity as the angle λ approaches 0. In the case of a dyadic value λ, this time
is exponential in the size of λ. The time needed to detect the equator is exponential
in the number of bits of precision.

4.2.2 The Smooth Scatter Experiment

We now introduce the measurement experiment that we take as a generic example
throughout this paper.

The smooth scatter experiment (SmSE for short), considered in [13], is a variation
of the sharp scatter experiment introduced in [14, 15]. As the sharp scatter experi-
ment, it measures the position of a vertex but it has a slightly different experimental
apparatus. In the sharp case we considered a vertex in a sharp wedge and in the
smooth case we are considering a vertex in a rounded wedge (see Fig. 4.7), where
the shape of the wedge is given by a smooth symmetric function.

In order to measure the vertex position y, the smooth scatter experiment sets a
cannon at some position z, shoots a particle from the cannon, and then waits some
time until the particle is captured in a detection box. We consider that y can take
any value in]0, 1[. The fire and detection phases define one run of the experiment.
After the shooting, we can have one of the behaviours explained in the algorithm of
Fig. 4.7 (right). By analyzing in which box the particle is detected, it is possible to
conclude the relative position of y and z, i.e., whether the vertex is in the right or left
side of the cannon. Then, repeating this procedure, by resetting the cannon position
and executing one more run of the experiment, we can better approximate the vertex
position.

� m

� m

cannon

sample trajectory
v m/s

0

1

z

limit of traverse of cannon
cannon aims at dyadic z ∈]0,1[

0

1

y

limit of traverse
of point of wedge

V

φ
φ

w

x

LEFT COLLECTING BOX

RIGHT COLLECTING BOX

Input: The position z
if z > y then the particle is detected in the right box;
if z < y then the particle is detected in the left box;

else the particle is not detected in any box

Fig. 4.7 The smooth scatter experiment

4 An Analogue-Digital Model of Computation … 81

4.2.2.1 The Physical Theory

The SmSE is governed by a fragment of Newtonian mechanics, consisting in the
following laws and assumptions:

1. Particles obey Newton’s laws of motion in the two dimensional plane;
2. Collisions between barriers and particles are perfectly elastic, that is, kinetic

energy is preserved;
3. Barriers are rigid and do not deform upon impact;
4. Cannon projects a particle with a given velocity and direction;
5. Detectors are capable of telling if a particle has crossed them; and
6. A clock measures the time.

The experimental clock that measures the physical time τ : [0, 1] → R is very
important in analysing the cost of accessing the oracle. When the Turing machine
accesses the oracle it must wait until the end of the experiment in order to continue
with its computation, so this means that accessing the oracle no longer takes one
computation step but “t steps”, where t is a function of the precision of the query.

4.2.2.2 The Time

The access to the SmSE will cost more than one computation step as the physical
experiment takes some intrinsic time t to be performed, designated as physical time.
As explained in [13, 16], the time required to run the SmSE is given by the following
proposition:

Proposition 1 Consider that g(x) is the function describing the shape of the wedge
of a SmSE. Suppose that g(x) is n times continuously differentiable near x = 0, all
its derivatives up to (n − 1)th vanish at x = 0, and the nth derivative is nonzero.
Then, when the SmSE, with vertex position y, fires the cannon at position z, the time
needed to detect the particle in one of the boxes is t (z), where:

A

|y − z|n−1
≤ t (z) ≤ B

|y − z|n−1
, (4.1)

for some A, B > 0 and for |y − z| sufficiently small.
Looking at Eq. 4.1, we conclude that we cannot bound the physical time, as it goes

to infinity when z and y become close. Without loss of generality, we will assume
from now on that n = 2, that is, g(x) ∈ C2, since the results are essentially the same
for values of n > 2.

82 T. Ambaram et al.

4.3 The Smooth Scatter Machine

Wenowfix the smooth scatter experiment as paradigmatic of two-sidedmeasurement
experiments and will proceed with the developing of our theory of analogue-digital
computation.

A Turingmachine coupled with the smooth scatter experiment as oracle is called a
smooth scatter machine (SmSM). This machine was introduced in [13]. The SmSM
communicates with the SmSE using the query tape. During a computation, the
SmSM performs its standard transitions and, whenever necessary, it consults the
oracle. The oracle is an experiment that allows the Turing machine to measure an
approximation to the vertex position of the scatter and use this value in the compu-
tation. In order to initialize the experiment, the Turing machine writes in the query
tape the parameters for the experiment, e.g., the position of the cannon. After some
time, the machine will be in other state according to the outcome of the experiment.
To guarantee that our machine does not wait unbounded time for the answer, we will
add to the Turing machine a time constructible schedule T : N → N. The schedule
depends on the size of the query.

Therefore, after some time not exceeding T (n), where n is the size of the query,
if the particle is detected in the right box, then the next state of the Turing machine
is qr ; if the particle is detected in the left box, then the next state is ql ; and if the
particle is not detected in any box, then the next state is qt . The machine resumes the
computation. The states qr , ql , and qt replace the standard states yes and no of an
oracle Turing machine. Note that, during the consultation of the oracle, the Turing
machine waits for the oracle answer but keeps counting the running time in parallel.

4.3.1 Communicating with the Smooth Scatter Experiment

The Turing machine communicates with the SmSE when necessary. The communi-
cation is made through the query tape, where the Turing machine writes the parame-
ters of the experiment, in this case the position of the cannon. We consider that the
position provided by the Turing machine is written in binary and denotes a number
of the form n/2k , where n is a non-negative integer in]0, 2k[and k is a positive
integer. The query z corresponds to the dyadic rational

z =
|z|∑
i=1

2−i z[i], (4.2)

where z[i] denotes the i th bit of z. After processing z, the apparatus should set the
position of the cannon and execute the experiment. Note that by Eqs. 4.1 and 4.2,
with the vertex at y ∈]0, 1[, the experimental time grows exponentially with the size
of the query, for values of z approaching y.

4 An Analogue-Digital Model of Computation … 83

We consider that our experiment can set the cannon’s position in three ways,
inducing different computational powers. The three protocols are:

Protocol 1 Given a dyadic rational z in the query tape, the experiment sets the
position of the cannon to z′ = z. In this case we are working with an error-free
SmSE or with an infinite precision SmSE—the protocol is Prot_I P(z). A Turing
machine coupled with this oracle is called an error-free smooth scatter machine.

Protocol 2 Given a dyadic rational z in the query tape, the experiment sets the
position of the cannon to z′ ∈ [z − 2−|z|, z + 2−|z|], chosen uniformly. In this case
we are working with an error-prone SmSE with unbounded precision—the protocol
is Prot_U P(z). A Turing machine coupled with this oracle is called an error-prone
smooth scatter machine with unbounded precision.

Protocol 3 Given a dyadic rational z in the query tape, the experiment sets the
position of the cannon to z′ ∈ [z − ε, z + ε], chosen uniformly, for a fixed ε = 2−q ,
for some positive integer q. In this case we are working with an error-prone SmSE
with fixed precision—the protocol is Prot_FP(z). A Turing machine coupled with
this oracle is called an error-prone smooth scatter machine with fixed precision.

We can describe all the protocols in the Algorithm 1.
The procedure Prot used in Algorithm 1 assigns a value to z′ according

with the protocol, i.e., using infinite precision (Prot (z, in f) = z), unbounded pre-
cision (Prot (z, unb) ∈ [z − 2−|z|, z + 2−|z|]), or fixed precision (Prot (z, f i x) ∈
[z − ε, z + ε]).

Algorithm 1: General communication protocol.
Data: Dyadic rational z (possibly padded with 0’s)
Set cannon’s position to z′ = Prot (z,mode) ;
Wait T (|z|) units of time ;
if The particle is detected in the right box then

A transition to the state qr occurs ;
end
if The particle is detected in the left box then

A transition to the state ql occurs ;
end
if The particle is not detected in any box then

A transition to the state qt occurs ;
end

Definition 1 Let A ⊆ {0, 1}�. We say that an error-free SmSM M, clocked with
runtime τ : N → N, decides A if, for every w ∈ {0, 1}�, M accepts w in at most
τ(|w|) steps if w ∈ A and M rejects w in at most τ(|w|) steps if w /∈ A.

Definition 2 Let A ⊆ {0, 1}�. We say that an error-prone SmSM M, with
unbounded or fixed precision, clocked in runtime τ : N → N, decides A if there

84 T. Ambaram et al.

exists γ , 1/2 < γ ≤ 1, such that, for every w ∈ {0, 1}�, M accepts w in at most
τ(|w|) steps with probability γ if w ∈ A and M rejects w in at most τ(|w|) steps
with probability γ if w /∈ A.

4.3.2 Measurement Algorithms

The measurement of the vertex position depends on the protocol, so that different
protocols may originate different measurement algorithms. From now on we denote
by m�� the first � digits of m, if m has � or more than � digits, otherwise it represents
m padded with k zeros, for some k such that |m0k|= �. The pruning or the padding
technique is used to control the time schedule during the measurement process. For
the infinite precision we have the measurement Algorithm 2.

In Algorithm 2 we have no errors associated with the protocol since the cannon’s
position is always set to the desired position. Thus, doing this search around the
vertex, we can approximate it up to any precision with no errors. The following
result was already proved in [10, 13].

Algorithm 2: Measurement algorithm for infinite precision.
Data: Positive integer � representing the desired precision
x0 = 0 ;
x1 = 1 ;
z = 0 ;
while x1 − x0 > 2−� do

z = (x0 + x1)/2 ;
s = Prot_I P(z��) ;
if s == “qr” then

x1 = z ;
end
if s == “ql” then

x0 = z ;
else

x0 = z ;
x1 = z ;

end
end
return Dyadic rational denoted by x0

Proposition 2 Let s be the result of Prot_I P(z��), y the vertex position of the
SmSE, and T the time schedule. If s = “ql”, then z��< y; if s = “qr”, then z��> y;
otherwise |y − z��|< C

T (�)
, for some constant C > 0.

Proof The first two cases are obvious. In the third case we have

4 An Analogue-Digital Model of Computation … 85

Algorithm 3: Measurement algorithm for unbounded precision.
Data: Positive integer � representing the precision
x0 = 0 ;
x1 = 1 ;
z = 0 ;
while x1 − x0 > 2−� do

z = (x0 + x1)/2 ;
s = Prot_U P(z��) ;
if s == “qr” then

x1 = z ;
end
if s == “ql” then

x0 = z;
else

x0 = z ;
x1 = z ;

end
end
return Dyadic rational denoted by x0

C

|y − z��| = t (z��) > T (�),

for some constant C > 0. Whence, |y − z��|< C
T (�)

. �

Unbounded precision requires the measurement Algorithm 3.
In the Algorithm 3 we have errors associated with the protocol since the cannon’s

position is set to a value uniformly chosen in the closed interval [z − 2−|z|, z + 2−|z|].
But, according to the definition of Prot_U P (see Protocol 2), the interval that is
considered could be increasingly smaller by increasing the precision, and so the error
will be increasingly smaller too.

We proved in [10, 14] the following result, where � is such that
[z�� −2−�, z�� +2−�] ∈]0, 1[.
Proposition 3 Let s be the result of Prot_U P(z��), y the vertex position of the
SmSE, and T the time schedule. If s = “ql”, then z��< y + 2−�, if s = “qr”, then
z��> y − 2−�, otherwise |y − z��| < C

T (�)
+ 2−�, for some constant C > 0.

Proof Let z′ be the position uniformly chosen by the Prot_U P(z��). Thus
z′ ∈ [z�� −2−�, z�� +2−�] and |z�� −z′| ≤ 2−�. From this it follows that, if s = “ql”,
then z′ < y and therefore z�� < y + 2−�; if s = “qr”, then z′ > y and therefore
z�� > y − 2−�; otherwise, |y − z′| < C

T (�)
, for some constant C > 0. Therefore

|y − z�� | < C
T (�)

+ 2−�. �

Proposition 4 Given a SmSM with unbounded or infinite precision, vertex position
at y and time schedule T (�) = C2�,

86 T. Ambaram et al.

1. The time complexity for the measurement algorithm for input � is O(�T (�));
2. The output of the algorithm, for input �, is a dyadic rational z such that |y − z|

< 2−�+1.

Proof Statement (1) comes from the fact that the call to the protocol is repeated
� times, each taking O(T (�)) steps. To prove statement (2) note that: (a) in the
infinite precision case, the execution of the algorithm halts when |y − z| < C

T (�)
;

(b) in the worst case of the unbounded precision, the execution of the algorithm
halts when |y − z| < C

T (�)
+ 2−�, i.e., |y − z| < 2−�+1; in both cases we have |y − z|

< 2−�+1. �

For the fixed precision protocol the measurement algorithm is different from the
previous two.

Assume that initially we have a SmSE with vertex at any real number s ∈]0, 1[.
We consider another SmSE with vertex at position y = 1/2 − ε+2s ε and repeat
ξ times the Prot_FP protocol with input z′ = 1, i.e., with the vertex at position
1/2. Consider a fixed precision ε = 2−q , for some q ∈ N, and physical time given
by the Eq. 4.1. Consider also a Turing machine coupled with this SmSE with a fixed
schedule T . Then wewill have three possible outcomes after running the experiment:
qr , ql , or qt . If η represents the position of the cannonwhere the time schedule exceeds
the limit, for some precision �, we have that the output qr occurs for cannon positions
in the interval [y + η, 1/2 + ε], the output qt occurs for cannon positions in the
interval [y − η, y + η] and the output ql occurs for cannon positions in the interval
[1/2 − ε, y − η]. Therefore we have that each outcome occurs with the following
probability:

1. For the output qr we have pr = (1/2 + ε−y − η)/(2ε).
2. For the output qt we have pt = (y + η − y + η)/(2ε).
3. For the output ql we have pl = (y − η − 1/2 + ε)/(2ε).

So, our experiment can be modeled as a multinomial distribution with three cate-
gories of success, each one with the stated probabilities. Let α, β, and γ be random
variables used to count outcomes ql , qr , and qt , respectively, and consider a new
random variable X = 2α+δ

2ξ . The expected value of X is

X̄ = 2E[α] + E[δ]
2ξ

= −1 + 2y + 2 ε

4 ε
= 4s ε

4 ε
= s .

The variance of X is

Var(X) =
(1
ξ

)2
Var(α) +

(1

2ξ

)2
Var(δ) + 2

(1
ξ

)(1

2ξ

)
Covar(α, δ) .

Simplifying we get

Var(X) = −−4s ε +4s2 ε +η

4 ε ξ
≤ 4s ε(1 − s)

4 ε ξ
≤ 1

ξ
.

4 An Analogue-Digital Model of Computation … 87

Using the Chebyshev’s Inequality, for � > 0, we get:

P(|X − X̄| > �) ≤ Var(X)

�2

P(|X − s| > �) ≤ 1

ξ�2

For precision � > 1/2�, we get

P(|X − s| > 1/2�) ≤ 22�

ξ
.

If we consider
22�

ξ
< 2−h,

for h ∈ N − {0}, then we get ξ > 22l+h .
Finally, we get the Algorithm 4 for the fixed precision case, where h is a positive

integer chosen in order to get the error less than 2−h .

Algorithm 4: Measurement algorithm for fixed precision.
Data: Integer � representing the precision
c = 0 ;
i = 0 ;
ξ = 22�+h ;
while i < ξ do

s = Prot_FP(1��) ;
if s == “ql” then

c = c + 2 ;
end
if s == “qt” then

c = c + 1 ;
end
i++ ;

end
return c/(2ξ)

The following statements have been proved in [10].

Proposition 5 For any real number s ∈]0, 1[, fixed precision ε = 2−q for q ∈ N,
error probability 2−h for h ∈ N − {0}, vertex position at y = 1/2 − ε +2s ε, and
time schedule T ,

1. The time complexity of the measurement algorithm for fixed precision with input
� is O(22�T (�));

2. The output of the algorithm is a dyadic rational m such that |y − m| < 2−�.

88 T. Ambaram et al.

Proof Statement (1) derives from the fact that the procedure calls the oracle 22�+h

times. Statement (2) is justified by observing that an approximation to y ± 2−� with
error probability less than 2−h requires 22�/2−h calls to the oracle. �

We are now ready to investigate the computational power of analogue-digital
machines clocked in polynomial time, using (without loss of generality) the smooth
scatter machine. Note that, on input �, all the measurement algorithms output a value
with � bits of precision, or a value with the maximum number of bits of precision
(< �) allowed by the schedule.

4.4 Computational Power of the Smooth Scatter Machine

The three types of SmSM obtained in the Sect. 4.3 express different computational
powers. In this section, we first recall some concepts of nonuniform complexity
classes (see [17, 18]).

4.4.1 Nonuniform Complexity Classes

An advice function is a total map f : N → {0, 1}� and a prefix advice function is
an advice function with the extra condition that f (n) is a prefix of f (n + 1). These
functions have an important role in nonuniform complexity as they provide external
information to themachines that depend only in the input size.We recall the definition
of nonuniform complexity class.

Definition 3 LetC be a class of sets and F be a class of advice functions. We define
C/F∗ as the class of sets B for which there exists a set A ∈ C and a prefix advice
function f ∈ F such that, for every word w ∈ �∗ with size less or equal to n, w ∈ B
iff 〈w, f (n)〉 ∈ A.

We consider deterministic Turing machines clocked in polynomial time and log-
arithmic prefix advice functions (see [18]), obtaining the nonuniform complexity
classes

P/ log� and P/ log2�.

We also consider probabilistic Turing machines clocked in polynomial time. Thus,
based on the Definition 3, we get the following:

Definition 4 BPP/ log� is the class of sets B for which a probabilistic Turing
machine M, a prefix advice function f ∈ log and a constant γ < 1/2 exist such
that, for every word w with size less or equal to n, M rejects 〈w, f (|w|)〉 with prob-
ability at most γ if w ∈ B and accepts 〈w, f (|w|)〉 with probability at most γ if
w /∈ B.

4 An Analogue-Digital Model of Computation … 89

The above definition is too restrictive, forcing the advice function to be chosen
after the Turing machine (see Appendix A). Thus we choose to use a more relaxed
definition where the Turing machine is chosen after the advice function.

Definition 5 BPP// log� is the class of sets B for which, given a prefix advice
function f ∈ log, a probabilistic Turing machine M and a constant γ < 1/2 exist
such that, for every word w with size less or equal to n, M rejects 〈w, f (|w|)〉 with
probability at most γ if w ∈ B and accepts 〈w, f (|w|)〉 with probability at most γ if
w /∈ B.

Similarly we define the nonuniform class BPP// log2�, just changing the class of
advice functions.

At this point we know that the Turingmachine has an oracle that measures approx-
imations of the vertex position. Since we are talking about nonuniform complexity
classes, the information given by the advice is codified in the position of the vertex
of the SmSE .

4.4.2 The Cantor Set C3

The Cantor set C3 is the set of ω-sequences x of the form

x =
+∞∑
k=1

xk2
−3k,

for xk ∈ {1, 2, 4}. This means that C3 corresponds to the set of elements composed
by the triples 001, 010, or 100. This set is often used to codify real numbers. For
example, in [19], the Cantor codification with base 4 and 9 is used to codify the real
weights of neural nets.

This type of codification is required in order to be able to distinguish close values.
For example, in order to describe the first bit of 011 · · · 1 and 100 · · · 0, we must
read the whole number. To enforce gaps between close values, we encode the binary
representations of the values in elements of the cantor set C3.

Wewill workwith prefix advice f : N → {0, 1}�, such that f ∈ log.We denote by
c(w), with w ∈ {0, 1}�, the binary sequence obtained from the binary representation
of w where each 0 is replaced by 100 and each 1 is replaced by 010. Given f , we
denote its encoding as a real number by y(f) = lim y(f)(n) recursively defined as
follows:

1. y(f)(0) = 0.c(f (0));

2. If f (n + 1) = f (n)s, then y(f)(n + 1) =
{
y(f)(n)c(s) if n + 1 is not power of 2
y(f)(n)c(s)001 if n + 1 is power of 2

.

Bymeans of this definition, y(f)(n) is logarithmic in n and the encoding function
returns a word of size O(f (n)). Note that separators are added only at positions that

90 T. Ambaram et al.

are a power of 2. If we want to decode f (|w|), such that 2m−1 < |w| ≤ 2m , we need
to read y(f) in triplets until we reach the (m + 1)th separator. To reconstruct f (2m),
we eliminate the separators and replace each triplet for the corresponding value.
Since |c(f (2m))|= am + b, for some constants a and b, the number of binary digits
needed to reconstruct f (2m) is linear in m.

Note that we considered a prefix advice function instead of an advice function,
otherwise the encoding would not be logarithmic in the size of the input.4

As first proved in [10, 14], these Cantor sets have the following property (see
Appendix B):

Proposition 6 For every y ∈ C3 and for every dyadic rational z ∈]0, 1[, such that
|z| = m, if |y − z| ≤ 1/2i+5, then the binary expansion of y and z coincide in the
first i bits and |y − z| > 1/2−(m+10).

4.4.3 Lower Bound for the Infinite Precision

We specify smooth scatter machines that decide the sets of some suitable nonuniform
complexity class.

Theorem 2 If B ∈ P/ log�, then there exists an error-free SmSM, clocked in poly-
nomial time, that decides B.

Proof If B ∈ P/ log�, then there exists a set A ∈ P (i.e., A is decided by a deter-
ministic Turing machine MA clocked in polynomial time pA) and a prefix advice
function f ∈ log, such that w ∈ B iff 〈w, f (| w |)〉 ∈ A. We can thus compute the
pairing of w and f (|w|) in polynomial time p, and check in polynomial time pA,
using Turing machine MA, if such a pair belongs to A.

To get f (|w|), M reads some binary places of the vertex position y(f) using the
SmSE (Algorithm 2) with an exponential schedule T (�) = C2�. Since |w| may not
be a power of 2 the SmSM reads f (n), where n ≥ |w| and n = 2�log |w|
. We have
that | f (|w|)| ≤ a log(|w|) + b, for some constants a, b ∈ N. Consequently | f (n)| ≤
a�log(|w|)
 + b, so that M reads

� = 3(a�log(|w|)
 + b) + 3(�log(|w|)
 + 1)

binary places of the vertex, where 3(�log(|w|)
 + 1) denotes the number of bits used
in the separators.

Using Algorithm 2 on � + 5 − 1, by Proposition 4, the algorithm returns a dyadic
rational m such that |y(f) − m| < 2−�−5. Hence, by Proposition 6, y(f) and m
coincide in the first � bits.

Again, by Proposition 4, we know that the time complexity of the Algorithm 2 is
O(�T (�)). Since � is logarithmic in the size of the input word and T is exponential in
the size of the query word we find that the Algorithm 2 takes polynomial time pa in

4We would get y(f) = 0.c(f (0))001c(f (1))001 · · · and since each c(f (i)) has a logarithmic size
in i , the sequence y(f)(n) would have a size O(n × log(n)).

4 An Analogue-Digital Model of Computation … 91

the size of the input word. We conclude that the total time for the whole computation
is O(pa + p + pA), that is polynomial in the size of the input. �

4.4.4 Smooth Scatter Machine as a Biased Coin

To prove the lower bounds for an error-prone SmSM with unbounded or fixed pre-
cision we need some preliminary work. The first two statements—proved in [12, 13,
15]—explain how the SmSE can be seen as a biased coin. The third statement—
already proved in [14, 16]—state that, given a biased coin it is possible to simulate
a sequence of fair coin tosses.

Proposition 7 Given an error-prone smooth scatter machine with unbounded preci-
sion, vertex position at y, experimental time t, and time schedule T , there is a dyadic
rational z and a real number δ ∈]0, 1[such that the outcome of Prot_U P on z is a
random variable that produces ql with probability δ.

Proof Consider an error-prone SmSM with unbounded precision, vertex position y,
experimental time t and time schedule T . Fix a positive integer � such that t (0) <

T (�) and t (1) < T (�), which means that if we run the experiment in the position 0��

or if we run the experiment in the position 1��, we will get an answer within T (�)

units of time.5

Given y and T (�) we know that there exists y′ < y such that t (y′) = T (�). Con-
sider now a dyadic rational z′ such that |z′| = � and 0 < z′ − 2−� < y′ ≤ z′. Observe
that 0 < y′ < y < 1 and so 0 < z′ < 1 (see Fig. 4.8). The value of � is fixed once
and for all; however, it is supposed that � can be fixed to a value large enough to get
z′ − 2−� > 0. This restriction is easy to satisfy sincewe only require t (0) < T (�) and
t (1) < T (�), which is obviously true for a large � since the schedule is exponential.

If we run the Prot_U P on z′, it will choose a value z ∈ [z′ − 2−�, z′ + 2−�]
uniformly. Thus, the probability that the protocol returns ql is

δ = y′ − z′ + 2−�

z′ + 2−� − (z′ − 2−�)
= 1

2
− z′ − y′

2 × 2−�
.

Therefore 0 < δ < 1 and the probability that the protocol returns qt or qr
is 1 − δ. �

Proposition 8 Given an error-prone smooth scatter machine with fixed precision,
vertex position at y, experimental time t, and time schedule T , there is a dyadic
rational z and a real number δ ∈]0, 1[such that the outcome of Prot_FP on z is
a random variable that produces ql with probability δ.

5In this case the position 0�� or 1�� means 0. 0 · · · 0︸ ︷︷ ︸
�

and 1. 0 · · · 0︸ ︷︷ ︸
�

, respectively, not the dyadic

position.

92 T. Ambaram et al.

z′ −2−�

z′ +2−�

0

1

z′y′

The schedule limit T (�)

LEFT COLLECTING BOX

RIGHT COLLECTING BOX

Fig. 4.8 The SmSE with unbounded precision as a coin

z′ − ε

z′ + ε

0

1

y′

The schedule limit T (�)

z′

LEFT COLLECTING BOX

RIGHT COLLECTING BOX

Fig. 4.9 The SmSE with fixed precision as a coin

Proof Consider an error-prone SmSM with fixed precision ε, vertex position at y,
experimental time t and time schedule T . Fix a positive integer � that verifies the
following conditions: 2−� ≤ ε, t (0) < T (�), and t (1) < T (�). The last restriction
means that if we run the experiment with the cannon either at 0�� or at 1��, we will
get an answer within T (�) units of time.6

Given y and T we know that there exists y′ < y such that t (y′) = T (�). Consider
now a dyadic rational z′ such that |z′| = � and 0 < z′ ≤ y′ ≤ z′ + 2−� < 1 (Figs. 4.9
and 4.10). The value of ε is fixed once and for all as is the value of y. However, it is
supposed that ε can be fixed to a value that although fixed is very small, such that,
z′ − ε > 0.

If we run the Prot_FP on z′ it will choose a value z ∈ [z′ − ε, z′ + ε] uniformly.
Thus the probability of the protocol return ql is

δ = y′ − z′ + ε

z′ + ε −(z′ − ε)
= 1

2
− z′ − y′

2 ε
.

Therefore, 0 < δ < 1 and the probability of outcome qt or qr is 1 − δ. �

6Id.

4 An Analogue-Digital Model of Computation … 93

•

• •

• •

• •

—

compute f(|w|)

—

generate coin tosses

—

simulate M

—

—

p3(|w|)

—

p2(|w|)

—

p1(|w|)

—

—

γ2

—

γ1

—

w

Fig. 4.10 Schematic description of the behavior of the SmSM with unbounded precision

Proposition 9 Given a biased coin with probability of heads q ∈]δ, 1 − δ[, for some
0 < δ < 1/2, and γ ∈]0, 1[, we can simulate, up to probability ≥ γ , a sequence of
independent fair coin tosses of length n by doing a linear number of biased coin
tosses.

See the proof in Appendix C.

4.4.5 Lower Bound for the Unbounded and Fixed Precisions

Theorem 3 If B ∈ BPP// log�, then there exists an error-prone smooth scatter
machine with unbounded precision, clocked in polynomial time, that decides B.

Proof If B ∈ BPP// log�, then there exists a prefix advice function f ∈ log, a proba-
bilistic Turing machineMworking in polynomial time p1, and a constant γ1 < 1/2,
such that, for every word w with size less or equal to |w|,M rejects 〈w, f (|w|)〉with
probability at most γ1 if w ∈ B and M accepts 〈w, f (|w|)〉 with probability at most
γ1 if w /∈ B.

We compute f (|w|) from y(f) (the vertex of our SmSM) and use M to decide
B. For this purpose consider γ2 such that γ1 + γ1γ2 < 1/2 and an exponential time
schedule T .

By Proposition 7 there is a dyadic rational z, depending on y and T , that can
be used to produce independent coin tosses with probability of heads δ ∈]0, 1[. By
Proposition 9, we can use the biased coin to simulate a sequence of fair coin tosses
of size p1(n), with probability of failure γ2.

Similarly to the proof of the Theorem 2, if |w| = n, using Algorithm 3 on input
� + 5 − 1, for � = 3(a�log(n)
 + b) + 3(�log(n)
 + 1), we can extract, by Propo-

94 T. Ambaram et al.

sition 4, a dyadic rationalm such that |y(f) − m| < 2−�−5. Hence, by Proposition 6,
y(f) and m coincide in the first � bits, so we can use M to compute f (2�log(n)
).

Thus, after using the SmSE as oracle in order to compute f (2�log(n)
), it is used
as a generator of a biased coin and thus as a generator of a sequence of size p1(n) of
random coin tosses. Then we just need to simulate M on 〈w, f (2�log(n)
)〉.

The behavior of the smooth scatter machine is the following (Fig. 4.10):
Firstly, the SmSM uses the SmSE to compute f (2�log(n)
); then it uses the SmSE

as a generator of a fair sequence of coin tosses (with error probability γ2); finally the
SmSM uses this sequence to guide its computation on 〈w, f (2�log(n)
)〉.

Therefore, if w ∈ A, then the SmSM rejects w if M, guided by the sequence of
coin tosses, rejects 〈w, f (2�log(n)
)〉, a situation that happens with probability at most
γ2γ1 + γ1 < 1/2. Similarly, the probability thatM acceptsw, forw /∈ A, is less than
1/2.

We can conclude that the SmSM decides A with an error probability less than
1/2. To see that it decides A in polynomial time note that Proposition 4 states that
the running time of the measurement algorithm is O(�T (�)). Since � is logarithmic
in input size and T is exponential in �, the result is polynomial in the size of the
input. Let such time be denoted by p3.

Let p4 denote the time needed to encode the pair w with f (|w|), that is O(|w| +
| f (|w|)|), and that p2 denote the polynomial time needed to generate the sequence
of coin tosses. Then we can conclude that the total time for the whole computation
is O(p1 + p2 + p3 + p4), which is a polynomial in the size of the input. �
Theorem 4 If B ∈ BPP// log�, then there exists an error-prone smooth scatter
machine with fixed precision ε, clocked in polynomial time, that decides B.

Proof The proof is similar to that of Theorem 3 but instead of Proposition 7 it uses
Proposition 8; instead of using Proposition 4 it uses the Proposition 5; and instead
of using measurement Algorithm 3 it uses Algorithm 4.

Note that in the fixed precision case the Algorithm 3 has an error γ3. Thus,
in this case, we consider γ2 and γ3 such that γ1 + γ2 + γ3 < 1/2. In these condi-
tions, if w ∈ A, then the SmSM rejects w with probability at most γ3(γ2γ1 + γ1) +
γ2γ1 + γ1 < 1/2. Similarly, the probability that w /∈ A is accepted by M is less
than 1/2. �

4.4.6 Boundary Numbers

For the purpose of proving upper bounds, we introduce the boundary numbers.

Definition 6 Let y ∈]0, 1[be the vertex position and T the time schedule for a
smooth scatter machine. For every z ∈ {0, 1}�, we define l|z| and r|z| as the two real
numbers in]0, 1[that satisfy the equation t (l|z|) = t (r|z|) = T (|z|), with l|z| < y <

r|z|.7

7There are always two boundary numbers satisfying this equation, as Fig. 4.11 shows.

4 An Analogue-Digital Model of Computation … 95

Fig. 4.11 The boundary numbers

Suppose that we want to query the oracle with z. If we query the SmSE , with
vertex at y, we have three possible answers: ql , if z < y and t (z) ≤ T (|z|); qr , if
z > y and t (z) ≤ T (|z|); qt otherwise. We thus arrive at the Algorithm 5.

Therefore we may replace oracle consultation by a comparison of the query word
(dyadic rational) with both l|z| and r|z|. As we are going to see, in a sense to be precise
later on, knowing enough bits of the boundary numbers is like querying the oracle.

Algorithm 5: Oracle simulation.
Data: Dyadic rational z representing the query, boundary numbers l|z| and r|z|
if z ≤ l|z| then

A transition to the state ql occurs ;
end
if z ≥ r|z| then

A transition to the state qr occurs ;
end
if l|z| < z < r|z| then

A transition to the state qt occurs ;
end

96 T. Ambaram et al.

4.4.7 Upper Bound for the Infinite Precision

The precision we can get on the measurement of the vertex position determines the
computational bounds of the smooth scatter machine. So far, the time schedule did
not interfere in establishing the computational bounds. Now we apply the simulation
technique, replacing the oracle by an advice function and prove upper bounds that,
this time, seem to be sensitive to the time schedule.

Theorem 5 If B is decidable by a smooth scatter machine with infinite precision
and exponential protocol, clocked in polynomial time, then B ∈ P/ log2�.

Proof Suppose that B is decidable by a SmSM M with infinite precision and expo-
nential time schedule T , clocked in polynomial time. Since T is exponential and M
is clocked in polynomial time, we conclude that the size of the oracle queries grows
at most logarithmically in the input size. This means that for any word w with size n,
there exist constants a and b such that, during the computation, M only queries the
oracle with words of size less or equal to � = a�log(n)
 + b. We consider a prefix
advice function f such that f (n) encodes the concatenation of boundary numbers
needed to answer to all the queries of size �:

l1�1#r1�1#l2�2#r2�2# · · · #l���#r���#.

The prefix advice function f is such that | f (n)| ∈ O(2� + 2
∑�

i=1 i) = O(�2) =
O(log2(n)). Therefore, to decide B in polynomial time, with prefix advice f ∈ log2,
we simulate M on the input word but whenever a transition to the query state occurs
and z is written in the query tape, we compare the query with the boundary numbers
relative to |z|), i.e., with l|z| and r|z|. The comparison, as explained in Sect. 4.4.6,
gives us the same answer as Prot_I P(z), and thus the machine uses a similar
measurement algorithm to approximate the vertex, replacing the call to the physical
oracle by a comparison of the query word with f (n). Since the comparison explained
in Algorithm 5 can be done in polynomial time and M runs in polynomial time too,
we can decide B in polynomial time given the advice in P/ log2�. �

Ifwe analyze better the binary expansion of each boundary number,we can change
the advice function considered in the previous proof, which is quadratic in the size
of the query word, in order to obtain an advice function linear in the size of the query
word. The main idea of this result is based on the fact that the boundary number
l|z|+1 (r|z|+1) can be obtained from l|z| (r|z|, respectively), by adding a few more bits
of information.

Proposition 10 Given the boundary numbers for a smooth scatter machine with
time schedule T (k) ∈ �(2k) it is possible to define a prefix advice function f such
that f (n) encodes all the boundary numbers with size up to n and | f (n)| ∈ O(n).

Proof Consider a SmSM with vertex at y. If the time schedule associated with the
SmSM is T (k) ∈ �(2k), then there exist α and k0 in N such that for all k ≥ k0,
T (k) ≥ α2k .

4 An Analogue-Digital Model of Computation … 97

The value of the boundary number rk is such that y < rk < y + 2−k+c, for some
constant c ∈ N and for k > k0. This means that, when we increase the size of k by
one bit, we also increase the precision on y by one bit. Let us write the dyadic rational
rk�k as the concatenation of two strings, rk�k= vk · wk , where wk has size c and vk
has size k − c. Note that rk − 2−k+c < vk < rk , i.e.,y − 2−k+c < rk − 2−k+c < vk <

rk < y + 2−k+c, i.e., |vk − y| < 2−k+c.
The same reasoning applies to lk�k= xk · yk , i.e., |xk − y| < 2−k+c, where yk has

size c and xk has size k − c.
We show that we can obtain vk+1 from vk with just two more bits. Suppose that

vk ends with the sequence vk = · · · 10�. The only two possibilities for the first k −
c bits of y are · · · 10� or · · · 01�. Thus, vk+1 must end in one of the following:
vk+1 = · · · 10�1 or vk+1 = · · · 10�0 or vk+1 = · · · 01�1 or vk+1 = · · · 01�0. That is,
even though vk is not necessarily a prefix of vk+1, the latter can be obtained from
vk by appending some information that determines which of the four possibilities
is the case.8 Suppose now that vk ends with the sequence vk = · · · 01�. The only
two possibilities for the first k − c bits of y are · · · 01�−11 or · · · 01�−10. Thus, vk+1

must end in one of the following: vk+1 = · · · 01�0 or vk+1 = · · · 01�1 or vk+1 =
· · · 01�−100 or vk+1 = · · · 01�−101. In the same way, vk+1 can still be obtained from
vk by appending some information that determines which of the four possibilities is
the case.

Similarly we obtain xk+1 from xk .
We define the advice function inductively as follows: if n < k0, then f (n) =

l1�1#r1�1#l2�2#r2�2# · · · #ln�n#rn�n; if n = k0, then f (k0) = f (k0 − 1)##xk0#yk0#vk0#
wk0 ; and if n > k0, then f (n) = f (n − 1)#b11b12#yn#b21b22#wn , where the bi j ’s
denote the bits that distinguish between xn−1 and xn and between vn−1 and vn .

Considering f (n), we can always recover rk�k or lk�k , for k ≤ n, because, if
k ≤ n < k0, then the values of rk�k and lk�k are explicitly in f (n); if k = n = k0,
then these values are explicitly in f (n) and, moreover, the machine knows it is
the last fully given boundary numbers rk�k and lk�k (with the two ##); and finally,
if n ≥ k > k0, to obtain lk and rk after knowing lk−1 and rk−1 we only need to
recalculate the two final bits of xk and vk and concatenate the result with either yk or
wk , respectively.

To conclude, since yn and wn have constant size c, the value of | f (n)| is asymp-
totically linear in n. �

With these different encodings we obtain a different upper bound for the infinite
case.

Theorem 6 If B is decidable by a smooth scatter machine with infinite precision and
exponential protocol T (k) ∈ �(2k), clocked in polynomial time, then B ∈ P/ log�.

8The following example helps to clarify the argument. Suppose that y = 0.1100011000 . . . The
sequence vk can be taken as follows: v1 = 1, v2 = 11, v3 = 111, v4 = 1101, v5 = 11001, v6 =
110010, v7 = 1100100, v8 = 11000111, v9 = 110001100, ...

98 T. Ambaram et al.

Proof Suppose that B is decidable by a SmSM M with infinite precision and expo-
nential time schedule T (k) ∈ �(2k), clocked in polynomial time. Since T is expo-
nential and M is clocked in polynomial time, we conclude that the size of the oracle
queries can grow at most logarithmically in the size of the input. This means that for
any word w with size n, there exist constants a and b such that, during the computa-
tion,M only queries the oraclewithwords of size less or equal to � = a�log(n)
 + b.

By Proposition 10 we can now define a prefix advice function f , encoding the
boundary numbers, such that | f (|z|)| is linear in size of the query |z| ∈ O(�), i.e.,
| f (|z|)|∈ O(log(n)), where n is the size of the input.

Therefore, to decide B in polynomial time with prefix advice f ∈ log, we can
simulateM on the input word but whenever a transition to the query state occurs and
z is written in the query tape we compare the query with the corresponding boundary
numbers, i.e., with l|z| and r|z|. The comparison, as explained in Sect. 4.4.6, provides
the same answer as Prot_I P(z), and thus the machine uses a similar measurement
algorithm to approximate the vertex, replacing the call to the physical oracle by a
comparison with f (n).

Since the comparison can be done in polynomial time and M runs in polynomial
time too, we can decide B in polynomial time given the advice. �

The Theorems 2 and 6 allow us to prove the following corollary:

Corollary 1 B is decidable by a smooth scatter machine with infinite precision
and exponential protocol T (k) ∈ �(2k), clocked in polynomial time, if and only if
B ∈ P/ log�.

It is an open problem to know if the above corollary holds if we remove the
schedule restriction.

4.4.8 Probabilistic Query Trees

The error-prone smooth scatter machine can obtain approximations to the vertex
position through themeasurement algorithm.After each run of the SmSE , the Turing
machine is in one of the three possible states: qr , qt or ql . The oracle consultations of a
SmSM can then be seen as a ternary query tree since its (deterministic) computations
are interspersed with calls to the oracle; after each call the machine is in one of the
three above mentioned states.

Definition 7 A query tree is a rooted tree (V, E, ν) where each node in V is a
configuration of the Turing machine in the query state (the root ν is the configuration
of the first call to the oracle) or in a halting state, and each edge in E is a deterministic
computation of the Turing machine between consecutive oracle calls or between
oracle calls and halting configurations. The only nodes with zero children are the
corresponding accepting and rejecting configurations.

4 An Analogue-Digital Model of Computation … 99

Definition 8 A m-ary query tree is a query tree where each node except the leaves
has m children.

Since we are not considering now the infinite precision case, we know that the
behavior of the SmSE is stochastic and thus, after each call to the oracle, themachine
is in one of the three states with some probability. With this idea in mind, we can see
all the oracle consultations by a SmSM on an inputw as a probabilistic ternary query
tree, i.e., a ternary query tree where each edge is labeled by a probability. A single
computation on w corresponds to a path in the tree, beginning in the root and ending
in a leaf. The leaves of the tree are labeled with an A, if the computation on input w
halts in an accepting configuration and are labeled with an R, if the computation on
input w halts in a rejecting configuration (see Fig. 4.12).

Let Tn,m = (Vn,m, En,m, νn,m) denotes a n-ary probabilistic query tree with
depth m.

Definition 9 We define the set of all assignments of probabilities to the edges of
Tn,m as

ρ(Tn,m) = {σ : En,m → [0, 1] : the sum of σ ’s over the n outcomes of every node is 1}.

Denote by T σ
n,m the n-ary probabilistic query tree with depth m and assignment

σ .

Definition 10 The probability of one single path π of a n-ary probabilistic query
tree T σ

n,m with depth m and assignment σ is

m∏
i=1

σ(π [i]),

where π [i] stands for the i th edge of the path from the root. The acceptance proba-
bility P(T σ

n,m) is the sum of the probabilities of all accepting paths.

We define D(σ1, σ2), σ1, σ2 ∈ ρ(Tn,m) as the maximum distance between the two
probabilistic query trees T σ1

n,m and T σ2
n,m .

Definition 11 For every σ1, σ2 ∈ ρ(Tn,m), we define

D(σ1, σ2) = max{| σ1(e) − σ2(e) |: e ∈ En,m} .

Now we define the largest possible difference in the acceptance probability for
two different assignments, where the distance between the probabilities is less or
equal to a value s.

Definition 12 For any m ∈ N, s ∈ [0, 1] and number of outcomes out ∈ N, we
define a function Aout : N × [0, 1] → [0, 1] as

Aout (m, s) = sup{|P(T σ ′
out,m) − P(T σ

out,m)|: σ, σ ′ ∈ ρ(Tout,m) and D(σ, σ ′) ≤ s} .

100 T. Ambaram et al.

Fig. 4.12 The oracle calls by a smooth scatter machine as a ternary query tree, where iCP means
the i th cannon position

This function satisfies the following relevant property:

Proposition 11 For any m ∈ N, s ∈ [0, 1], and any number out ∈ N of children in
the tree, Aout (m, s) ≤ (out − 1)ms.

Proof The proof follows by induction in m. The result is straightforward for
m = 0: we take P(T σ

out,0) = P(T σ ′
out,0) = 0 for each rejecting leaf, and P(T σ

out,0) =
P(T σ ′

out,0) = 1 for each accepting leaf. Let the statement be true form and consider the
probabilistic query tree Tout,m+1 with out outgoing edges, e1, e2, ..., eout , and depth
m + 1. Each edge ei is incident in a node Tout,m(i), for i = 1, . . . , out , respectively.
Consider probability assignments σ, σ ′ ∈ ρ(Tout,m+1) such that D(σ, σ ′) ≤ s. We
have then

P(T σ
out,m+1) = σ(e1)P(T σ

out,m(1)) + σ(e2)P(T σ
out,m(2)) + · · · + σ(eout)P(T σ

out,m(out))

P(T σ ′
out,m+1) = σ ′(e1)P(T σ ′

out,m(1)) + σ ′(e2)P(T σ ′
out,m(2)) + · · · + σ ′(eout)P(T σ ′

out,m(out)) .

As σ(eout) = 1 − σ(e1) − σ(e2) − · · · − σ(eout−1) and σ ′(eout) = 1 − σ ′(e1) −
σ ′(e2) − · · · − σ ′(eout−1), we have that

∣∣∣P(T σ
out,m+1) − P(T σ ′

out,m+1)

∣∣∣ = ∣∣(σ (e1) − σ ′(e1))(P(T σ
out,m(1)) − P(T σ

out,m(out)))

+ (σ (e2) − σ ′(e2))(P(T σ
out,m(2)) − P(T σ

out,m(out)))

+ · · ·
+ (σ (eout−1) − σ ′(eout−1))(P(T σ

out,m(out − 1)) − P(T σ
out,m(out − 1))

+ σ ′(e1)(P(T σ
out,m(1)) − P(T σ ′

out,m(1)))

+ σ ′(e2)(P(T σ
out,m(2)) − P(T σ ′

out,m(2)))

+ · · ·

4 An Analogue-Digital Model of Computation … 101

+σ ′(eout)(P(T σ
out,m(out)) − P(T σ ′

out,m(out))
∣∣∣ .

Since the difference of any two real numbers in [0, 1] lies in [−1, 1], we conclude
that
∣∣∣P(T σ

out,m+1) − P(T σ ′
out,m+1)

∣∣∣ ≤ ∣∣σ(e1) − σ ′(e1)| + | σ(e2) − σ ′(e2) | + · · · + | σ(eout−1) − σ ′(eout−1)
∣∣

+ σ ′(e1)Aout (m, s) + σ ′(e2)Aout (m, s) + · · · + σ ′(eout)Aout (m, s)

≤ (out − 1)s + Aout (m, s) .

Therefore, using the induction hypothesis,

Aout (m + 1, s) ≤ Aout (m, s) + (out − 1)s

≤ (out − 1)ms + (out − 1)s

= (out − 1)(m + 1)s . �

4.4.9 Upper Bound for the Unbounded Precision

Consider a SmSM with vertex at position y and physical time t , and suppose that
the SmSM writes a query z with |z| = k, for k ∈ N. Then consider the two boundary
numbers lk and rk (see Sects. 4.4.6 and 4.4.7) for the schedule T (k). Since the
transition to one of the states qr , qt and ql is probabilistic whenever the SmSM uses
the SmSE with the protocol Prot_U P , we conclude that approximations to the
probabilities involved in these possible transitions are needed in order to simulate
the oracle calls.

Protocol Prot_U P(z) chooses uniformly some position z′ ∈ [z − 2−k, z + 2−k]
from where to shoot, originating eight possible shooting cases represented in
Fig. 4.13. Assuming that we always have k large enough to obtain the shooting
interval inside]0, 1[, we exclude the cases 6 and 8. Assuming that the protocol is
exponential, we can discard also case 7, since the interval]lk, rk[shrinks faster than
the shooting interval. For each one of these cases, from 1 to 5, we will have the
following probabilities:

Fig. 4.13 Shooting cases 0 1ylk rk

1

2 3

4 5

6 7 8

102 T. Ambaram et al.

1. 0 < z − 2−k < lk < rk < z + 2−k < 1

P(“ql”) = lk − z + 2−k

z + 2−k − z + 2−k
= 1

2
− z − lk

2 × 2−k

P(“qt”) = rk − lk
z + 2−k − z + 2−k

= rk − lk
2 × 2−k

P(“qr”) = z + 2−k − rk
z + 2−k − z + 2−k

= 1

2
− rk − z

2 × 2−k
;

2. 0 < z − 2−k < lk < z + 2−k < rk < 1

P(“ql”) = lk − z + 2−k

z + 2−k − z + 2−k
= 1

2
− z − lk

2 × 2−k

P(“qt”) = z + 2−k − lk
z + 2−k − z + 2−k

= 1

2
− lk − z

2 × 2−k

P(“qr”) = 0 ;

3. 0 < lk < z − 2−k < rk < z + 2−k < 1

P(“ql”) = 0

P(“qt”) = rk − z + 2−k

z + 2−k − z + 2−k
= 1

2
− z − rk

2 × 2−k

P(“qr”) = z + 2−k − rk
z + 2−k − z + 2−k

= 1

2
− rk − z

2 × 2−k
;

4. 0 < z − 2−k < z + 2−k < lk

P(“ql”) = 1

P(“qt”) = 0

P(“qr”) = 0 ;

5. rk < z − 2−k < z + 2−k < 1

P(“ql”) = 0

P(“qt”) = 0

P(“qr”) = 1 .

Looking at the expressions, and considering error propagation, we can conclude
that if we know k + d bits of lk and rk we can approximate the probabilities within
an error less than 2−d .

Theorem 7 If B is decidable by a smooth scatter machine with unbounded precision
and exponential protocol T , clocked in polynomial time, then B ∈ BPP// log2�.

4 An Analogue-Digital Model of Computation … 103

Proof Suppose that B is decidable by a SmSM M with unbounded precision and
exponential protocol T , in polynomial timeO(na). SinceM onw runs in polynomial
time in n = |w| and it has an exponential time schedule T (k), we can conclude that
the size of the oracle queries must be at most logarithmic in the size of the input,
that is, the size of the oracle queries must be less or equal to b�log(n)
 + c. The
number of queries to the oracle cannot exceed the running time of the machine, so
that the probabilistic query trees of the SmSM have a depth of at most αna , for some
constant α.

Let γ be the error probability ofmachineM and d ∈ N such that 2d > 2α/(1/2 −
γ). The probabilities of each outcome of all oracle queries will be truncated up to
the precision 2−d−a�log(n)
, according with Proposition 11, in order to obtain error
probability of acceptance less than 1/2 − γ :

A(αna, 2−d−a�log(n)
) ≤ 2 × αna × 2−d−a�log(n)

= 2αna

2d × 2a�log(n)

= 2α

2d
< (1/2 − γ) .

Hence, as explained before the statement, to approximate the probabilities of all
queries with precision 2−d−a�log(n)
 we have to know i + d + a�log(n)
 bits of li
and ri , for 1 ≤ i ≤ b�log(n)
 + c. Consider now β = max{a, b} and a prefix advice
function f defined recursively as follows:

1. f (0) = l1�d+c#r1�d+c#l2�d+c#r2�d+c# · · · #lc�d+c#rc�d+c;
2. f (x + 1) is obtained by concatenating f (x) with the bits d + c + 2βx + 1 to

d + c + 2βx + 2β of li and ri , for 1 ≤ i ≤ βx + c; and then by adding the first
d + c + 2βx + 2β bits of li and ri for βx + c + 1 ≤ i ≤ βx + c + β. (All the
blocks of bits separated by #.)

Advice f encodes approximations to the boundary numbers li and ri , for 1 ≤ i ≤
βx + c: a Turing machine can read 2(βx + c) nonsequential blocks of size 2β from
f (x), updating at the same time the approximations of li and ri for 1 ≤ i ≤ βx + c
and 2β nonsequential blocks of size d + c + 2βx + 2β, to get approximations of li
and ri , for βx + c + 1 ≤ i ≤ βx + c + β. Thus, a Turing machine can have access
to approximations of li and ri with d + c + 2βx bits of precision. Analysing the
advice function we can conclude that:

| f (x)| = 2 × (d + c + 2βx) × (c + βx) +
x∑

i=0

2(βx + c) = O(x2).

Since we only consider x at most logarithmic in the input size, n, we have that
| f (�log(n)
)| = O(log2(n)). Thus, the advice function g(n) = f (�log(n)
) pro-
vide approximations of li and ri , for 1 ≤ i ≤ b�log(n)
 + c, with at least i + d +
a�log(n)
 bits of precision, as desired.

104 T. Ambaram et al.

Therefore, to decide B in polynomial time, using the prefix advice f ∈ log2, we
construct a TuringmachineM′ that simulatesM on the input word but, wheneverM
queries the oracle with z,M′ compares the query z with the corresponding boundary
numbers, i.e., with lk and rk , where k = |z|; checks the shooting cases; and computes
the approximations to the probabilities with an error less than 2−d−a�log(n)
. ThenM′
simulates a path in the probabilistic query tree, that represents the oracle consultation,
by means of the computed probabilities, by tossing a coin d + a�log(n)
 times. Note
that this probabilistic tree has a depth of at most αna and the edge difference is less
than 2−d−a�log(n)
. After simulating this path, the machine M′ proceeds as M. Since
the difference in the probability of acceptance is bounded by 1/2 − γ , M′ gives a
wrong answer with probability less than γ + 1/2 − γ = 1/2.

Recalling that the SmSM M runs in polynomial time, and that comparing query
words with boundary numbers and computing probabilities can also be done in
polynomial time, we conclude that B is decidable in polynomial time with advice
g(n) = f (�log(n)
). �

4.4.10 Upper Bound for the Fixed Precision

The error-prone SmSM with fixed precision ε has also probabilistic computation
trees. Thus, once again, we need approximations to the boundary numbers (see
Sects. 4.4.6, 4.4.7 and 4.4.9) and to the probabilities in order to simulate the oracle
whenever the SmSM calls the SmSE with the protocol Prot_FP .

Consider a SmSM with vertex at position y, fixed precision ε = 2−q , for some
positive integer q, and physical time t . Suppose that the SmSM writes a query z
with |z| = k for k ∈ N. Then consider the two boundary numbers lk and rk for the
schedule T (k).

Since Prot_FP(z) will choose uniformly some position z′ ∈ [z − ε, z + ε] from
where to shoot, we have eight possible shooting cases represented also in Fig. 4.13.
As previously discussed in Sect. 4.4.9, we assume that we always have k large enough
to have the shooting interval inside]0, 1[, excluding the cases 6 and 8. We also know
that the interval]lk, rk[shortens, so that we consider that the case 7 does not occur
also.

For each one of the remaining cases, from 1 to 5, we will have the following
probabilities:

1. 0 < z − ε < lk < rk < z + ε < 1

P(“ql”) = lk − z + ε

z + ε −z + ε
= 1

2
− z − lk

2 ε

P(“qt”) = rk − lk
z + ε −z + ε

= rk − lk
2 ε

P(“qr”) = z + ε −rk
z + ε −z + ε

= 1

2
− rk − z

2 ε
;

4 An Analogue-Digital Model of Computation … 105

2. 0 < z − ε < lk < z + ε < rk < 1

P(“ql”) = lk − z + ε

z + ε −z + ε
= 1

2
− z − lk

2 ε

P(“qt”) = z + ε −lk
z + ε −z + ε

= 1

2
− lk − z

2 ε

P(“qr”) = 0 ;

3. 0 < lk < z − ε < rk < z + ε < 1

P(“ql”) = 0

P(“qt”) = rk − z + ε

z + ε −z + ε
= 1

2
− z − rk

2 ε

P(“qr”) = z + ε −rk
z + ε −z + ε

= 1

2
− rk − z

2 ε
;

4. 0 < z − ε < z + ε < lk

P(“ql”) = 1

P(“qt”) = 0

P(“qr”) = 0 ;

5. rk < z − ε < z + ε < 1

P(“ql”) = 0

P(“qt”) = 0

P(“qr”) = 1 .

Considering error propagation, we can conclude that if we know q + d bits of lk
and rk , then we can approximate these probabilities with an error at most 2−d . (Note
that, if we consider a real valued ε, we can also approximate the probabilities within
the desired precision by providing the bits of ε too.)

We can now prove the upper bound for the fixed precision case.

Theorem 8 If B is decidable by a smooth scatter machine with fixed precision ε =
2−q , for some positive integer q, and exponential protocol T , clocked in polynomial
time, then B ∈ BPP// log2�.

Proof Suppose that B is decidable by a SmSM M, with fixed precision ε = 2−q ,
for some positive integer q, and exponential protocol T , in polynomial time O(na).
Since M has an exponential time schedule T (k), we can conclude that the size of
the oracle queries must be at most logarithmic in the size of the input, i.e., less then
or equal to b�log(n)
 + c. Moreover, there exists a constant α such that the number
of queries does not exceed αna and, consequently, the probabilistic query trees of
the SmSM will have a depth of at most αna .

106 T. Ambaram et al.

Let γ be the error probability ofmachineM and d ∈ N such that 2d > 2α/(1/2 −
γ). The probabilities of each outcome of all oracle queries will be truncated up to
the precision 2−d−a�log(n)
, according with Proposition 11, in order to obtain error
probability of acceptance less than 1/2 − γ :

A(αna, 2−d−a�log(n)
) ≤ 2 × αna × 2−d−a�log(n)

= 2αna

2d × 2a�log(n)

= 2α

2d
< (1/2 − γ) .

Hence to approximate the probabilities of all queries with precision 2−d−a�log(n)

we have to know q + d + a�log(n)
 bits of li and ri , for 1 ≤ i ≤ b�log(n)
 + c.
Consider the prefix advice function f defined recursively as follows:

1. f (0) = q#l1�q+d#r1�q+d#l2�q+d#r2�q+d# · · · #lc�q+d#rc�q+d ;
2. f (x + 1) is obtained by concatenating f (x) with the bits q + d + ax + 1 to

q + d + ax + a of li and ri , for 1 ≤ i ≤ bx + c; then by adding the first q + d +
ax + a bits of li and ri for bx + c + 1 ≤ i ≤ bx + c + b. All the blocks of bits
are separated by #.

From advice f (x) a Turing machine has access to the value q (and then computes
ε), and to the approximations of the boundarynumbers li and ri , for 1 ≤ i ≤ bx + c by
doing the following: themachine reads 2(bx + c) nonsequential blocks of size a from
f (x), updating at the same time the approximations of li and ri , for 1 ≤ i ≤ bx + c,
and 2b nonsequential blocks of size q + d + ax + a, to get approximations of li and
ri , for bx + c + 1 ≤ i ≤ bx + c + b. Thus, given advice f (x), a Turing machine
can approximate li and ri with q + d + ax bits of precision, for 1 ≤ i ≤ bx + c.

Analyzing the advice function we can conclude that:

| f (x)| ≤ 2 × (q + d + ax) × (bx + c) +
x∑

i=0

2(bx + c) = O(x2) .

Since we only consider x at most logarithmic in the input size, n, we have
that | f (�log(n)
)| = O(log2(n)). Thus, the advice function g(n) = f (�log(n)
)
provides approximations of li and ri , for 1 ≤ i ≤ b�log(n)
 + c, with at least
q + d + a�log(n)
 bits of precision, as desired.

Therefore, to decide B in polynomial time with help by a prefix advice f ∈ log2,
we construct a Turing machine M′ that simulates M on the input word but when-
ever M queries the oracle with z, M′ compares the query with the corresponding
boundary numbers, i.e., with l|z| and r|z|; checks the shooting cases; and computes
the approximations to the probabilities with an error less than 2−d−a�log(n)
. Then
M′ simulates a path in the probabilistic query tree, that represents the oracle con-
sultation, by means of the computed probabilities, by tossing a coin d + a�log(n)

times. Note that this probabilistic query tree has a depth of at most αna and that the

4 An Analogue-Digital Model of Computation … 107

edge difference is less than 2−d−a�log(n)
. After simulating this path the machine M′
proceeds with the computation as M.

Turing machine M′ gives a wrong answer with probability less than γ + 1/2 −
γ = 1/2. Recalling that the SmSM M runs in polynomial time, that comparing
query words with boundary numbers and computing probabilities can also be done
in polynomial time, we conclude that B is decidable in polynomial time with advice
g(n) = f (�log(n)
). �

4.5 Upper Bound with Explicit Time Technique

As we have seen in the previous sections, the use of boundary numbers raises the
question of whether we really can achieve the upper bound of BPP// log2�. We can
equally ask, under what circumstances is the upper bound actuallyBPP// log�? Here
we consider a special case where the upper bound does reduce to BPP// log�.

Using the physical time explicitly means that, given an exact expression for the
experimental time for a SmSM , we take good use of it to compute the boundary
numbers. We assume that we have an exact expression for the experimental time
t (z) = f (z − y) for cannon position z. As usual, the vertex position y is unknown,
but we have the explicit form of the function f . Of course, this approach can cost a
lot of computational resources since the function f may be computationally difficult
to compute.

In order to understand better the explicit time idea note that, in the unbounded
precision case, we use the advice function to encode approximations of the boundary
numbers, allowing us to simulate the oracle answers and to compute approximations
to the probabilities. The simplest formula for an explicit time consistent with our
assumptions in (4.1) would be, for some constant C > 0,

t (z) = C

|y − z| . (4.3)

To make use of this formula, we need C to be computable, but also we need bounds
on how quickly we can compute approximations to C . To further simplify matters,
we shall assume that C = 1.

Suppose that the SmSM writes a query z with |z| = k for k ∈ N. Then consider
the two boundary numbers lk and rk for the schedule T (k). If we consider the explicit
time, as the boundary numbers satisfy the property t (lk) = t (rk) = T (k), we have

lk = y − 1

T (k)
, rk = y + 1

T (k)
. (4.4)

Thus, given approximations to y, we can obtain approximations of lk and rk . We
consider that the schedule T is internal to the Turingmachine, i.e. the Turingmachine
is capable of computing it up to any precision. Thus, by looking at the expressions

108 T. Ambaram et al.

and considering the error propagation rules, we conclude that if we have d + 1 bits
of precision of y and A = 1/T (k), we can compute the boundary numbers with an
error less than 2−d .

Theorem 9 If B is decidable by a smooth scatter machine with unbounded precision
and exponential protocol T , clocked in polynomial time, then, considering explicit
time in the form (4.3) with C = 1, B ∈ BPP// log�.

Proof We refer to the proof of Theorem 7, providing now the advice function that
solves the problem in BPP// log�. All variables and constants are as in the proof of
Theorem 7.

Consider a SmSM M running in polynomial time and with schedule T (k), expo-
nential in k. By Theorem 7, we know that B can be decided by a probabilistic
Turing machine, M′ in polynomial time with access to an advice function f of size
O(log2(n)), which contains the first d + c + 2βx bits of li and ri for 1 ≤ i ≤ βx + c.

We consider another function g, defined recursively as follows: g(0) is the con-
catenation of the first d + c bits of y; g(x + 1) is the concatenation of g(x) with
the bits d + c + 2βx + 1 to d + c + 2βx + 2β of y. We can use g(x) to get the
first d + c + 2βx bits of y, therefore, by the previous reasoning, we can use the
approximations of y in order to compute the approximation of all lk and rk , for
1 ≤ k ≤ bx + c, with d + c + 2βx bits of precision as the Turing machine can com-
pute in polynomial time A with d + c + 2βx bits of precision.

Analyzing g(x)we conclude that |g(x)| = (d + c + 2βx) + (x + 1) = O(x). As
in our case, as x will be at most logarithmic in the size of the input, we conclude that
|g(�log(n)
)| = O(�log(n)
).

Thus, we define a probabilistic Turing machine M′′ that on input w simulates
M′ on w but instead of using the advice f (|w|), uses the advice g(|w|). Since we
can recover the information of f from g in polynomial time and M′ runs in poly-
nomial time too, we conclude that our Turing machine runs in polynomial time and
decides B. �

Using Theorems 3 and 9 we can trivially state the following corollary.

Corollary 2 Considering explicit time in the form (4.3) with C = 1, B is decidable
by a smooth scatter machine with unbounded precision and exponential protocol T ,
clocked in polynomial time, if and only if B ∈ BPP// log�.

Theorem 10 If B is decidable by a smooth scatter machine with fixed precision ε =
2−q , for some positive integer q, and exponential protocol T , clocked in polynomial
time, then, considering explicit time in the form (4.3) with C = 1, B ∈ BPP// log�.

Proof We refer to the proof of Theorem 8, providing now the advice function that
solves the problem in BPP// log�. All variables and constants are as in the proof of
Theorem 8.

Consider a SmSM M running in polynomial time, with fixed precision ε = 2−q ,
for some positive integer q, and a schedule T (k), exponential in k. By Theorem 8,
we know that B can be decided by a probabilistic Turing machine M′ in polynomial

4 An Analogue-Digital Model of Computation … 109

time with access to an advice function f of size O(log2(n)), which contains the first
q + d + ax bits of li and ri for 1 ≤ i ≤ bx + c and the the value q.

We consider another function g, defined recursively as follows: g(0) is the con-
catenation of q with the first q + d bits of y; g(x + 1) is the concatenation of g(x)
with the bits q + d + 1 + ax to q + d + 1 + ax + a of y. We can use g(x) to get
ε and to get the first q + d + ax bits of y. Therefore, by the previous reasoning,
we can use the approximations of y to compute the approximation of all lk and rk
for 1 ≤ k ≤ bx + c with q + d + ax bits of precision, as the Turing machine can
compute in polynomial time A with q + d + ax bits of precision.

Analyzing g(x) we conclude that |g(x)| = (q + d + ax) + (x + 2) = O(x). As
in our case x will be at most logarithmic in the size of the input we conclude that
|g(�log(n)
)| = O(log(n)).

Thus, we define a probabilistic Turing machine M′′ that on input w simulates
M′ on w but instead of using the advice f (|w|), uses the advice g(|w|). Since we
can recover the information of f from g in polynomial time and M′ runs in poly-
nomial time too we conclude that our Turing machine runs in polynomial time and
decides B. �

Using Theorems 4 and 10 we can trivially state the following corollary:

Corollary 3 Considering explicit time in the form (4.3) with C = 1, B is decid-
able by a smooth scatter machine with fixed precision ε = 2−q , for some positive
integer q, and exponential protocol T , clocked in polynomial time, if and only if
B ∈ BPP// log�.

4.6 Conclusion

In the past two decades there was a growing of interest in non-conventional models
of computation inspired by the natural processes in biology, physics and chemistry.
Some of these models explore parallel processing, some others see advantage in
analogue components translated into real numbers, appearing as parameters in the
systems. In this paperwe explored an abstraction of the last category ofmodels, study-
ing an analogue-digital (hybrid) model of computation where the Turing machine is
coupled with a physical oracle.

Abstracting from other models, the model we propose is introduced as a labo-
ratory, where the computational power can be studied depending on the protocol
between the Turing machine and the analogue component—being it infinite pre-
cision, unbounded precision and fixed precision, and still open to other forms of
communication. The physical oracle itself is a measurement that the Turing machine
performs in the physical world as an abstract scientist. The communicating between
the Turing machine and the physical oracle is made through a query tape where the
parameter needed to initialize the experiment is written. The consultation of the ana-
logue oracle has a cost that is not just one time step of computation as a consequence
of the unavoidable time costs inherent to the physical process.

110 T. Ambaram et al.

We considered a particular physical oracle, the smooth scatter experiment or
SmSE . This experiment is a symmetric two-sided measurement of distance and it is
governed by elementary Newtonian mechanics. The SmSE belongs to the class of
physical oracleswith exponential physical time t (the intrinsic timeof the experiment)
characterized by the following axioms:

1. Real values—The experiment is designed to find a physical unknown parameter
y ∈]0, 1[;

2. Queries—Each query is a binary string z1z2 · · · zk denoting a dyadic rational
z = 0.z1z2 · · · zk ;

3. Finite output—The outcome is either y < z, y > z, with possible mistakes, or
timeout;

4. Protocol timer—There is a time schedule T : N → N, so that the time given to
any query of length k is bounded by T (k);

5. Sufficiency of the protocol—If |y − z| > 2−|z|, then the result is not timeout;
6. Repeatability—Identical queries will result in identical results including identical

timeouts.

This particular set of oracles led to a conjecture, already discussed in [5, 20],
stating that for all “reasonable” physical theories and for all measurements based on
them, the physical time of the experiment is at least exponential, i.e., the time needed
to access the nth bit of the parameter being measured is at least exponential in n.

4.6.1 The Computational Power of the Analogue-Digital
Machine

Usingdifferent protocolsweget differentways of communicating between theTuring
machine and the analogue device—the SmSE in the present case (see Sect. 4.3).
Different protocols relate with different measurement algorithms (see Sect. 4.3.2),
defining three different types of smooth scatter machine or SmSM .

Codifying in the vertex of a SmSE enough information, we were able to use
the oracle to both generate sequences of non-biased coin tosses and, performing a
measurement, solving decision problems of a suitable nonuniform complexity class.
To measure the position of the vertex, we considered a bound for the consultation
time—a time schedule—exponential in the precision (number of bits) of the query.
Note that, although the lower bounds were proved for a specific analogue-digital
machine—the SmSM—they are the same for every oracle we studied (see [7]).

Then we constructed advice functions encoding enough information to simulate
SmSE queries and established upper bounds, namely we proved that logarithmic
squared size advice suffices to encode approximations to the so-called boundary
numbers (see Sect. 4.4.6) as in [10]. Afterwards, again as in [10], we used an explicit
time technique to reduce logarithmic squared advice just to logarithmic advice. Since
boundary numbers exist, at least for the two-sided oracles with exponential physical
time, we also conclude that the upper bounds are common to all two-sided physical
oracles with such physical times.

4 An Analogue-Digital Model of Computation … 111

Table 4.1 Main non-uniform complexity classes relative to the different protocols of the analogue-
digital machine clocked in polynomial time

Infinite Unbounded Fixed

Lower Bound P/ log� BPP// log� BPP// log�

Upper Bound P/ log� BPP// log2�
Exponential schedule

BPP// log2�
Exponential schedule

Upper Bound Explicit

Time

— BPP// log� Exponential

schedule

BPP// log� Exponential

schedule

Our statements on the computational power of the analogue-digital machine
clocked in polynomial time are summarized in the Table 4.1.

4.6.2 Open Problems

We have two non-trivial open problems related to oracles with exponential consulta-
tion time: (a) in the infinite precision case, to know if the lower and the upper bounds
can be made to coincide without assumptions on the time schedule and (b) in the
error-prone cases, to know if the lower and the upper bounds can be made to coincide
without using the explicit time technique, namely, it is not known if there exists a
set not belonging BPP// log�, decidable by a smooth scatter machine (or any other
equivalent two-sided machine) in polynomial time.

Acknowledgments To Bill Tantau for the use of pgf/TikZ applications.

Appendix A: Nonuniform Complexity Classes

A nonuniform complexity class is a way of characterising families {Cn}n∈N of finite
machines, such as logic circuits, where the element Cn decides a restriction of some
problem to inputs of size n. Nonuniformity arises because for n �= m, Cn may be
unrelated to Cm ; eventually, there is a distinct algorithm for each input size (see
[17]). The elements of a nonuniform class can be unified by means of a (possibly
noncomputable) advice function, as introduced in Sect. 4.4, making up just one
algorithm for all input sizes. The values of such a function provided with the inputs
add the extra information needed to perform the computations (see [18]).

The nonuniform complexity classes have an important role in the Complexity
Theory. The class P/poly contains the undecidable halting set {0n: n is the encoding
of a Turing machine that halts on input 0}, and it corresponds to the set of families
decidable by a polynomial size circuit. The class P/ log also contains the halting set
defined as {02n : n is the encoding of a Turing machine that halts on input 0}.

112 T. Ambaram et al.

The definition of nonuniform complexity classes was given in Sect. 4.4. Generally
we consider four cases: C/F, C/F�, C//F, and C//F�. The second and the fourth
cases are small variations of the first and third, respectively. To understand the dif-
ference, note thatC/F is the class of sets B for which there exists a set A ∈ C and an
advice function f ∈ F such that, for everyw ∈ {0, 1}�,w ∈ B iff 〈w, f (|w|)〉 ∈ A. In
this case, the advice function is fixed after choosing the Turing machine that decides
the set A. As it is more intuitive to fix the Turing machine after choosing the suitable
advice function, we considered a less restrictive definition, the type C//F: the class
of sets B for which, given an advice function f ∈ F, there exists a set A ∈ C such
that, for every w ∈ {0, 1}�, w ∈ B iff 〈w, f (|w|)〉 ∈ A.

The following structural relations hold between the nonuniform classes used
throughout this paper:

P/ log� ⊆ BPP/ log� ⊆ BPP// log� .

This result is trivial since we can just use the same Turing machine and the same
advice function.

Appendix B: The Cantor Set

We prove Proposition 6 (see [10, 12] for further details). This proposition allows
us to frame the distance between a dyadic rational and a real number. Recall that a
dyadic rational is a number of the form n/2k , where n is an integer and k is a positive
integer. If such a number belongs to C3 then it is composed by triplets of the form
001, 010 or 100.

Proposition 12 For every x ∈ C3 and for every dyadic rational z ∈]0, 1[with size
|z|= m, if |x − z| ≤ 1/2i+5, then the binary expansion of x and z coincide in the
first i bits and |y − z| > 1/2−(m+10).

Proof Suppose that x and z coincide in the first i − 1 bits and differ in the i th bit.
We have two possible cases:

z < x : In this case zi = 0 and xi = 1 and the worst case for the difference occurs
when the binary expansion for z after the i th position begins with a sequence of 1s
and the binary expansion for x after i th position begins with a sequence of 0s.

z > x : In this case zi = 1 and xi = 0 and the worst case for the difference occurs
when the binary expansion for z after i th position begins with a sequence of 0s and
the binary expansion for x after the i th position begins with a sequence of 1s:

We can conclude that in any case |x − z| > 2−(i+5). Thus, if |x − z| ≤ 2−(i+5),
then x an z coincide in the first i bits.

The binary expansion of z after some position m is exclusively composed by 0s
and since x ∈ C3, it has at most 4 consecutive 0s after the mth bit. Thus, supposing
that x and z coincide up to mth position, after this position they can coincide at most

4 An Analogue-Digital Model of Computation … 113

in the next 4 positions so they cannot coincide in m + 5 bits. Therefore, by the first
part of the statement, |x − z| > 2−(m+10). �

Appendix C: Random Sequences

Propositions 7 and 8 showhow the SmSE with unbounded or fixed precision could be
seen as a biased coin. Given a biased coin, as stated by Proposition 9, we can simulate
a fair sequence of coin tosses. Herein, we present the proof of such a statement.

Proposition 13 Given a biased coin with probability of heads δ ∈]0, 1[and a con-
stant γ ∈]0, 1[, we can simulate, up to probability ≥ γ , a sequence of independent
fair coin tosses of length n by performing a linear number of biased coin tosses.

Proof Consider that we have a biased coin with probability of heads δ ∈]0, 1[. To
simulate a fair coin toss we perform the following algorithm: Toss the biased coin
twice and,

1. If the output is HT then output H ;
2. If the output is T H then output T ;
3. If the output is HH or T T then repeat algorithm.

As the probability of HT is equal to T H , we have the same probability of getting
a H and a T and thus we simulate a fair coin. The probability that the algorithm halts
in one run is r = 2q(1 − q) and the probability of running it again is s = 1 − δ. We
want to run the algorithm until we get a sequence of fair coin tosses with size n. To
get this sequence we may need to run the algorithm more than n times and thus we
will study the total number of coin tosses required by considering the variable Tn
denoting the number of runs until we get n fair coin tosses. The value Tn is a random
variable that is given by the negative binomial distribution

Tn
d= N B(n, s) .

In this case we have the following mean and variance:

μ = ns

r
+ n = n

r
, υ = ns

r2
.

Now, using the Chebyshev’s inequality, we get

P(| Tn − μ |≥ t) ≤ υ

t2
.

And thus, by considering t = αn, for some α, we get

P(Tn ≥ μ + αn) ≤ ns

r2(αn)2
<

1

r2α2n
.

114 T. Ambaram et al.

Since the worst case is for n = 1, in order to get the probability of failure less than
1 − γ we need

α ≥ 1

r
√

(1 − γ)
.

Noticing that Tn ≥ μ + αn, we find that the total number of runs is

n

r
+ 1

r
√

(1 − γ)
× n = n

r

(
1 + 1√

1 − γ

)
.

Since we toss a coin two times in each run, we get that the total number of coin tosses
is linear in n

n

δ(1 − δ)

(
1 + 1√

1 − γ

)
.

�

References

1. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theor. Comput. Sci.
131(2), 331–360 (1994)

2. Woods, D., Naughton, T.J.: An optical model of computation. Theor. Comput. Sci. 334(1–3),
227–258 (2005)

3. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid
systems. Theor. Comput. Sci. 168(2), 417–459 (1996)

4. Carnap, R.: Philosophical Foundations of Physics. Basic Books, New York (1966)
5. Beggs, E., Costa, J., Tucker, J.V.:Computationalmodels ofmeasurement andHempel’s axioma-

tization. In: Carsetti, A. (ed.), Causality,Meaningful Complexity andKnowledge Construction,
vol. 46. Theory and Decision Library A, pp. 155–184. Springer, Berlin (2010)

6. Geroch, R., Hartle, J.B.: Computability and physical theories. Found. Phys. 16(6), 533–550
(1986)

7. Beggs, E., Costa, J., Tucker, J.V.: Three forms of physicalmeasurement and their computability.
Rev. Symb. Log. 7(4), 618–646 (2014)

8. Hempel, C.G.: Fundamentals of concept formation in empirical science. Int. Encycl. Unified
Sci. II, 7 (1952)

9. Krantz, D.H., Suppes, P., Luce, R.D., Tversky, A.: Foundations of Measurement. Dover, New
York (2009)

10. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: Oracles that measure thresholds: the Turing
machine and the broken balance. J. Log. Comput. 23(6), 1155–1181 (2013)

11. Beggs,E.,Costa, J.F., Poças,D., Tucker, J.V.:Computationswith oracles thatmeasure vanishing
quantities. Math. Struct. Comput. Sci., p. 49 (in print)

12. Beggs, E.J., Costa, J.F., Tucker, J.V.: Limits to measurement in experiments governed by
algorithms. Math. Struct. Comput. Sci. 20(06), 1019–1050 (2010)

13. Beggs, E., Costa, J.F., Tucker, J.V.: The impact of models of a physical oracle on computational
power. Math. Struct. Comput. Sci. 22(5), 853–879 (2012)

14. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as
oracles. Proceedings of the Royal Society, Series A (Mathematical,Physical and Engineering
Sciences), 464(2098), 2777–2801 (2008)

4 An Analogue-Digital Model of Computation … 115

15. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as
oracles. II. Upper bounds. Proceedings of the Royal Society, Series A (Mathematical,Physical
and Engineering Sciences) 465(2105), 1453–1465 (2009)

16. Beggs, E.J., Costa, J.F., Tucker, J.V.: Axiomatizing physical experiments as oracles to algo-
rithms. Philosophical Transactions of the Royal Society, Series A(Mathematical, Physical and
Engineering Sciences) 370(12), 3359–3384 (2012)

17. Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity I, vol. 11. Theoretical Computer
Science. Springer, Berlin (1990)

18. Balcázar, José L., Hermo, Montserrat: The structure of logarithmic advice complexity classes.
Theor. Comput. Sci. 207(1), 217–244 (1998)

19. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing limit.
Birkhäuser, Boston (1999)

20. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital Church-Turing thesis. Int.
J. Found. Comput. Sci. 25(4), 373–389 (2014)

	4 An Analogue-Digital Model of Computation: Turing Machines with Physical Oracles
	4.1 Introduction
	4.2 Physical Oracles
	4.2.1 Types of Physical Oracles
	4.2.2 The Smooth Scatter Experiment

	4.3 The Smooth Scatter Machine
	4.3.1 Communicating with the Smooth Scatter Experiment
	4.3.2 Measurement Algorithms

	4.4 Computational Power of the Smooth Scatter Machine
	4.4.1 Nonuniform Complexity Classes
	4.4.2 The Cantor Set mathcalC3
	4.4.3 Lower Bound for the Infinite Precision
	4.4.4 Smooth Scatter Machine as a Biased Coin
	4.4.5 Lower Bound for the Unbounded and Fixed Precisions
	4.4.6 Boundary Numbers
	4.4.7 Upper Bound for the Infinite Precision
	4.4.8 Probabilistic Query Trees
	4.4.9 Upper Bound for the Unbounded Precision
	4.4.10 Upper Bound for the Fixed Precision

	4.5 Upper Bound with Explicit Time Technique
	4.6 Conclusion
	4.6.1 The Computational Power of the Analogue-Digital Machine
	4.6.2 Open Problems

	References

