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Abstract. Most of the physical processes arising in nature are modeled by differential equations, either ordinary (example: the
spring/mass/damper system) or partial (example: heat diffusion). From the point of view of analog computability, the existence
of an effective way to obtain solutions (either exact or approximate) of these systems is essential.

A pioneering model of analog computation is the General Purpose Analog Computer (GPAC), introduced by Shannon [1] as
a model of the Differential Analyzer and improved by Pour-El [2], Lipshitz and Rubel [3], Costa and Graça [4] and others. The
GPAC is capable of manipulating real-valued data streams. Its power is known to be characterized by the class of differentially
algebraic functions, which includes the solutions of initial value problems for ordinary differential equations.

We address one of the limitations of this model, which is its fundamental inability to reason about functions of more than
one independent variable (the ‘time’ variable), as noted by Rubel [5]. In particular, the Shannon GPAC cannot be used to specify
solutions of partial differential equations. We extend the class of data types using networks with channels which carry information
on a general complete metric space X; here we take X = C(R), the class of continuous functions of one real (spatial) variable.

We consider the original modules in Shannon’s construction (constants, adders, multipliers, integrators) and we add a differ-
ential module which has one input and one output. For input u, it outputs the spatial derivative v(t) = ∂xu(t).

We then define an X-GPAC to be a network built with X-stream channels and the above-mentioned modules. This leads us to
a framework in which the specifications of such analog systems are given by fixed points of certain operators on continuous data
streams. Such a framework was considered by Tucker and Zucker [6]. We study the properties of these analog systems and their
associated operators, and present a characterization of the X-GPAC-generable functions which generalizes Shannon’s results.

Keywords: Analog computation, Computable analysis, Partial differential equations

1. Introduction
Analog computation, as conceived by Kelvin [7], Bush [8], and Hartree [9], is a form of experimental com-

putation with physical systems called analog devices or analog computers. Historically, data are represented by
measurable physical quantities, including lengths, shaft rotation, voltage, current, resistance, etc., and the analog
devices that process these representations are made from mechanical, electromechanical or electronic components
[10–12].

A general purpose analog computer (GPAC) was introduced by Shannon [1] as a model of Bush’s Differential
Analyzer [8]. Shannon discovered that a function can be generated by a GPAC if, and only if, it is differentially alge-
braic, but his proof was incomplete. A basic study was made by Pour-El [2] who gave some good characterizations
of the analog computable functions, focusing on the classic analog systems built from constants, adders, multipliers
and integrators. This yielded a stronger model and a new proof of the Shannon’s equivalence (and some new gaps,
corrected by Lipshitz and Rubel [3]). Using this characterization in terms of algebraic differential equations, Pour-El
showed that not all computable functions on the reals (in the sense of computable analysis) can be obtained with
these analog networks.

The theory of analog computing has also been developed by Moore with some very general mathematical models
[13]. These models, using schemes rather like Kleene’s [14], but with primitive recursion replaced by integration
and others added, define a hierarchy of functions on the reals, which contains the GPAC generable functions at its
lowest level, and uncomputable functions (in the sense of computable analysis) at higher levels. Graça and Costa
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[4] have presented an improved model of the GPAC, and shown this to be equivalent to the lowest level subclass of
Moore’s functions.

The contributions of Campagnolo [15] and Mycka [16] have also presented some fine results concerning analog
complexity classes. Finally, Pouly [17] studied in his PhD thesis the GPAC (among other models of computation)
from the point of view of complexity classes, and with Bournez and Graça [18] they have defined a multidimensional
GPAC (however, their model can be formulated as working under a single, ‘implicit time’ variable, as will be
discussed below).

The main objects of our study are analog networks or analog systems, [6, 19–21], whose main components are
described as follows:

Analog network = data + time + channels + modules.

We will model data as elements of a complete metric vector space X, such as a Banach or Fréchet space. We
will use a bounded interval of the real numbers as a continuous model of time T = [0,T ], where T denotes the final
time. Each channel carries a continuously differentiable stream, represented as a function u : T → X (this space is
denoted by C1(T, X)). Each module M has zero, one or more input channels, and must have a single output channel;
thus it can be specified by a (possibly partially defined) stream function

FM : Xk ×C1(T, X)` ⇀ C1(T, X).

In the case that X = R, we obtain the Shannon GPAC. We can use four types of modules to describe this model,
which are equivalent to the ones originally used by Shannon.

Definition 1.1 (Shannon modules). The Shannon modules are defined as follows:

• for each c ∈ R, there is a constant module with zero inputs and one output v, given by

v(t) = c;

• the adder module has two inputs u, v and one output w, given by

w(t) = u(t) + v(t);

• the multiplier module has two inputs u, v and one output w, given by

w(t) = u(t)v(t);

• the integrator module has an initial setting c, two inputs u, v and one output w, given by the Lebesgue-Stieltjes
integral

w(t) = c +

∫ t

0

u(s)v′(s)ds.

We can depict the four Shannon modules in box diagrams, as in Figure 1. We also introduce the symbol ‘ ’ to
denote the operator associated with the integrator module, in order to differentiate from the actual integral; we can
then write (c, u, v) = c +

∫
udv.

The continuous differentiability of the streams u, v ensures that the integrator module is well defined; indeed,
the Lebesgue-Stieltjes integral is well defined for continuous integrand and continuously differentiable integrator. In
other words, for any u, v ∈ C1([0,T ],R), the formula

∫ t
0

u(s)dv(s) defines a function in C1([0,T ],R).
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+

u
v

u + v
+ : C1([0,T ],R)×C1([0,T ],R)→ C1([0,T ],R)

+(u, v)(t) = u(t) + v(t)
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uv
× : C1([0,T ],R)×C1([0,T ],R)→ C1([0,T ],R)

×(u, v)(t) = u(t)v(t)
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c +
∫

udv
: R×C1([0,T ],R)×C1([0,T ],R)→ C1([0,T ],R)

(c, u, v)(t) = c +
∫ t
0

u(s)dv(s)

Figure 1. The four Shannon modules.

Definition 1.2 (Shannon GPAC). A Shannon general purpose analog computer (GPAC) is a network built with
the four Shannon modules (constants, adders, multipliers and integrators) and connections between their inputs and
outputs, with the following restrictions:

• the only connections allowed are between an output and an input;
• each input may be connected to either zero or one output;

Example 1.3. Of course, there can be cycles in a GPAC, for example, an output connected to an input of its own
module. This is called feedback and it is fundamental to develop an interesting theory. A simple example of a
Shannon GPAC can be seen in Figure 2. It has only one module, which is an integrator module, and only one
connection, between its output channel and one of its input channels.

c
a
b

a

Figure 2. A GPAC for computing the exponential function.

In his paper Shannon sets out to characterize the class of functions which can be generated by a GPAC and in
doing so he found an equivalence with the class of differentially algebraic functions.

Definition 1.4 (Differentially algebraic function). A function f : [0,T ]→ R is said to be differentially algebraic
if there exists k ∈ N and a polynomial P in k + 2 variables (and real coefficients) such that f ∈ Ck([0,T ]) and

P(t, f (t), f ′(t), . . . , f (k)(t)) = 0, for all t ∈ [0,T ]. (1)

An equation in the form (1) is called a differential algebraic equation.
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Theorem 1 (GPAC characterization theorem). Let u ∈ C1(T,R). Then u is generable by a GPAC if and only if u
is differentially algebraic.

The original proof of Theorem 1 can be found in [1], but that proof had flaws, which were corrected in the papers
[2], [3], [4].

In this paper we present a generalization of the Shannon GPAC for channels whose values lie in a general
complete metric vector space, i.e. a Banach or Fréchet space. This allows us to, for example, work with functions
of more than one variable. Our goal is to obtain an equivalence result similar to Theorem 1, with a larger class of
functions which include, in particular, solutions to well-known PDEs, such as the heat equation and wave equation.

The paper is organized as follows. In Section 2 we show some limitations to Shannon’s model and motivate our
transition to function data spaces. In Section 3 we present our new model, the X-GPAC, and define its semantics.
In Section 4 we introduce normal form systems which are used as an intermediate step towards the main result.
In Section 5 we introduce partial differential algebraic systems and prove our main result: a characterization of
X-GPAC-generable functions in terms of solutions to such systems. In Section 6 we summarize our findings and
propose directions for further research.

2. Limitations of the Shannon GPAC
The Shannon GPAC is regarded as an important and powerful method of analog computation, thanks largely to

Theorem 1. Despite this, many authors have pointed out some limitations to the model. For example, the gamma
function

Γ(t) =

∫ ∞
0

xt−1e−xdx

is not differentially algebraic, and so cannot be generated by a GPAC (this was noted by Shannon himself). However,
one could expect that, in a ‘sensible’ model of computability on continuous data, this function would be computable.
Indeed, the gamma function is effectively computable in the sense of computable analysis, a branch of analog com-
putability studied by Pour-El, Richards [22], Weihrauch [23], Grzegorczyk [24, 25], Lacombe [26–28], Tucker,
Zucker [6], among others. Some authors have addressed this limitation, and Graça [29] showed that the gamma
function can indeed be considered as GPAC computable if

...we redefine our notion of GPAC-computability in a manner that it matches more closely the philosophy un-
derlying computable analysis...

There is, however, another limitation with the Shannon GPAC, that appears to have been overlooked by Shannon,
Pour-El and others. It lies in the fact that the Shannon GPAC can fundamentally reason only about real-valued
functions of one independent variable t. Ironically, it was stated in [1] and [2] that the generalization to more than
one independent variable only requires an obvious modification, but this is by no means the case. In fact, it is hard
to conceive a realistic physical interpretation for a formalism involving two (or more) independent “time" variables.

We briefly remark that this limitation was pointed out in [5]. Rubel says

For one thing, the GPAC works in one (“time”) variable only, while the EAC [Extended Analog Computer]
produces functions of any finite number of real variables.

To address this problem, Rubel defined what he called an Extended Analog Computer (EAC).1 However, Rubel
stressed that

... the EAC is a conceptual computer - the extent to which it can be realized by actual physical, chemical, or
biological devices or systems remains to be investigated.

1An implementation of the EAC (or at least, of some of its components) has been achieved with the work of Mills, [30].
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A different attempt to deal with this problem was recently proposed by Bournez, Graça and Pouly [17, 18]. In
their approach, channels can carry a n-variable real-valued data stream of type Rn → R. In this way, they were able
to introduce functions with multiple variables by extending the input space; for example, replacing C1([0,T ],R)
with C1([0, X1]× . . .× [0, Xn],R). This seems to be a very natural way of generalizing the Shannon GPAC.

Despite the fact that [18, Definition 14] uses Jacobians (which imply independent variables), we would like to
point out that their model can still be re-expressed in terms of only one (implicit “time”) variable. This idea is present
in [18, Examples 12 and 13]. It also occurs in [18, Remark 15], where it is explained that the value of a generable
function y at a given point x can be obtained by solving an initial value problem in one independent variable (this is
done by introducing a smooth curve γ from x0, an initial point, to x).

In this paper we adopt an approach which in some way is orthogonal to the one in [18]; our idea is to extend the
output space, that is, replacing C1([0,T ],R) with C1([0,T ], X), where X is a metric vector space. For example, we
can think of X as the space of continuous real-valued functions on a bounded domain Ω ⊂ Rn, that is, X = C(Ω,R).
In this way, our channels will now carry X-valued streams of data u : [0,T ]→ X, which correspond to functions of
n + 1 real variables, under the uncurrying

[0,T ]→ (Ω→ R) ' [0,T ]× Ω→ R.

It is evident that one of the variables, namely the “time” variable, plays a different role from the others. Our
approach is, to some extent, motivated by the theory of Partial Differential Equations, in which some fundamental
problems (such as the Heat Equation, Wave Equation and Schrödinger Equation) can be expressed as time evolution
problems in a function space.

3. The X-GPAC
As discussed in the previous section we decide to change our data space X to become a function space. In this

paper we shall thus take X to be the space of continuous real functions of a real variable,

X = C(R).

We observe that X is a Fréchet space, with the family of pseudonorms

‖g‖M = sup
|x|6M

|g(x)|. (2)

We also consider the subspace D = C1(R) of continuously differentiable functions. This is also a Fréchet space,
with the family of pseudonorms

‖g‖M = sup
|x|6M

|g(x)|+ sup
|x|6M

|∂xg(x)|. (3)

Note that D is a linear and dense (under the X-pseudonorms) subspace of X.
We can define a differential operator as

∂x : X ⇀ X
u(x) 7→ ∂xu(x).

(4)

We establish some important properties of the differential operator:

• ∂x is a partial function from X to X, with domain dom(∂x) = D;
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• ∂x is linear, that is, for all u, v ∈ D and α, β ∈ R we have ∂x(αu + βv) = α∂xu + β∂xv;
• ∂x has dense domain, that is, D is dense in X (under the topology in X induced by its pseudonorms);
• ∂x has a closed graph, that is, if (un) is a sequence in D with un → u and ∂xun → v, then u ∈ D and ∂xu = v;

We include here the definition of closed operator, which will play a role in our notion of well-posedness.

Definition 3.1. [Closed operator] Let X and Y be metric spaces and A : X ⇀ Y a partial function with domain
D(A). We say that A is closed if its graph is a closed subset of X × Y; in other words, if for all sequences (xn) in X,
x ∈ X and y ∈ Y we have

if

 xn → x as n→∞,
xn ∈ D(A) for all n,
Axn → y as n→∞;

 then x ∈ D(A) and Ax = y.

Hence ∂x is a closed operator on X. We remind the reader that closedness is, in general, a weaker property than
continuity. We also remark that both are equivalent in the space of total linear operators between Banach spaces
(this basic result is known as the Closed Graph Theorem).

Example 3.2. Consider the sequence an(x) = 1
n sin(n2x), which converges in X = C(R) (that is, in the

pseudonorms of X) to 0; for any M, ‖an‖M = 1
n → 0. Moreover, each an ∈ D, and ∂xan(x) = n cos(n2x). Note that,

for any M, ‖a′n‖M = n, meaning that the suprema of a′n grow without bounds. Thus ∂x is a discontinuous operator.

Figure 3. Plot of an(x) (left) and a′n(x) (right) for n = 3 (red, bold), n = 5 (green, dashed), n = 10 (blue, dotted).

We consider X-streams as elements in the space C1([0,T ], X) of X-valued, continuously differentiable functions,
for some T > 0. By continuous differentiability we mean that, for u ∈ C1([0,T ], X), the expression

v(t) = lim
h→0

u(t + h)− u(t)
h

is well-defined for all t ∈ [0,T ] and v is a continuous function of time.
In this way, C1([0,T ], X) is a Fréchet space under the family of pseudonorms

‖u‖T,M = sup
06t6T

‖u(t)‖M + sup
06t6T

‖u′(t)‖M;

note that in the right-hand side we consider pseudonorms of X.
The Shannon modules are easily defined in this new setting, and we introduce a new module based on the

differential operator.
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Definition 3.3. The differential module has one input u and one output v, given by

v(t) = ∂xu(t).

∂x
u ∂xu

∂x : C1([0,T ], X) ⇀ C1([0,T ], X)

∂x(u)(t) = ∂xu(t)

Figure 4. The differential module.

We remark that the differential module ∂x : C1([0,T ], X) ⇀ C1([0,T ], X) is partially defined and its domain is
C1([0,T ],D). As mentioned above, ∂x is a closed but discontinuous operator.

With the above considerations in mind we can arrive at the desired generalization of the Shannon GPAC.

Definition 3.4 (X-GPAC). An X-valued general purpose analog computer (X-GPAC) is a network built with the
five X-modules (constants, adders, multipliers, integrators and differentials) and X-channels connecting their inputs
and outputs, with the following restrictions:

• the only connections allowed are between an output and an input;
• each input may be connected to either zero or one output;

Our next goal is to assign semantics to an X-GPAC, that is, determine how to define generable functions. For
that end, we introduce the notion of induced operator.

Definition 3.5 (X-GPAC induced operator). Let G be an X-GPAC;

• the constant space of G is the cartesian product of the spaces associated with all the initial settings occuring
in any integrator. The constant space can be written as C = Xp, for some p > 0;

• the proper input space of G is the cartesian product of the spaces associated with all the unconnected input
channels. The input space can be written as I = C1([0,T ], X)q, for some q > 0;

• the proper output space of G is the cartesian product of the spaces associated with all the unconnected output
channels. The output space can be written as O = C1([0,T ], X)m, for some m > 0;

• the mixed space of G is the cartesian product of the spaces associated with all the channels which connect
some input with some output. The mixed space can be written asM = C1([0,T ], X)r, for some r > 0;

• the induced operator of G is the function

F : C × I ×M⇀M×O, F(g,uI ,uM) = (ũM ,uO), (5)

where g is an X-valued vector and each u is a vector of X-channels. Moreover, each of the components in the
codomain of F is given by the module with which it is associated. In other words, for each ui component of
either ũM or uO,

∗ if ui is associated with the output channel of a constant, then ui = g, where g is the constant associated with
that module;
∗ if ui is associated with the output channel of an adder, then ui = +(v1, v2), where v1 and v2 are the

components in uI or uM associated with the input channels of that module;
∗ if ui is associated with the output channel of a multiplier, then ui = ×(v1, v2), where v1 and v2 are the

components in uI or uM associated with the input channels of that module;
∗ if ui is associated with the output channel of an integrator, then ui = (g, v1, v2), where v1, v2 are the

components in uI or uM associated with the input channels of that module, and g is the component in g
associated with the initial setting of that module;
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∗ if ui is associated with the output channel of a differential, then ui = ∂x(v), where v is the component in uI

or uM associated with the input channel of that module.

We remark that F may be partially defined; for each differential module occuring in G, there is a component
of I × M which is restricted to C1([0,T ],D). Hence, to describe the domain of F we must take into special
consideration those channels which are inputs of differential modules.

Example 3.6. To achieve a better understanding of Definition 3.5 we provide an example in Figure 5 of an X-GPAC
with one constant and four X-channels.

∂x ∂x

g
u3

u1

u2 u3 u4

Figure 5. An X-GPAC implementing a transport equation.

In this example there is one constant (associated with the integrator module), one input channel (labeled u1), two
mixed channels (labeled u2 and u3) and one output channel (labeled u4). The induced operator simply formalizes
the input/output relation between these channels,

C = X, I = C1(T, X), M = C1(T, X)2, O = C1(T, X);

F : C × I ×M⇀M×O

F(g, u1, u2, u3) =

(
g +

∫
u3du1, ∂xu2, ∂xu3

)
= (ũ2, ũ3, u4).

Definition 3.4 gives a lot of freedom in the construction of X-GPACs and it turns out that not all of the possible
networks lead to ‘valid and interesting’ X-GPACs (similarly to the fact that not all ASCII expressions lead to ‘valid
and interesting’ computer programs). Thus we present a well-posedness-like notion to restrict the space of X-GPACs
that we wish to consider.

Definition 3.7 (Quasi-well-posedness of X-GPAC). Let G be an X-GPAC and F : C × I ×M ⇀M×O be its
induced operator. Let U ⊆ C × I. We say that G is quasi-well-posed on U if

• (existence) for every (g,uI) ∈ U, there exists (uM ,uO) ∈M×O such that

F(g,uI ,uM) = (uM ,uO); (6)

• (uniqueness) for every (g,uI) ∈ U, the tuple (uM ,uO) such that Eq. (6) holds is unique;
• (closedness) the map (g,uI) 7→ (uM ,uO), with domain U and codomainM×O, given as the unique solution

of Eq. (6), defines a closed operator.

We may refer to Eq. (6) as the fixed point equation; note that the mixed variables uM are the only ones that
appear in both sides of the equation.

If we required continuity instead of closedness (that is, if we required U to be an open set, and the map (g,uI) 7→
(uM ,uO) to be continuous), then our definition would match the three usual principles for well-posedness - existence,
uniqueness, continuity of solutions - as presented by Hadamard [31] (see also [32]). Instead, we choose to use
closedness (and a non-necessarily open domain U), which is a strictly weaker criterion, hence the term ‘quasi-
well-posed’. The reason for choosing closedness is the presence of the differential module, which defines a closed
function of type X ⇀ X which is not continuous.
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Admittedly, some could argue that a discontinuous operation is of little interest in the study of computable
functions of continuous spaces. We must then make the important remark that continuity can be obtained from
closedness (and thus well-posedness can be obtained by quasi-well-posedness) if we define a finer topology in the
domain, induced by graph (pseudo)norms. To be precise, we recall the following basic result in functional analysis.

Proposition 3.8 ([33, p. 240, Exercise 8.7]). Let (X, ‖ ·‖X) and (Y, ‖ ·‖Y) be Banach spaces and A : X ⇀ Y a closed
linear operator with domain D(A). Then

• (D(A), ‖ · ‖G(A)) is a Banach space with the graph norm given by

‖x‖G(A) = ‖x‖X + ‖Ax‖Y ;

• the restriction A : D(A)→ Y is a continuous linear map between Banach spaces.

Proof. We first prove that ‖ · ‖G(A) defines a norm:

• if x ∈ D(A), then ‖x‖G(A) = 0 iff ‖x‖X + ‖Ax‖Y = 0 iff ‖x‖X = 0 iff x = 0;
• if x ∈ D(A) and α ∈ R, then ‖αx‖G(A) = ‖αx‖X + ‖A(αx)‖Y = |α|‖x‖X + |α|‖Ax‖Y = |α|‖x‖G(A);
• if x, y ∈ D(A), then ‖x + y‖G(A) = ‖x + y‖X + ‖A(x + y)‖Y 6 ‖x‖X + ‖y‖X + ‖Ax‖Y + ‖Ay‖Y = ‖x‖G(A) +
‖y‖G(A).

Next we prove that D(A) is complete. Let {xn}n be a Cauchy sequence in D(A), so that ‖xN+k − xN‖G(A) =
‖xN+k− xN‖X + ‖A(xN+k− xN)‖Y vanishes (uniformly on k) as N →∞. In particular, we must have that {xn}n is a
Cauchy sequence in X (under the X-norm) and {Axn} is a Cauchy sequence in Y . Since X and Y are Banach spaces
it follows that there exist x ∈ X and y ∈ Y such that xn → x and Axn → y. By closedness of A we conclude that
x ∈ D(A) and Ax = y, so that xn → x in D(A) (under the graph norm). Thus (D(A), ‖ · ‖G(A)) is a Banach space.

Finally we prove that A : D(A) → Y is continuous. Let {xn}n be a sequence in D(A) and x ∈ D(A) such that
xn → x in D(A). Then ‖xn− x‖G(A) → 0, which implies ‖xn− x‖X → 0 and ‖A(xn− x)‖Y → 0, so that, in particular,
Axn → Ax in Y . �

Proposition 3.9. Let X and Y be Fréchet spaces with families of pseudonorms {‖ · ‖X,n}n and {‖ · ‖Y,m}m and
A : X ⇀ Y a closed linear operator with domain D(A). Consider the Fréchet space D(A) with graph pseudonorms
given by

‖x‖G(A),n,m = ‖x‖X,n + ‖Ax‖Y,m.

Then the restriction A : D(A)→ Y is a continuous linear map between Fréchet spaces.

Proof. The proof is similar to that of Proposition 3.8. �

This finer topology is usually equivalent to a topology of interest in the domain space. For example, consider
the differential operator ∂x : C(R) ⇀ C(R) given by Eq. (4), which is closed but not continuous under the usual
family of pseudonorms in C(R). However, it becomes a continuous operator if we restrict it to the space C1(R) and
consider the graph pseudonorms

‖ f‖n,m = ‖ f‖n + ‖∂x f‖m = sup
|x|6n
| f (x)|+ sup

|x|6m
|∂x f (x)|,

under whose topology C1(R) is a Fréchet space. Moreover, this family of pseudonorms can be seen to be equivalent
to the usual family of pseudonorms in C1(R) given by Eq. (3).
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We shall then adopt the notion of quasi-well-posedness in this paper, while reminding ourselves that, if needed,
we can in principle express our results in terms of well-posed operators.

The final step in this section is to assign semantics to X-GPACs, that is, to define the notion of X-GPAC-generable
functions.

Definition 3.10 (Semantics of X-GPAC).

(a) Let G be an X-GPAC and F : C × I ×M⇀M×O be its induced operator. Let U ⊆ C × I such that G is
quasi-well-posed on U. We define the specification of G as the (partial) function

Φ : C × I ⇀M×O;
Φ(g,uI) = (uM ,uO),

whose domain is U and where (uM ,uO) is given by Eq. (6). We also say that G generates Φ on U = dom(Φ).
(b) A function Φ : C × I ⇀M×O is X-GPAC-generable if there exists an X-GPAC G such that G is quasi-

well-posed on the domain of Φ and Φ is the specification of G.

We remark that every integrator in an X-GPAC has an initial setting (which is one of the constants in the space
C) and an output (which is one of the mixed/output channels inM×O). Since we can define an injective map from
the initial settings to the mixed/output channels, we have the following basic property.

Proposition 3.11. If Φ : C × I ⇀M×O is X-GPAC-generable, then dim(C) 6 dim(M) + dim(O).

4. Normal form systems
We have defined in the previous section the class of X-GPAC-generable functions, which constitute our space of

interest. We can state our objective as follows.

Problem. Characterize the class of X-GPAC-generable functions in terms of a suitable generalization of the class
of differential algebraic equations.

In the study of the GPAC, an intermediate step is usually taken in the transition from generable functions to
differential algebraic equations. For example, in [1] a system of equations called a fundamental solvability condition
was considered (Theorem I in that paper). Also in [2] a similar system of equations is used in the actual definition
of GPAC generable functions (Definition 10 in that paper) instead of the usual definition involving analog networks.
We shall generalize that notion into our framework, and refer to the resulting objects as normal form systems.

Definition 4.1 (Normal form equation). Let N ∈ N. A normal form equation on the N variables y1, . . . , yN is an
equation of the form

N∑
i=0

N∑
j=1

bi jyiy′j +

N∑
j=1

c j∂xy′j = 0, (7)

under the conventions that y0 ≡ 1 and bi j, c j are real numbers.

We remark that y0 ≡ 1 is not a variable, just a notational convenience to obtain a more compact equation. We
also note that index i starts at 0 whereas index j starts at 1; thus Eq. (7) will not include the term y′0 (which would
be equal to 0, and therefore irrelevant).

We also alert the reader to our choice of terms of the form ∂xy′j in the second summation in Eq. (7), with
derivatives both in time and space. One could think that a similar definition of normal form equations with terms
of the form ∂xy j would be more ‘natural’. In fact, both definitions would be equivalent, and we could move from
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the former to the latter by adding extra variables (namely, one would have to add the extra variable t that specifies
“linear time”, t(t, x) = t). The main reason for choosing Eq. (7) as our template for normal form equations is of
practicality, as it makes the proof of Lemma 4.7 (below) much simpler.

Here are some examples of normal form equations:

y′1 = y1y′2;

y′1 = y′2 + y′3;

y′1 = ∂xy′1.

Definition 4.2 (Normal form system over X). Let K, L ∈ N and N = K + L. A normal form system (NFS) on the
N variables y1, . . . , yN is a system of the form

N∑
i=0

N∑
j=1

bi j`yiy′j +

N∑
j=1

c j`∂xy′j = 0 , for ` = 1, . . . , L;

yK+`(0) = g` , for ` = 1, . . . , L,

(8)

under the conventions that y0 ≡ 1, bi j`, c j` are real numbers and g` ∈ X.
We say that g1, . . . , gL are the (initial) constants, y1, . . . , yK are the inputs or independent variables and

yK+1 . . . , yK+L are the outputs or dependent variables.

We briefly remark that, in a well-posed system of equations, the number of equations and the number of un-
knowns must be the same. In the previous definition, these correspond to the outputs yK+1, . . . , yK+L; hence there
must be L equations.

Definition 4.3 (Quasi-well-posedness of NFS). Let K, L ∈ N and N = K + L. Let N be an NFS given by Eq. (8)
with K inputs and L outputs and consider the spaces

C = XL, I = C1([0,T ], X)K , O = C1([0,T ], X)L.

Let U ⊆ C × I. We say that N is quasi-well-posed on U if

• (existence) for every (g, yI) ∈ U, there exists yO ∈ O such that Eq. (8) holds for (g, yI , yO), where g =
(g1, . . . , gL), yI = (y1, . . . , yK), yO = (yK+1, . . . , yK+L);

• (uniqueness) for every (g, yI) ∈ U, the tuple yO such that Eq. (8) holds is unique;
• (closedness) the map (g, yI) 7→ yO, with domain U and codomain O, given as the unique solution of Eq. (8),

defines a closed operator.

Definition 4.4 (Semantics of NFS).

(a) Let K, L ∈ N and N = K + L. Let N be an NFS with K inputs and L outputs. Let U ⊆ C × I such that N
is quasi-well-posed on U. We define the solution of N as the (partial) function

Φ : C × I ⇀ O;
Φ(g, yI) = yO,

whose domain is U and where yO is given by Eq. (8). We also say that N generates Φ on U = dom(Φ).
(b) A function Φ : C × I ⇀ O is NFS-generable if there exists an NFS N such that N is quasi-well-posed on

the domain of Φ and Φ is the solution of N .

We remark that in an NFS, there is a bijection between the initial conditions and the outputs; thus we have the
following basic property (cf. Proposition 3.11).
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Proposition 4.5. If Φ : C × I ⇀ O is NFS-generable, then dim(C) = dim(O).

We have established semantics for NFS, and the next step is to show that every X-GPAC-generable function is a
projection of an NFS-generable function, as in the following definition.

Definition 4.6 (Function projection). Let F : A ⇀ B and F′ : A× A′ ⇀ B× B′, and let

G(F) = {(a, b) : a ∈ dom(F) and F(a) = b} ⊆ A× B,
G(F′) = {(a, a′, b, b′) : (a, a′) ∈ dom(F′) and F′(a, a′) = (b, b′)} ⊆ A× A′ × B× B′

be their graphs. We say that F is a projection of F′ if for all (a, b) ∈ A× B,

• if (a, b) 6∈ G(F) then for all a′ ∈ A′, b′ ∈ B′ we have (a, a′, b, b′) 6∈ G(F′);
• if (a, b) ∈ G(F) then there exist unique a′ ∈ A′ and b′ ∈ B′ such that (a, a′, b, b′) ∈ G(F′).

We briefly remark that the notion of projection induces a partial order in the class of functions. We have the
following lemma.

Lemma 4.7 (X-GPAC-generable implies NFS-generable). Let ΦG : CG×IG ⇀MG×OG be X-GPAC-generable
with domain UG ⊆ CG × IG. Then there exists ΦN : CN × IN ⇀ ON which is NFS-generable with domain UN ⊆
CN × IN with the following properties:

• dim(IN) = dim(IG) and dim(ON) = dim(MG) + dim(OG);
• for every (g,uI) ∈ CG × IG such that (g,uI) 6∈ UG, we have (g, g∗,uI) 6∈ UN for any X-vector g∗;
• for every (g,uI) ∈ CG × IG such that (g,uI) ∈ UG, there exists a unique X-vector g∗ such that (g, g∗,uI) ∈

UN; moreover, we have

ΦG(g,uI) = ΦN(g, g∗,uI).

In other words, ΦG is a projection of ΦN .

Proof. Let ΦG : CG × IG ⇀ MG × OG be X-GPAC-generable with domain UG ⊆ CG × IG. Denote by G the
X-GPAC that generates ΦG and F : CG × IG ×MG ⇀MG ×OG the induced operator.

The important idea of the proof is understanding how to write the equational specification of F as an NFS. We
apply the following conversions, for every u appearing inMG ×OG:

u = g  

{
u′ = 0
u(0) = g

u = v + w  

{
u′ = v′ + w′

u(0) = v(0) + w(0)

u = v · w  

{
u′ = vw′ + wv′

u(0) = v(0) · w(0)

u = g +
∫

vdw 
{

u′ = vw′

u(0) = g

u = ∂xv  

{
u′ = ∂xv′

u(0) = ∂xv(0)

We observe that the input/output relation of each module of G can be written as a normal form equation coupled
with an initial condition. Therefore, we can construct an NFS, N , from G, including an initial condition for each
channel.
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However, the constant space CG appearing in the specification of G only takes into account those constants
appearing as initial settings of integrators. In order to define the solution mapping, ΦN , we need to extend the
constant space to include the initial settings of the other types of operations, as they appear in the list of conversions
above.

Let IN = C1([0,T ], X)K and ON = C1([0,T ], X)L, where K, L are the number of inputs, outputs of N . By
construction each input of N corresponds to an input channel of G and each output of N corresponds to either a
mixed or output channel of G. Therefore, we have that IN = IG and ON =MG ×OG, so that dim(IN) = dim(IG)
and dim(ON) = dim(MG) + dim(OG), which proves the first bullet.

The next step is to find a suitable UN for the domain of ΦN . By quasi-well-posedness of G on UG, we know that,
for every (g,uI) ∈ UG, there exists a unique (uM ,uO) ∈ MG ×OG such that F(g,uI ,uM) = (uM ,uO). Thus, if we
define (g, g∗) as the vector of initial conditions2 of (uM ,uO), we can infer that g∗ depends uniquely on (uM ,uO),
and thus it depends uniquely on (g,uI). With this in mind we define

UN = {(g, g∗,uI) : (g,uI) ∈ UG and (g, g∗) = ΦG(g,uI) �t=0};

ΦN(g, g∗,uI) =

{
ΦG(g,uI) if (g, g∗,uI) ∈ UN ;
undefined otherwise.

By the above construction, UN and ΦN satisfy the second and third bullets, and all is left is to show that ΦN

is the solution of N on UN . By quasi-well-posedness of G on UG, it is clear that for (g, g∗,uI) ∈ UN , the tuple
(uM ,uO) ∈ ON that solves the NFS exists, is unique and given by ΦG(g,uI).

To prove closedness of ΦN , consider a sequence (gn, g∗n ,uI
n) ∈ UN such that

(gn, g∗n ,u
I
n)→ (g, g∗,uI) and ΦN(gn, g∗n ,u

I
n)→ (uM ,uO);

then we have

(gn,uI
n)→ (g,uI) and ΦG(gn,uI

n) = ΦN(gn, g∗n ,u
I
n)→ (uM ,uO).

By closedness of ΦG, we have

(g,uI) ∈ UN and ΦG(g,uI) = (uM ,uO);

Now define (uM
n ,uO

n ) = ΦG(gn,uI
n), so that

(gn, g∗n) = ΦG(gn,uI
n) �t=0= (uM

n ,u
O
n ) �t=0;

by taking limits, we conclude that (g, g∗) = (uM ,uO) �t=0. Thus,

(g, g∗,uI) ∈ UN and ΦN(g, g∗,uI) = (uM ,uO),

which concludes the proof. �

Example 4.8. In order to better understand the construction in the proof of Lemma 4.7, we apply it to the X-GPAC
seen on Example 3.6 (repeated in Figure 6).

2Possibly after reordering the mixed and output channels; this can be done without loss of generality.
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∂x ∂x

g
u3

u1

u2 u3 u4

Figure 6. An X-GPAC implementing a transport equation.

It can be checked that this X-GPAC is well-posed for u1 ∈ C1([0,T ], X) and g ∈ C2(R). It generates the function
ΦG : X1 ×C1([0,T ], X)1 ⇀ C1([0,T ], X)3, given by ΦG(g, u1) = (u2, u3, u4), where

u2(t, x) = g(x + u1(t)− u1(0)), u3(t, x) = g′(x + u1(t)− u1(0)), u4(t, x) = g′′(x + u1(t)− u1(0));

if u1 is linear time, u1(t, x) = t, this has the simpler form

u2(t, x) = g(x + t), u3(t, x) = g′(x + t), u4(t, x) = g′′(x + t).

Let us construct an NFS with solution ΦN such that ΦG is a projection of ΦN . The X-GPAC generates the
equational relations

u2 = g +

∫ t

0

u3du1, u3 = ∂xu2, u4 = ∂xu3; (9)

which can be converted into an NFS with three constants, one input and three outputs,

u′2 = u3u′1, u′3 = ∂xu′2, u′4 = ∂xu′3,
u2(0) = g, u3(0) = g3, u4(0) = g4.

(10)

We can see that the constant space of the NFS has three parameters g, g3 and g4, which is two more than in
the constant space of the X-GPAC. Therefore any solution of the NFS must be of type X3 × C1([0,T ], X)1 ⇀
C1([0,T ], X)3.

We also see that if (g, u1, u2, u3, u4) produces a specification of the X-GPAC, then (u1, u2, u3, u4) produces a
solution of the NFS for the initial conditions g, g3 = u3(0), g4 = u4(0); in other words, the NFS generates a
function ΦN such that

if ΦG(g, u1) = (u2, u3, u4), then ΦN(g, u3(0), u4(0), u1) = (u2, u3, u4).

Thus ΦG is a projection of ΦN , as expected.

5. Partial differential algebraic equations
In this section we will define partial differential algebraic systems, which will prove to be the correct general-

ization of differentially algebraic equations for our purposes, as will be made clear from our main result (Theorem
2).

Definition 5.1 (Partial differential algebraic equation). Let N ∈ N. A partial differential algebraic equation
(PDAE) on the N variables y1, . . . , yN is an equation of the form

P(t, y1, . . . , yN , . . . , ∂
α1
x y(β1)1 , . . . , ∂αN

x y(βN)
N ) = 0, (11)

where P is a polynomial in y1, . . . , yN and some of their derivatives, with real coefficients.
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Definition 5.2 (System of PDAEs). Let K, L ∈ N and N = K + L. A partial differential algebraic system (PDAS),
also referred to as system of PDAEs, on the N variables y1, . . . , yN is a system of the form{

P`(t, y1, . . . , yN , . . . , ∂
α1
x y(β1)1 , . . . , ∂αN

x y(βN)
N ) = 0 , for 1 6 ` 6 L;

y(β)` (0) = g`,β , for K + 1 6 ` 6 K + L and 0 6 β < β`,
(12)

under the conventions that P` are polynomials in y1, . . . , yN and some of their derivatives, with real coefficients, and
g`,β ∈ X.

We say that y1, . . . , yK are the inputs or independent variables and yK+1 . . . , yK+L are the outputs or dependent
variables.

We provide a short explanation on the notation in the previous definition. Each variable yi can appear in the
polynomial expressions with space derivatives of order at most αi and time derivatives of order at most βi; for each
y` which is an output, we need to provide β` initial conditions; they correspond to the values of y` and its space
derivatives y(β)` of order up to β` − 1 at time t = 0,

y`(0), y′`(0), . . . , y(β`−1)` (0).

This is a standard assumption in the theory of PDEs and is a necessary condition for well-posedness (with fewer
initial conditions, the system is underdetermined; with more initial conditions, the system is overdetermined).

Definition 5.3 (Quasi-well-posedness of PDAS). Let L,K ∈ N and N = L + K. Let P be a PDAS given by Eq.
(12) with K inputs, L outputs and J initial conditions and consider the spaces

C = XJ , I = C1([0,T ], X)K , O = C1([0,T ], X)L.

Let U ⊆ C × I. We say that P is quasi-well-posed on U if

• (existence) for every (g, yI) ∈ U, there exists yO ∈ O such that Eq. (12) holds for (g, yI , yO), where g is the
vector of initial conditions, yI = (y1, . . . , yK), yO = (yK+1, . . . , yK+L);

• (uniqueness) for every (g, yI) ∈ U, the tuple yO such that Eq. (12) holds is unique;
• (closedness) the map (g, yI) 7→ yO, with domain U and codomainO, given as the unique solution of Eq. (12),

defines a closed operator.

Definition 5.4 (Semantics of PDAS).

(a) Let K, L ∈ N and N = K + L. Let P be a PDAS with K inputs and L outputs. Let U ⊆ C × I such that P is
quasi-well-posed on U. We define the solution of P as the (partial) function

Φ : C × I ⇀ O;
Φ(g, yI) = yO,

whose domain is U and where yO is given by Eq. (12). We also say that P generates Φ on U = dom(Φ).
(b) A function Φ : C × I ⇀ O is PDAS-generable if there exists a PDAS P such that P is quasi-well-posed on

the domain of Φ and Φ is the solution of P .

We remark that in a PDAS, there is a correspondence between the outputs and a subset of the initial conditions
(namely, those for which β = 0), and so we have the following basic property (cf. Propositions 3.11 and 4.5).

Proposition 5.5. If Φ : C × I ⇀ O is PDAS-generable, then dim(O) 6 dim(C).
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X-GPAC

NFSPDAS

Figure 7. Main results.

Our next two results will complete the cycle in Figure 7, showing that generable functions in each mode can be
seen as projections of generable functions in the other modes.

Lemma 5.6 (NFS-generable implies PDAS-generable). Any NFS-generable function is PDAS-generable.

Proof. Any normal form equation is a partial differential algebraic equation where the variables occur with time
(and space) derivatives of order at most 1; thus the initial conditions in an NFS are exactly those appearing as initial
conditions in the corresponding PDAS; in other words, every NFS is a PDAS. �

Lemma 5.7 (PDAS-generable implies X-GPAC-generable). Let ΦP : CP × IP ⇀ OP be PDAS-generable with
domain UP ⊆ CP × IP. Then there exists ΦG : CG × IG ⇀ MG × OG which is X-GPAC-generable with domain
UG ⊆ CG × IG with the following properties:

• dim(IG) = dim(IP) + 1 and dim(CG) > dim(CP);
• for every (g, yI) ∈ CP × IP such that (g, yI) 6∈ UP, we have (g, g∗, yI , y) 6∈ UG for any X-vector g∗ and any

X-stream y;
• for every (g, yI) ∈ CP×IP such that (g, yI) ∈ UP, there exists a unique X-vector g∗ and X-stream y such that

(g, g∗, yI , y) ∈ UG; moreover, there exists a unique X-stream vector y∗ such that

ΦG(g, g∗, yI , y) = (y∗,ΦP(g, yI)).

In other words, ΦP is a projection of ΦG.

The equality and inequality in the first bullet will be explained below.

Proof. Let ΦP : CP × IP ⇀ OP be PDAS-generable with domain UP ⊆ CP × IP. Denote by P the PDAS that
generates ΦP.

The important idea of the proof is understanding how to write partial differential algebraic equations with X-
GPAC modules. We start with channels for all variables y1, . . . , yN . To obtain derivatives in time, we include modules
and connections as in Figure 8.

+ + ×
−1yi v1 v2 v3 v4

t

gi,0

Figure 8. An X-GPAC for computing time derivatives.

Note that the channels on Figure 8 must obey the system


v1 = yi + v4;
v2 = v1 + v2;
v3 = gi,0 +

∫
v2dt;

v4 = −v3;
yi(0) = gi,0;

⇒


v1 = 0;
v2 = y′i ;
v3 = yi;
v4 = −yi;
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so that we obtain y′i in the channel labeled v2. Observe that we must include an initial setting (in the above case,
the initial value yi(0)) every time we need to take a time derivative. We also need to include the linear channel
t ∈ C1([0,T ], X) given by the map (t, x) 7→ t. By composing several of these modules, we can get all time derivatives
that appear in P , that is, we obtain y(β)i for i = 1, . . . ,N and β = 0, . . . , βi − 1.

Next, by successive applications of the differential module (see Figure 9) we obtain all the partial derivatives
appearing in P , which are of the form ∂αx y(β)i for i = 1, . . . ,N, α = 0, . . . , αi and β = 0, . . . , βi − 1.

∂x ∂x ∂x· · ·y(β)i ∂xy(β)i ∂αx y(β)i

Figure 9. An X-GPAC for computing spatial derivatives.

Next, we compute the polynomial expressions P` from the partial derivative terms using constants, multipliers
and adders. Any term appearing in the polynomials P` is of the form atd1

1 · · · tdn
n , where a ∈ R (obtainable from a

constant module), each ti is either t (obtainable using the linear input t) or some ∂αx y(β)i , and thus can be obtained by
a constant module and a sequence of multipliers. Each polynomial P` is a finite sum of such terms, and thus can be
obtained by a sequence of adders.

Finally, to enforce the relation P`(t, y1, . . . , yN , . . . , ∂
α1
x y(β1)1 , . . . , ∂αN

x y(βN)
N ) = 0, we add yK+` to both sides of the

equation and include an adder and feedback loop, as shown on Figure 10. We can then loop the channel labeled yK+`

back to the start, enforcing it to be a mixed channel.

+P`

yK+`

Figure 10. Feedback loop implementing P` = 0.

Figure 11 illustrates the several steps of our construction, which results in an X-GPAC G. We must next address
the underlying spaces of G. The constant space is constructed with the initial settings of integrators, which only
appear in the phase where we build time derivatives. For every original variable yi which appears in P with time
derivatives of order up to βi, we have included the βi initial settings gi,β = y(β)i (0), 0 6 β < βi. Hence, the constant
space of G, denoted by CG, is an extension of CP, which only takes into account the initial settings associated with
the output variables; therefore dim(CG) > dim(CP).

time
derivatives differentials

constants,
multipliers,

adders
+

{gi,β}
{yi}

{yK+`}
t

{y(β)i } {∂αx y(β)i } {P`}
{yK+`}

Figure 11. Construction of X-GPAC from a PDAS.

In regards to the input space, the original input variables yi, i = 1, . . . , L appear in G as proper input channels.
The only other proper input channel is the linear input t, which can be seen as an ‘explicit time’ inserted into the
system. In this way, dim(IG) = dim(IP) + 1, which proves the first bullet.

Observe that the original output variables yK+`, ` = 1, . . . , L, all appear in G as mixed channels because of the
feedback loop that ensures P` = 0. There are (potentially many) other mixed and proper output channels in G, which
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carry the value of either partial derivatives ∂αx y(β)i , multiplying terms atdi
i · · · tdn

n or sums of multiplying terms; hence
dim(MG ×OG) > dim(OP).

The next step is to find a suitable UG for the domain of ΦG. By quasi-well-posedness of P , we know that, for
every (g, yI) ∈ UP, there exists a unique yO ∈ OP that solves P . Thus, if we define (g∗, g) as the vector of initial
conditions of all time derivatives of the input and output variables, which are of the form y(β)i (0) for i = 1, . . . ,N
and β = 0, . . . , βi − 1, we can infer that g∗ depends uniquely on (yI , yO), and thus it depends uniquely on (g, yI).
With this in mind we define

UG = {(g∗, g, yI , t) : (g, yI) ∈ UP and (g∗, g) = (y1, . . . , y
(β1−1)
1 , . . . , yN , . . . , y

(βN−1)
N ) �t=0,

where (y1, . . . , yK) = yI and (yK+1, . . . , yK+L) = yO = ΦP(g, yI)}.

To define ΦG, we need to define the value of all the mixed and output channels appearing in G. As described
above, these are either the output variables yK+1, . . . , yK+L, or uniquely obtained from the tuple (yI , yO, t) =
(y1, . . . , yK , yK+1, . . . , yK+L, t) via partial derivatives, products and sums. If we let y∗ denote the value of all the
mixed and output channels which are not the output variables, then y∗ depends uniquely on (yI , yO, t) and thus also
on (g, yI), so that we can define

ΦG(g∗, g, yI , t) =

{
(y∗,ΦP(g, yI)) if (g, g∗, yI , t) ∈ UG;
undefined otherwise.

By this construction, UG and ΦG satisfy the second and third bullets, and all is left is to show that ΦG is
the specification of G on UG. By quasi-well-posedness of P on UP and the above discussion, it is clear that for
(g∗, g, yI , t) ∈ UG, the tuple (y∗, yO) ∈ OG that solves the equational specification of G exists and is unique; that is
to say, yO is given by ΦP(g, yI) and y∗ is obtained from (yI , yO, t) via partial derivatives, produts and sums.

To prove closedness of ΦG, consider a sequence3 (g∗n , gn, yI
n, t) ∈ UG such that

(g∗n , gn, yI
n, t)→ (g∗, g, yI , t) and ΦG(g∗n , gn, yI

n, t)→ (y∗, yO);

by defining (y∗n , yO
n ) = ΦG(g∗n , gn, yI

n, t), we have

(gn, yI
n)→ (g, yI) and ΦP(gn, yI

n) = yO
n → yO.

By closedness of ΦP, we have

(g, yI) ∈ UP and ΦP(g, yI) = yO.

Now (g∗n , gn) corresponds to the values of the variables in (yI
n, yO

n ) and some of their derivatives at t = 0. By
closedness of the differential operator, we can take limits and conclude that (g∗, g) corresponds to the values of the
variables in (yI , yO) and their derivatives at t = 0; thus, (g∗, g, yI , t) ∈ UG. Also, since partial derivatives, products
and sums are closed operators, we infer that (y∗n , yO

n ) → ΦG(g∗, g, yI , t), so that ΦG(g∗, g, yI , t) = (y∗, yO), which
concludes the proof. �

3Since the last component of any tuple in UG must be the linear input t, we only need to consider sequences for the other three subtuples.
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Example 5.8. We provide an example of the construction in the previous Lemma by applying it to the one-
dimensional heat equation, which can be written as the following PDAS,

u′ = ∂2xu, u(0) = x.

To produce a solution to the heat equation, we consider, for example, a square-integrable initial condition g ∈
C(R) ∩ L2(R), for which the solution can be obtained via the heat kernel, that is, ΦP : X ⇀ C1([0,T ], X) is given
by ΦP(g) = u, where

u(t, x) =

∫
R

K(t, x− y)g(y)dy, K(t, x) =
1√
4πt

e−x2/4t.

Let us construct an X-GPAC with specification ΦG such that ΦP is a projection of ΦG. We start with a channel for
the variable u. Using the constructions on Figures 8 and 9 we obtain channels with the derivatives u′, ∂xu and ∂2xu.
We can then construct the partial differential algebraic expression P(u, u′, ∂xu, ∂2xu) = u′ − ∂2xu using one constant
module, one multiplier module and one adder module. Finally, we include an adder and feedback loop as on Figure
10 and loop the variable u to the beginning. The final X-GPAC can be seen on Figure 12.

+ + ×

∂x ∂x × + +

−1

−1

−u u′
u′ −u

u 0

g

t
u

u′ u
u ∂xu u

∂2x u −∂2x u P = 0

Figure 12. Construction of X-GPAC from the heat equation.

We can see that the X-GPAC has one additional input t, which specifies linear time. It should also be noted
that the heat equation has only one variable u, whereas the X-GPAC has a total of twelve channels and thus twelve
variables (of course, most of those are redundant). Therefore, any specification of the X-GPAC must be of type
X1 ×C1([0,T ], X)1 ⇀ C1([0,T ], X)11.

We can also see that if ΦP(g) = u produces a solution to the heat equation, then there is a unique tuple u of
values that satisfy F(g, t,u) = u, where F is the induced operator of the X-GPAC in Figure 12, g is the initial
condition of the integrator and t is the input channel (linear time). In other words, we can construct a specification
ΦG(g, t) = u of the X-GPAC such that ΦP is a projection of ΦG, as expected.

It should be clear from this example that the construction in Lemma 5.7 is universal (in the sense that it works
for any PDAS) but is not necessarily optimal (in the sense that it does not add a minimal number of new variables).
In fact, one could construct a much simpler X-GPAC (with only three modules!) that generates solutions to the heat
equation, as in Figure 13. The reader can verify that ΦP is also a projection of the specification of this X-GPAC.

∂x ∂x
u

g

t

Figure 13. An X-GPAC that generates solutions to the heat equation.
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Finally we can state and prove our main result.

Theorem 2 (X-GPAC Characterization Theorem). Let Φ : X j × C1([0,T ], X)k ⇀ C1([0,T ], X)`. Then the fol-
lowing are equivalent:

• Φ is the projection of an X-GPAC-generable function;
• Φ is the projection of an NFS-generable function;
• Φ is the projection of a PDAS-generable function;

Proof. We prove each implication:
(X-GPAC ⇒ NFS) Let Φ be the projection of an X-GPAC-generable function ΦG. By Lemma 4.7, ΦG is the

projection of an NFS-generable function ΦN , and so Φ is a projection of ΦN .
(NFS⇒ PDAS) Similar to the previous case, but use Lemma 5.6 instead.
(PDAS⇒ X-GPAC) Similar to the previous case, but use Lemma 5.7 instead. �

6. Conclusion
In this paper we have seen a model of analog computation based on the Shannon GPAC. In this model we have

taken streams whose value lie in a general function space X. Theorem 2 is evidence that our model of computation
provides a suitable generalization of the original work on the GPAC. We can thus think of solutions to certain
differential equations as outputs or fixed points of certain analog networks. We have also seen that (quasi)well-
posedness conditions play an important role in this study.

We have only considered the case X = C(R). A possible direction for research would be considering other
function spaces, such as

X = Cp(Ω) or X = Hp(Ω),

where Ω is, for example, a domain in Rn, either unbounded (for example, Ω = Rn) or bounded (for example,
Ω = [0, 1]n), and Hp denotes Sobolev spaces. In the case that Ω is bounded, we may further restrict our space X
to functions with prescribed behaviour on the boundary, such as Dirichlet boundary conditions ( f = 0 on ∂Ω).
We believe that such a direction could allow us to make interesting connections with the field of partial differential
equations, where such spaces are ubiquitous.

Another possible direction would be to consider modules operating on multiple data types, which could be
written as

F : τ`11 × . . .× τ`n
n → τ;

in this way we would have channels of different types and would be able to define a notion of many-typed analog
networks. This direction will probably have a strongly technical aspect, but it could lead to a model of computation
on many-sorted algebras as studied by Tucker and Zucker [6, 21, 34].

As an interesting question we may wonder whether our framework allows computability of functions which are
known not to be Shannon GPAC-generable, such as the gamma function (as noted by Shannon)

Γ(t) =

∫ ∞
0

xt−1e−xdx.

There are well-known differential equations in two variables related to the gamma function; for example (see
[35, p. 174]), if we define the incomplete gamma functions

γ(t, z) =

∫ z

0

xt−1e−xdx;
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Γ(t, z) =

∫ ∞
z

xt−1e−xdx,

then both incomplete gamma functions satisfy the differential equation (for w = w(t, z))

d2w
dz2

+

(
1 +

1− t
z

)
dw
dz

= 0

and we have in addition

γ(t, z) + Γ(t, z) = Γ(t), γ(t, 0) = 0, Γ(t,∞) = 0;

we may ask whether such relations could be implemented on a more general analog network.
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